Pivot de gauss avec numpy

Etape par étape, le pivote de Gauss implémenté en python puis avec numpy.

[7]:
%matplotlib inline

Python

[8]:
import numpy
[9]:
def pivot_gauss(m):
    n = m.copy()
    for i in range(1, m.shape[0]):
        j0 = i
        while j0 < m.shape[0] and m[j0, i - 1] == 0:
            j0 += 1
        for j in range(j0, m.shape[0]):
            coef = -m[j, i - 1] / m[i - 1, i - 1]
            for k in range(i - 1, m.shape[1]):
                m[j, k] += coef * m[i - 1, k]
    return m


m = numpy.random.rand(4, 4)
piv = pivot_gauss(m)
piv * (numpy.abs(piv) > 1e-10)
[9]:
array([[ 0.58650968,  0.72315516,  0.9137217 ,  0.04526746],
       [ 0.        ,  0.70012278,  0.87604076,  0.92402115],
       [ 0.        ,  0.        , -0.36865515,  1.00362559],
       [ 0.        ,  0.        ,  0.        ,  0.26361505]])

* (numpy.abs(piv) > 1e-10) sert à simplifier l’affichage des valeurs quasi nulles.

Numpy 1

[10]:
def pivot_gauss2(m):
    n = m.copy()
    for i in range(1, m.shape[0]):
        j0 = i
        while j0 < m.shape[0] and m[j0, i - 1] == 0:
            j0 += 1
        for j in range(j0, m.shape[0]):
            coef = -m[j, i - 1] / m[i - 1, i - 1]
            m[j, i - 1 :] += m[i - 1, i - 1 :] * coef
    return m


piv = pivot_gauss2(m)
piv * (numpy.abs(piv) > 1e-10)
[10]:
array([[ 0.58650968,  0.72315516,  0.9137217 ,  0.04526746],
       [ 0.        ,  0.70012278,  0.87604076,  0.92402115],
       [ 0.        ,  0.        , -0.36865515,  1.00362559],
       [ 0.        ,  0.        ,  0.        ,  0.26361505]])

Numpy 2

[11]:
def pivot_gauss3(m):
    n = m.copy()
    for i in range(1, m.shape[0]):
        j0 = i
        while j0 < m.shape[0] and m[j0, i - 1] == 0:
            j0 += 1
        coef = -m[j0:, i - 1] / m[i - 1, i - 1]
        m[j0:, i - 1 :] += coef.reshape((-1, 1)) * m[i - 1, i - 1 :].reshape((1, -1))
    return m


piv = pivot_gauss3(m)
piv * (numpy.abs(piv) > 1e-10)
[11]:
array([[ 0.58650968,  0.72315516,  0.9137217 ,  0.04526746],
       [ 0.        ,  0.70012278,  0.87604076,  0.92402115],
       [ 0.        ,  0.        , -0.36865515,  1.00362559],
       [ 0.        ,  0.        ,  0.        ,  0.26361505]])

Vitesse

[12]:
from tqdm import tqdm
import pandas
from teachpyx.ext_test_case import measure_time

data = []
for n in tqdm([10, 20, 30, 40, 50, 60, 70, 80, 100]):
    m = numpy.random.rand(n, n)
    if n < 50:
        res = measure_time(lambda: pivot_gauss(m), number=10, repeat=10)
        res.update(dict(name="python", n=n))
        data.append(res)
    res = measure_time(lambda: pivot_gauss2(m), number=10, repeat=10)
    res.update(dict(name="numpy1", n=n))
    data.append(res)
    res = measure_time(lambda: pivot_gauss3(m), number=10, repeat=10)
    res.update(dict(name="numpy2", n=n))
    data.append(res)

df = pandas.DataFrame(data)
df
100%|██████████| 9/9 [00:07<00:00,  1.17it/s]
[12]:
average deviation min_exec max_exec repeat number ttime context_size warmup_time name n
0 0.000051 0.000030 0.000028 0.000125 10 10 0.000512 64 0.000728 python 10
1 0.000045 0.000021 0.000028 0.000094 10 10 0.000447 64 0.000046 numpy1 10
2 0.000137 0.000024 0.000110 0.000197 10 10 0.001367 64 0.000253 numpy2 10
3 0.001134 0.000540 0.000623 0.002258 10 10 0.011340 64 0.003184 python 20
4 0.001312 0.000678 0.000639 0.002858 10 10 0.013121 64 0.001035 numpy1 20
5 0.000375 0.000184 0.000233 0.000818 10 10 0.003753 64 0.001292 numpy2 20
6 0.001557 0.001094 0.000686 0.003803 10 10 0.015571 64 0.016613 python 30
7 0.000404 0.000062 0.000331 0.000553 10 10 0.004045 64 0.000364 numpy1 30
8 0.000471 0.000037 0.000440 0.000545 10 10 0.004713 64 0.000482 numpy2 30
9 0.003798 0.001491 0.002594 0.007715 10 10 0.037978 64 0.018972 python 40
10 0.001324 0.000265 0.001054 0.002030 10 10 0.013239 64 0.001341 numpy1 40
11 0.000820 0.000190 0.000602 0.001140 10 10 0.008200 64 0.000651 numpy2 40
12 0.004260 0.001177 0.002724 0.006471 10 10 0.042603 64 0.005198 numpy1 50
13 0.001690 0.000268 0.001100 0.002116 10 10 0.016902 64 0.001080 numpy2 50
14 0.009320 0.002581 0.005762 0.013509 10 10 0.093197 64 0.015497 numpy1 60
15 0.001664 0.000133 0.001458 0.001827 10 10 0.016641 64 0.001309 numpy2 60
16 0.005314 0.001348 0.003848 0.008252 10 10 0.053141 64 0.016670 numpy1 70
17 0.001629 0.000216 0.001459 0.002045 10 10 0.016286 64 0.001499 numpy2 70
18 0.011036 0.003890 0.007070 0.018254 10 10 0.110356 64 0.017467 numpy1 80
19 0.002637 0.000582 0.001846 0.003606 10 10 0.026375 64 0.002417 numpy2 80
20 0.021563 0.003232 0.017314 0.029488 10 10 0.215629 64 0.028747 numpy1 100
21 0.004673 0.001109 0.003391 0.005935 10 10 0.046730 64 0.005792 numpy2 100
[13]:
piv = df.pivot(index="n", columns="name", values="average")
piv
[13]:
name numpy1 numpy2 python
n
10 0.000045 0.000137 0.000051
20 0.001312 0.000375 0.001134
30 0.000404 0.000471 0.001557
40 0.001324 0.000820 0.003798
50 0.004260 0.001690 NaN
60 0.009320 0.001664 NaN
70 0.005314 0.001629 NaN
80 0.011036 0.002637 NaN
100 0.021563 0.004673 NaN
[14]:
piv.plot(title="pivot de gauss");
../../_images/practice_py-base_pivot_gauss_13_0.png
[ ]:


Notebook on github