Classification multi-classe et jeu mal balancé#

Plus il y a de classes, plus la classification est difficile car le nombre d’exemples par classe diminue. Voyons cela plus en détail sur des jeux artificiels produits mar make_blobs.

[1]:
%matplotlib inline

Pour aller plus vite, l’apprentissage est un peu écourté. Le code produit beaucoup de warnings indiquant que la convergence n’a pas eu lieu et nécessite plus d’itérations. Cela ne remet pas en cause ce qui est illustré dans ce notebook.

[2]:
import warnings

warnings.filterwarnings("ignore")

découverte#

Le premier jeu de données est une simple fonction linéaire sur deux variables d’ordre de grandeur différents.

[3]:
from sklearn.datasets import make_blobs
from sklearn.model_selection import train_test_split

X, y = make_blobs(2000, cluster_std=2, centers=5)
[4]:
import matplotlib.pyplot as plt

fig, ax = plt.subplots(1, 1, figsize=(3, 3))
for i, c in zip(range(0, 5), "rgbyc"):
    ax.plot(X[y == i, 0], X[y == i, 1], c + ".", label=str(i))
ax.set_title("Nuage de point avec 5 classes")
[4]:
Text(0.5, 1.0, 'Nuage de point avec 5 classes')
../../_images/practice_ml_artificiel_multiclass_7_1.png
[5]:
X_train, X_test, y_train, y_test = train_test_split(X, y)
[6]:
from sklearn.linear_model import LogisticRegression

model = LogisticRegression(solver="sag")
model.fit(X_train, y_train)
score = model.score(X_test, y_test)
score
[6]:
0.658

Mettons le jour dans une fonction pour plusieurs modèles :

[7]:
from time import perf_counter as clock


def evaluate_model(models, X_train, X_test, y_train, y_test):
    res = {}
    for k, v in models.items():
        t1 = clock()
        v.fit(X_train, y_train)
        t2 = clock() - t1
        res[k + "_time_train"] = t2
        t1 = clock()
        score = v.score(X_test, y_test)
        t2 = clock() - t1
        res[k + "_time_test"] = t2
        res[k + "_score"] = score
    return res


from sklearn.multiclass import OneVsOneClassifier, OneVsRestClassifier

models = {
    "OvO-LR": OneVsOneClassifier(LogisticRegression(solver="sag")),
    "OvR-LR": OneVsRestClassifier(LogisticRegression(solver="sag")),
    "LR": LogisticRegression(),
}

res = evaluate_model(models, X_train, X_test, y_train, y_test)
res
[7]:
{'OvO-LR_time_train': 0.2209448000003249,
 'OvO-LR_time_test': 0.009104000000206725,
 'OvO-LR_score': 0.662,
 'OvR-LR_time_train': 0.2086589999998978,
 'OvR-LR_time_test': 0.005245500000000902,
 'OvR-LR_score': 0.654,
 'LR_time_train': 0.05842000000029657,
 'LR_time_test': 0.0010207000000264088,
 'LR_score': 0.66}

La stratégie OneVsOne a l’air d’être plus performante. La régression logistique implémente la stratégie OneVsRest. On ne l’évalue plus.

[8]:
import pandas
from tqdm import tqdm

warnings.filterwarnings("ignore")

models = {
    "OvO-LR": OneVsOneClassifier(LogisticRegression(solver="sag")),
    "OvR-LR": LogisticRegression(solver="sag"),
}

rows = []
for centers in tqdm(range(2, 51, 8)):
    X, y = make_blobs(500, centers=centers, cluster_std=2.0)
    X_train, X_test, y_train, y_test = train_test_split(X, y)
    res = evaluate_model(models, X_train, X_test, y_train, y_test)
    res["centers"] = centers
    rows.append(res)

df = pandas.DataFrame(rows)
df
100%|██████████| 7/7 [00:10<00:00,  1.56s/it]
[8]:
OvO-LR_time_train OvO-LR_time_test OvO-LR_score OvR-LR_time_train OvR-LR_time_test OvR-LR_score centers
0 0.032755 0.001730 1.000 0.022686 0.001637 1.000 2
1 0.324123 0.032629 0.812 0.076139 0.001591 0.808 10
2 0.730089 0.036648 0.488 0.053406 0.000859 0.508 18
3 0.984762 0.096167 0.444 0.116836 0.001022 0.468 26
4 1.537234 0.154609 0.384 0.110220 0.001036 0.388 34
5 2.595010 0.209428 0.328 0.122475 0.000956 0.336 42
6 3.022290 0.437165 0.280 0.150593 0.000868 0.280 50
[9]:
fix, ax = plt.subplots(1, 1, figsize=(6, 3))
for c, col in zip("rgb", [_ for _ in df.columns if "_score" in _]):
    df.plot(x="centers", y=col, label=col.replace("_score", ""), ax=ax, color=c)
x = list(range(2, 51))
ax.plot(x, [1.0 / _ for _ in x], label="constante")
ax.legend()
ax.set_title("Précision en fonction du nombre de classes");
../../_images/practice_ml_artificiel_multiclass_14_0.png

évolution en fonction du nombre de classes#

On pourrait se dire que c’est parce que le nombre d’exemples par classes décroît. Voyons cela.

[10]:
import pandas

models = {
    "OvO-LR": OneVsOneClassifier(LogisticRegression(solver="sag")),
    "OvR-LR": OneVsRestClassifier(LogisticRegression(solver="sag")),
}

rows = []
for centers in tqdm(range(2, 51, 8)):
    X, y = make_blobs(50 * centers, centers=centers, cluster_std=2.0)
    X_train, X_test, y_train, y_test = train_test_split(X, y)
    res = evaluate_model(models, X_train, X_test, y_train, y_test)
    res["centers"] = centers
    rows.append(res)

df2 = pandas.DataFrame(rows)
df2
100%|██████████| 7/7 [00:23<00:00,  3.30s/it]
[10]:
OvO-LR_time_train OvO-LR_time_test OvO-LR_score OvR-LR_time_train OvR-LR_time_test OvR-LR_score centers
0 0.009756 0.003354 0.980000 0.016191 0.001600 0.980000 2
1 0.248614 0.011291 0.636000 0.092591 0.001695 0.568000 10
2 0.834381 0.067650 0.524444 0.376624 0.004853 0.466667 18
3 1.502573 0.099040 0.460000 0.721085 0.004124 0.436923 26
4 2.613464 0.178248 0.397647 0.990700 0.005284 0.342353 34
5 4.057976 0.297401 0.375238 1.337764 0.006087 0.340952 42
6 6.861960 0.479451 0.316800 2.269823 0.008297 0.269600 50
[11]:
fix, ax = plt.subplots(1, 1, figsize=(8, 4))
for c1, c2, col in zip("rg", "cy", [_ for _ in df2.columns if "_score" in _]):
    df.plot(
        x="centers", y=col, label=col.replace("_score", " N const"), ax=ax, color=c1
    )
    df2.plot(
        x="centers", y=col, label=col.replace("_score", " cl const"), ax=ax, color=c2
    )
x = list(range(2, 51))
ax.plot(x, [1.0 / _ for _ in x], label="constante")
ax.legend()
ax.set_title("Précision en fonction du nombre de classes");
../../_images/practice_ml_artificiel_multiclass_18_0.png

évolution en fonction de la variance#

Un peu mieux mais cela décroît toujours. Peut-être que la courbe dépend de la confusion entre les classes ?

[12]:
import pandas

models = {
    "OvO-LR": OneVsOneClassifier(LogisticRegression(solver="sag")),
    "OvR-LR": OneVsRestClassifier(LogisticRegression(solver="sag")),
}

rows = []
for std_ in tqdm(range(5, 31, 5)):
    X, y = make_blobs(500, centers=40, cluster_std=std_ / 10.0)
    X_train, X_test, y_train, y_test = train_test_split(X, y)
    res = evaluate_model(models, X_train, X_test, y_train, y_test)
    res["std"] = std_ / 10.0
    rows.append(res)

df3 = pandas.DataFrame(rows)
df3
100%|██████████| 6/6 [00:16<00:00,  2.78s/it]
[12]:
OvO-LR_time_train OvO-LR_time_test OvO-LR_score OvR-LR_time_train OvR-LR_time_test OvR-LR_score std
0 2.031314 0.243204 0.788 0.584626 0.005322 0.560 0.5
1 1.901009 0.275102 0.600 0.527490 0.008637 0.420 1.0
2 1.790364 0.245218 0.496 0.538992 0.005838 0.372 1.5
3 1.985556 0.258749 0.280 0.459469 0.005051 0.228 2.0
4 2.154060 0.258028 0.220 0.603545 0.005316 0.192 2.5
5 2.031245 0.208715 0.200 0.529591 0.005976 0.180 3.0
[13]:
fix, ax = plt.subplots(1, 1, figsize=(8, 4))
for c1, col in zip("rg", [_ for _ in df3.columns if "_score" in _]):
    df3.plot(x="std", y=col, label=col.replace("_score", " cl const"), ax=ax, color=c1)
x = [_ / 10.0 for _ in range(5, 31)]
ax.plot(x, [1 / 40.0 for _ in x], label="constante")
ax.set_title("Précision en fonction de la variance de chaque classe")
ax.legend();
../../_images/practice_ml_artificiel_multiclass_22_0.png

évolution en fonction de la dimension#

Et en fonction du nombre de dimensions :

[14]:
import pandas

models = {
    "OvO-LR": OneVsOneClassifier(LogisticRegression(solver="sag")),
    "OvR-LR": OneVsRestClassifier(LogisticRegression(solver="sag")),
}

rows = []
for nf in tqdm(range(2, 11, 2)):
    X, y = make_blobs(500, centers=40, cluster_std=2.0, n_features=nf)
    X_train, X_test, y_train, y_test = train_test_split(X, y)
    res = evaluate_model(models, X_train, X_test, y_train, y_test)
    res["nf"] = nf
    rows.append(res)

df4 = pandas.DataFrame(rows)
df4
100%|██████████| 5/5 [00:17<00:00,  3.56s/it]
[14]:
OvO-LR_time_train OvO-LR_time_test OvO-LR_score OvR-LR_time_train OvR-LR_time_test OvR-LR_score nf
0 2.042428 0.264521 0.320 0.491270 0.005313 0.260 2
1 2.325670 0.225577 0.740 0.760807 0.005378 0.728 4
2 2.953030 0.214104 0.976 0.865434 0.005122 0.952 6
3 2.404396 0.234881 0.996 0.967371 0.009054 0.988 8
4 2.818875 0.287795 1.000 0.898213 0.005280 0.996 10
[15]:
fix, ax = plt.subplots(1, 1, figsize=(8, 4))
for c1, col in zip("rg", [_ for _ in df4.columns if "_score" in _]):
    df4.plot(x="nf", y=col, label=col.replace("_score", " cl const"), ax=ax, color=c1)
x = list(range(2, 11))
ax.plot(x, [1 / 40.0 for _ in x], label="constante")
ax.set_title("Précision en fonction de la dimension")
ax.legend();
../../_images/practice_ml_artificiel_multiclass_26_0.png

retour sur le nombre de classes#

[22]:
import pandas

models = {
    "OvO-LR": OneVsOneClassifier(LogisticRegression(solver="lbfgs")),
    "OvR-LR": OneVsRestClassifier(LogisticRegression(solver="lbfgs")),
}

rows = []
for centers in tqdm(range(10, 151, 25)):
    X, y = make_blobs(10 * centers, centers=centers, cluster_std=2.0)
    X_train, X_test, y_train, y_test = train_test_split(X, y)
    res = evaluate_model(models, X_train, X_test, y_train, y_test)
    res["centers"] = centers
    rows.append(res)

df5 = pandas.DataFrame(rows)
df5
100%|██████████| 6/6 [01:45<00:00, 17.58s/it]
[22]:
OvO-LR_time_train OvO-LR_time_test OvO-LR_score OvR-LR_time_train OvR-LR_time_test OvR-LR_score centers
0 0.285135 0.017950 0.600000 0.042483 0.002003 0.520000 10
1 2.895627 0.189201 0.302857 0.168547 0.004620 0.251429 35
2 7.890931 0.605583 0.196667 0.367130 0.013213 0.160000 60
3 17.404424 1.189003 0.160000 0.499927 0.012866 0.105882 85
4 26.166851 1.902685 0.132727 0.772086 0.014063 0.083636 110
5 41.347375 2.720673 0.120000 0.901161 0.043177 0.084444 135
[17]:
fix, ax = plt.subplots(1, 1, figsize=(8, 4))
for c1, col in zip("rgcy", [_ for _ in df5.columns if "_score" in _]):
    df5.plot(
        x="centers", y=col, label=col.replace("_score", " N const"), ax=ax, color=c1
    )
x = df5.centers
ax.plot(x, [1.0 / _ for _ in x], label="constante")
ax.legend()
ax.set_title("Précision en fonction du nombre de classes");
../../_images/practice_ml_artificiel_multiclass_29_0.png

un dernier jeu sûr#

On construit un dernier jeu pour lequel le taux de classification devrait être 100%.

[18]:
import numpy


def jeu_x_y(ncl, n):
    uni = numpy.random.random(n * 2).reshape((n, 2))
    resx = []
    resy = []
    for i in range(ncl):
        resx.append(uni + i * 2)
        resy.append(numpy.ones(n) * i)
    X = numpy.vstack(resx)
    y = numpy.hstack(resy)
    return X, y


X, y = jeu_x_y(4, 50)
X.shape, y.shape
[18]:
((200, 2), (200,))
[19]:
fig, ax = plt.subplots(1, 1, figsize=(3, 3))
for i, c in zip(range(0, 5), "rgbyc"):
    ax.plot(X[y == i, 0], X[y == i, 1], c + ".", label=str(i))
ax.set_title("Nuage de point avec 5 classes")
[19]:
Text(0.5, 1.0, 'Nuage de point avec 5 classes')
../../_images/practice_ml_artificiel_multiclass_32_1.png
[20]:
from sklearn.tree import DecisionTreeClassifier

models = {
    "OvO-LR": OneVsOneClassifier(LogisticRegression(solver="sag")),
    "OvR-LR": OneVsRestClassifier(LogisticRegression(solver="sag")),
    "DT": DecisionTreeClassifier(),
}

rows = []
for centers in tqdm(range(2, 21, 4)):
    X, y = jeu_x_y(centers, 10)
    X_train, X_test, y_train, y_test = train_test_split(X, y)
    res = evaluate_model(models, X_train, X_test, y_train, y_test)
    res["centers"] = centers
    rows.append(res)

df5 = pandas.DataFrame(rows)
df5
100%|██████████| 5/5 [00:00<00:00,  5.22it/s]
[20]:
OvO-LR_time_train OvO-LR_time_test OvO-LR_score OvR-LR_time_train OvR-LR_time_test OvR-LR_score DT_time_train DT_time_test DT_score centers
0 0.008709 0.003290 1.000000 0.014272 0.002550 1.000000 0.001384 0.001313 1.0 2
1 0.050579 0.007302 0.800000 0.025281 0.002580 0.733333 0.001434 0.001112 1.0 6
2 0.100356 0.013768 0.400000 0.032940 0.001779 0.320000 0.001064 0.000719 1.0 10
3 0.185524 0.020908 0.285714 0.046669 0.001958 0.085714 0.001124 0.000627 1.0 14
4 0.292794 0.039437 0.311111 0.083591 0.003007 0.111111 0.001478 0.000881 1.0 18
[21]:
fix, ax = plt.subplots(1, 1, figsize=(8, 4))
for c1, col in zip("rgycbp", [_ for _ in df5.columns if "_score" in _]):
    df5.plot(
        x="centers", y=col, label=col.replace("_score", " N const"), ax=ax, color=c1
    )
x = df5.centers
ax.plot(x, [1.0 / _ for _ in x], label="constante")
ax.legend()
ax.set_title("Précision en fonction du nombre de classes\njeu simple");
../../_images/practice_ml_artificiel_multiclass_34_0.png

La régression logistique n’est pas le meilleur modèle lorsque le nombre de classes est élevé et la dimension de l’espace de variables faible.


Notebook on github