teachpyx.practice.ml_skl¶
- class teachpyx.practice.ml_skl.PositiveOrNegativeLinearRegression(epsilon: float = 1.0, max_iter: int = 100, positive: bool = True)[source][source]¶
Trains a linear regression with coefficients of the same sign. The order of inheritance must be
RegressorMixin, BaseEstimator
otherwise the tags are wrong.- Paramètres:
epsilon – gradient step
max_iter – number maximum of iterations
positive – only positive weights (or negative if False)
Tags can be changed.
def __sklearn_tags__(self): tags = RegressorMixin.__sklearn_tags__(self) return tags return Tags( estimator_type=None, target_tags=TargetTags(required=False), transformer_tags=None, regressor_tags=None, classifier_tags=None, )
Or:
def __sklearn_tags__(self): return Tags( estimator_type="regressor", classifier_tags=None, regressor_tags=RegressorTags(), transformer_tags=None, target_tags=TargetTags(required=True), )
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') PositiveOrNegativeLinearRegression [source]¶
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Ajouté dans la version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.