Le gradient et le discret#

Les méthodes d’optimisation à base de gradient s’appuie sur une fonction d’erreur dérivable qu’on devrait appliquer de préférence sur des variables aléatoires réelles. Ce notebook explore quelques idées.

Un petit problème simple#

On utilise le jeu de données iris disponible dans scikit-learn.

[1]:
from sklearn import datasets

iris = datasets.load_iris()
X = iris.data[:, :2]  # we only take the first two features.
Y = iris.target

On cale une régression logistique. On ne distingue pas apprentissage et test car ce n’est pas le propos de ce notebook.

[2]:
from sklearn.linear_model import LogisticRegression

clf = LogisticRegression(multi_class="ovr", solver="liblinear")
clf.fit(X, Y)
/home/xadupre/vv/this/lib/python3.10/site-packages/sklearn/linear_model/_logistic.py:1256: FutureWarning: 'multi_class' was deprecated in version 1.5 and will be removed in 1.7. Use OneVsRestClassifier(LogisticRegression(..)) instead. Leave it to its default value to avoid this warning.
  warnings.warn(
[2]:
LogisticRegression(multi_class='ovr', solver='liblinear')
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

Puis on calcule la matrice de confusion.

[3]:
from sklearn.metrics import confusion_matrix

pred = clf.predict(X)
confusion_matrix(Y, pred)
[3]:
array([[49,  1,  0],
       [ 2, 21, 27],
       [ 1,  4, 45]])

Multiplication des observations#

Le paramètre multi_class='ovr' stipule que le modèle cache en fait l’estimation de 3 régressions logistiques binaire. Essayons de n’en faire qu’une seule en ajouter le label Y aux variables. Soit un couple \((X_i \in \mathbb{R^d}, Y_i \in \mathbb{N})\) qui correspond à une observation pour un problème multi-classe. Comme il y a \(C\) classes, on multiplie cette ligne par le nombre de classes \(C\) pour obtenir :

\[\begin{split}\forall c \in \mathbb{[}1, ..., C\mathbb{]}, \; \left\{ \begin{array}{ll} X_i' = (X_{i,1}, ..., X_{i,d}, Y_{i,1}, ..., Y_{i,C}) \\ Y_i' = \mathbb{1}_{Y_i = c} \\ Y_{i,k} = \mathbb{1}_{c = k}\end{array} \right.\end{split}\]

Voyons ce que cela donne sur un exemple :

[4]:
import numpy
import pandas


def multiplie(X, Y, classes=None):
    if classes is None:
        classes = numpy.unique(Y)
    XS = []
    YS = []
    for i in classes:
        X2 = numpy.zeros((X.shape[0], 3))
        X2[:, i] = 1
        Yb = i == Y
        XS.append(numpy.hstack([X, X2]))
        Yb = Yb.reshape((len(Yb), 1))
        YS.append(Yb)

    Xext = numpy.vstack(XS)
    Yext = numpy.vstack(YS)
    return Xext, Yext


x, y = multiplie(X[:1, :], Y[:1], [0, 1, 2])
df = pandas.DataFrame(numpy.hstack([x, y]))
df.columns = ["X1", "X2", "Y0", "Y1", "Y2", "Y'"]
df
[4]:
X1 X2 Y0 Y1 Y2 Y'
0 5.1 3.5 1.0 0.0 0.0 1.0
1 5.1 3.5 0.0 1.0 0.0 0.0
2 5.1 3.5 0.0 0.0 1.0 0.0

Trois colonnes ont été ajoutées côté \(X\), la ligne a été multipliée 3 fois, la dernière colonne est \(Y\) qui ne vaut 1 que lorsque le 1 est au bon endroit dans une des colonnes ajoutées. Le problème de classification qui été de prédire la bonne classe devient : est-ce la classe à prédire est \(k\) ? On applique cela sur toutes les lignes de la base et cela donne :

[5]:
Xext, Yext = multiplie(X, Y)
numpy.hstack([Xext, Yext])
df = pandas.DataFrame(numpy.hstack([Xext, Yext]))
df.columns = ["X1", "X2", "Y0", "Y1", "Y2", "Y'"]
df.iloc[numpy.random.permutation(df.index), :].head(n=10)
[5]:
X1 X2 Y0 Y1 Y2 Y'
381 5.5 2.4 0.0 0.0 1.0 0.0
52 6.9 3.1 1.0 0.0 0.0 0.0
153 4.6 3.1 0.0 1.0 0.0 0.0
189 5.1 3.4 0.0 1.0 0.0 0.0
397 6.2 2.9 0.0 0.0 1.0 0.0
239 5.5 2.5 0.0 1.0 0.0 1.0
108 6.7 2.5 1.0 0.0 0.0 0.0
398 5.1 2.5 0.0 0.0 1.0 0.0
22 4.6 3.6 1.0 0.0 0.0 1.0
13 4.3 3.0 1.0 0.0 0.0 1.0
[6]:
from sklearn.ensemble import GradientBoostingClassifier

clf = GradientBoostingClassifier()
clf.fit(Xext, Yext.ravel())
[6]:
GradientBoostingClassifier()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
[7]:
pred = clf.predict(Xext)
confusion_matrix(Yext, pred)
[7]:
array([[278,  22],
       [ 25, 125]])

Introduire du bruit#

Un des problèmes de cette méthode est qu’on ajoute une variable binaire pour un problème résolu à l’aide d’une optimisation à base de gradient. C’est moyen. Pas de problème, changeons un peu la donne.

[8]:
def multiplie_bruit(X, Y, classes=None):
    if classes is None:
        classes = numpy.unique(Y)
    XS = []
    YS = []
    for i in classes:
        # X2 = numpy.random.randn((X.shape[0]* 3)).reshape(X.shape[0], 3) * 0.1
        X2 = numpy.random.random((X.shape[0], 3)) * 0.2
        X2[:, i] += 1
        Yb = i == Y
        XS.append(numpy.hstack([X, X2]))
        Yb = Yb.reshape((len(Yb), 1))
        YS.append(Yb)

    Xext = numpy.vstack(XS)
    Yext = numpy.vstack(YS)
    return Xext, Yext


x, y = multiplie_bruit(X[:1, :], Y[:1], [0, 1, 2])
df = pandas.DataFrame(numpy.hstack([x, y]))
df.columns = ["X1", "X2", "Y0", "Y1", "Y2", "Y'"]
df
[8]:
X1 X2 Y0 Y1 Y2 Y'
0 5.1 3.5 1.004920 0.004532 0.039157 1.0
1 5.1 3.5 0.085563 1.129575 0.121337 0.0
2 5.1 3.5 0.130275 0.174763 1.074460 0.0

Le problème est le même qu’avant excepté les variables \(Y_i\) qui sont maintenant réel. Au lieu d’être nul, on prend une valeur \(Y_i < 0.4\).

[9]:
Xextb, Yextb = multiplie_bruit(X, Y)
df = pandas.DataFrame(numpy.hstack([Xextb, Yextb]))
df.columns = ["X1", "X2", "Y0", "Y1", "Y2", "Y'"]
df.iloc[numpy.random.permutation(df.index), :].head(n=10)
[9]:
X1 X2 Y0 Y1 Y2 Y'
212 6.0 2.2 0.149054 1.155596 0.109413 1.0
116 6.5 3.0 1.071760 0.092802 0.013911 0.0
391 6.1 3.0 0.084143 0.137336 1.063657 0.0
16 5.4 3.9 1.098201 0.064308 0.032878 1.0
229 5.7 2.6 0.126999 1.065582 0.127480 1.0
38 4.4 3.0 1.164621 0.050779 0.009277 1.0
213 6.1 2.9 0.061990 1.034818 0.047033 1.0
334 4.9 3.1 0.031713 0.141205 1.043195 0.0
54 6.5 2.8 1.066118 0.158271 0.187764 0.0
379 5.7 2.6 0.033443 0.055818 1.008779 0.0
[10]:
from sklearn.ensemble import GradientBoostingClassifier

clfb = GradientBoostingClassifier()
clfb.fit(Xextb, Yextb.ravel())
[10]:
GradientBoostingClassifier()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
[11]:
predb = clfb.predict(Xextb)
confusion_matrix(Yextb, predb)
[11]:
array([[295,   5],
       [  9, 141]])

C’est un petit peu mieux.

Comparaisons de plusieurs modèles#

On cherche maintenant à comparer le gain en introduisant du bruit pour différents modèles.

[17]:
def error(model, x, y):
    p = model.predict(x)
    cm = confusion_matrix(y, p)
    return (cm[1, 0] + cm[0, 1]) / cm.sum()


def comparaison(model, X, Y):
    if isinstance(model, tuple):
        clf = model[0](**model[1])
        clfb = model[0](**model[1])
        model = model[0]
    else:
        clf = model()
        clfb = model()

    Xext, Yext = multiplie(X, Y)
    clf.fit(Xext, Yext.ravel())
    err = error(clf, Xext, Yext)

    Xextb, Yextb = multiplie_bruit(X, Y)
    clfb.fit(Xextb, Yextb.ravel())
    errb = error(clfb, Xextb, Yextb)
    return dict(model=model.__name__, err1=err, err2=errb)


from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier, ExtraTreeClassifier
from sklearn.ensemble import (
    RandomForestClassifier,
    ExtraTreesClassifier,
    AdaBoostClassifier,
)
from sklearn.neural_network import MLPClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.multiclass import OneVsRestClassifier
from xgboost import XGBClassifier
from tqdm import tqdm

models = [
    (OneVsRestClassifier, dict(estimator=LogisticRegression(solver="liblinear"))),
    GradientBoostingClassifier,
    (RandomForestClassifier, dict(n_estimators=20)),
    DecisionTreeClassifier,
    ExtraTreeClassifier,
    XGBClassifier,
    (ExtraTreesClassifier, dict(n_estimators=20)),
    (MLPClassifier, dict(activation="logistic")),
    GaussianNB,
    KNeighborsClassifier,
    (
        AdaBoostClassifier,
        dict(
            estimator=LogisticRegression(solver="liblinear"),
            algorithm="SAMME",
        ),
    ),
]

res = []
for model in tqdm(models):
    res.append(comparaison(model, X, Y))
df = pandas.DataFrame(res)
df.sort_values("model")
100%|██████████| 11/11 [00:01<00:00,  6.17it/s]
[17]:
model err1 err2
10 AdaBoostClassifier 0.333333 0.333333
3 DecisionTreeClassifier 0.048889 0.000000
4 ExtraTreeClassifier 0.048889 0.000000
6 ExtraTreesClassifier 0.048889 0.000000
8 GaussianNB 0.333333 0.333333
1 GradientBoostingClassifier 0.104444 0.022222
9 KNeighborsClassifier 0.108889 0.097778
7 MLPClassifier 0.333333 0.333333
0 OneVsRestClassifier 0.333333 0.333333
2 RandomForestClassifier 0.053333 0.002222
5 XGBClassifier 0.333333 0.000000

err1 correspond à \(Y_0, Y_1, Y_2\) binaire, err2 aux mêmes variables mais avec un peu de bruit. L’ajout ne semble pas faire décroître la performance et l’améliore dans certains cas. C’est une piste à suivre. Reste à savoir si les modèles n’apprennent pas le bruit.

Avec une ACP#

On peut faire varier le nombre de composantes, j’en ai gardé qu’une. L’ACP est appliquée après avoir ajouté les variables binaires ou binaires bruitées. Le résultat est sans équivoque. Aucun modèle ne parvient à apprendre sans l’ajout de bruit.

[19]:
from sklearn.decomposition import PCA


def comparaison_ACP(model, X, Y):
    if isinstance(model, tuple):
        clf = model[0](**model[1])
        clfb = model[0](**model[1])
        model = model[0]
    else:
        clf = model()
        clfb = model()

    axes = 1
    solver = "full"
    Xext, Yext = multiplie(X, Y)
    Xext = PCA(n_components=axes, svd_solver=solver).fit_transform(Xext)
    clf.fit(Xext, Yext.ravel())
    err = error(clf, Xext, Yext)

    Xextb, Yextb = multiplie_bruit(X, Y)
    Xextb = PCA(n_components=axes, svd_solver=solver).fit_transform(Xextb)
    clfb.fit(Xextb, Yextb.ravel())
    errb = error(clfb, Xextb, Yextb)
    return dict(modelACP=model.__name__, errACP1=err, errACP2=errb)


res = []
for model in tqdm(models):
    res.append(comparaison_ACP(model, X, Y))
dfb = pandas.DataFrame(res)
pandas.concat([df.sort_values("model"), dfb.sort_values("modelACP")], axis=1)
100%|██████████| 11/11 [00:01<00:00,  5.83it/s]
[19]:
model err1 err2 modelACP errACP1 errACP2
10 AdaBoostClassifier 0.333333 0.333333 AdaBoostClassifier 0.333333 0.333333
3 DecisionTreeClassifier 0.048889 0.000000 DecisionTreeClassifier 0.333333 0.000000
4 ExtraTreeClassifier 0.048889 0.000000 ExtraTreeClassifier 0.333333 0.000000
6 ExtraTreesClassifier 0.048889 0.000000 ExtraTreesClassifier 0.333333 0.000000
8 GaussianNB 0.333333 0.333333 GaussianNB 0.333333 0.333333
1 GradientBoostingClassifier 0.104444 0.022222 GradientBoostingClassifier 0.333333 0.231111
9 KNeighborsClassifier 0.108889 0.097778 KNeighborsClassifier 0.335556 0.302222
7 MLPClassifier 0.333333 0.333333 MLPClassifier 0.333333 0.333333
0 OneVsRestClassifier 0.333333 0.333333 OneVsRestClassifier 0.333333 0.333333
2 RandomForestClassifier 0.053333 0.002222 RandomForestClassifier 0.335556 0.020000
5 XGBClassifier 0.333333 0.000000 XGBClassifier 0.333333 0.262222

Base d’apprentissage et de test#

Cette fois-ci, on s’intéresse à la qualité des frontières que les modèles trouvent en vérifiant sur une base de test que l’apprentissage s’est bien passé.

[20]:
from sklearn.model_selection import train_test_split


def comparaison_train_test(models, X, Y, mbruit=multiplie_bruit, acp=None):
    axes = acp
    solver = "full"

    ind = numpy.random.permutation(numpy.arange(X.shape[0]))
    X = X[ind, :]
    Y = Y[ind]
    X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=1.0 / 3)

    res = []
    for model in tqdm(models):
        if isinstance(model, tuple):
            clf = model[0](**model[1])
            clfb = model[0](**model[1])
            model = model[0]
        else:
            clf = model()
            clfb = model()

        Xext_train, Yext_train = multiplie(X_train, Y_train)
        Xext_test, Yext_test = multiplie(X_test, Y_test)
        if acp:
            Xext_train_ = Xext_train
            Xext_test_ = Xext_test
            acp_model = PCA(n_components=axes, svd_solver=solver).fit(Xext_train)
            Xext_train = acp_model.transform(Xext_train)
            Xext_test = acp_model.transform(Xext_test)
        clf.fit(Xext_train, Yext_train.ravel())

        err_train = error(clf, Xext_train, Yext_train)
        err_test = error(clf, Xext_test, Yext_test)

        Xextb_train, Yextb_train = mbruit(X_train, Y_train)
        Xextb_test, Yextb_test = mbruit(X_test, Y_test)
        if acp:
            acp_model = PCA(n_components=axes, svd_solver=solver).fit(Xextb_train)
            Xextb_train = acp_model.transform(Xextb_train)
            Xextb_test = acp_model.transform(Xextb_test)
            Xext_train = acp_model.transform(Xext_train_)
            Xext_test = acp_model.transform(Xext_test_)
        clfb.fit(Xextb_train, Yextb_train.ravel())

        errb_train = error(clfb, Xextb_train, Yextb_train)
        errb_train_clean = error(clfb, Xext_train, Yext_train)
        errb_test = error(clfb, Xextb_test, Yextb_test)
        errb_test_clean = error(clfb, Xext_test, Yext_test)

        res.append(
            dict(
                modelTT=model.__name__,
                err_train=err_train,
                err2_train=errb_train,
                err_test=err_test,
                err2_test=errb_test,
                err2b_test_clean=errb_test_clean,
                err2b_train_clean=errb_train_clean,
            )
        )

    dfb = pandas.DataFrame(res)
    dfb = dfb[
        [
            "modelTT",
            "err_train",
            "err2_train",
            "err2b_train_clean",
            "err_test",
            "err2_test",
            "err2b_test_clean",
        ]
    ]
    dfb = dfb.sort_values("modelTT")
    return dfb


dfb = comparaison_train_test(models, X, Y)
dfb
100%|██████████| 11/11 [00:02<00:00,  5.40it/s]
[20]:
modelTT err_train err2_train err2b_train_clean err_test err2_test err2b_test_clean
10 AdaBoostClassifier 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333
3 DecisionTreeClassifier 0.046667 0.000000 0.566667 0.220000 0.300000 0.553333
4 ExtraTreeClassifier 0.046667 0.000000 0.263333 0.186667 0.173333 0.266667
6 ExtraTreesClassifier 0.046667 0.000000 0.213333 0.166667 0.186667 0.193333
8 GaussianNB 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333
1 GradientBoostingClassifier 0.093333 0.023333 0.306667 0.173333 0.186667 0.246667
9 KNeighborsClassifier 0.103333 0.106667 0.123333 0.133333 0.146667 0.146667
7 MLPClassifier 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333
0 OneVsRestClassifier 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333
2 RandomForestClassifier 0.053333 0.006667 0.183333 0.173333 0.193333 0.153333
5 XGBClassifier 0.053333 0.000000 0.210000 0.206667 0.206667 0.233333

Les colonnes err2b_train_clean et err2b_test_clean sont les erreurs obtenues par des modèles appris sur des colonnes bruitées et testées sur des colonnes non bruitées ce qui est le véritable test. On s’aperçoit que les performances sont très dégradées sur la base d’test. Une raison est que le bruit choisi ajouté n’est pas centré. Corrigeons cela.

[21]:
def multiplie_bruit_centree(X, Y, classes=None):
    if classes is None:
        classes = numpy.unique(Y)
    XS = []
    YS = []
    for i in classes:
        # X2 = numpy.random.randn((X.shape[0]* 3)).reshape(X.shape[0], 3) * 0.1
        X2 = numpy.random.random((X.shape[0], 3)) * 0.2 - 0.1
        X2[:, i] += 1
        Yb = i == Y
        XS.append(numpy.hstack([X, X2]))
        Yb = Yb.reshape((len(Yb), 1))
        YS.append(Yb)

    Xext = numpy.vstack(XS)
    Yext = numpy.vstack(YS)
    return Xext, Yext


dfb = comparaison_train_test(models, X, Y, mbruit=multiplie_bruit_centree, acp=None)
dfb
100%|██████████| 11/11 [00:02<00:00,  4.58it/s]
[21]:
modelTT err_train err2_train err2b_train_clean err_test err2_test err2b_test_clean
10 AdaBoostClassifier 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333
3 DecisionTreeClassifier 0.033333 0.000000 0.256667 0.200000 0.293333 0.260000
4 ExtraTreeClassifier 0.033333 0.000000 0.186667 0.186667 0.200000 0.180000
6 ExtraTreesClassifier 0.033333 0.000000 0.143333 0.146667 0.153333 0.106667
8 GaussianNB 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333
1 GradientBoostingClassifier 0.096667 0.016667 0.153333 0.140000 0.166667 0.146667
9 KNeighborsClassifier 0.113333 0.110000 0.100000 0.173333 0.140000 0.146667
7 MLPClassifier 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333
0 OneVsRestClassifier 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333
2 RandomForestClassifier 0.043333 0.006667 0.183333 0.153333 0.193333 0.153333
5 XGBClassifier 0.043333 0.000000 0.193333 0.206667 0.200000 0.186667

C’est mieux mais on en conclut que dans la plupart des cas, la meilleure performance sur la base d’apprentissage avec le bruit ajouté est due au fait que les modèles apprennent par coeur. Sur la base de test, les performances ne sont pas meilleures. Une erreur de 33% signifie que la réponse du classifieur est constante. On multiplie les exemples.

[22]:
def multiplie_bruit_centree_duplique(X, Y, classes=None):
    if classes is None:
        classes = numpy.unique(Y)
    XS = []
    YS = []
    for i in classes:
        for k in range(5):
            # X2 = numpy.random.randn((X.shape[0]* 3)).reshape(X.shape[0], 3) * 0.3
            X2 = numpy.random.random((X.shape[0], 3)) * 0.8 - 0.4
            X2[:, i] += 1
            Yb = i == Y
            XS.append(numpy.hstack([X, X2]))
            Yb = Yb.reshape((len(Yb), 1))
            YS.append(Yb)

    Xext = numpy.vstack(XS)
    Yext = numpy.vstack(YS)
    return Xext, Yext


dfb = comparaison_train_test(
    models, X, Y, mbruit=multiplie_bruit_centree_duplique, acp=None
)
dfb
100%|██████████| 11/11 [00:02<00:00,  3.96it/s]
[22]:
modelTT err_train err2_train err2b_train_clean err_test err2_test err2b_test_clean
10 AdaBoostClassifier 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333
3 DecisionTreeClassifier 0.020000 0.000000 0.090000 0.326667 0.280000 0.253333
4 ExtraTreeClassifier 0.020000 0.000000 0.183333 0.226667 0.204000 0.293333
6 ExtraTreesClassifier 0.020000 0.000000 0.050000 0.213333 0.194667 0.180000
8 GaussianNB 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333
1 GradientBoostingClassifier 0.080000 0.089333 0.120000 0.186667 0.169333 0.160000
9 KNeighborsClassifier 0.096667 0.088000 0.130000 0.173333 0.150667 0.146667
7 MLPClassifier 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333
0 OneVsRestClassifier 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333
2 RandomForestClassifier 0.023333 0.000667 0.080000 0.206667 0.161333 0.186667
5 XGBClassifier 0.033333 0.000000 0.076667 0.226667 0.188000 0.200000

Cela fonctionne un peu mieux le fait d’ajouter du hasard ne permet pas d’obtenir des gains significatifs à part pour le modèle SVC.

[23]:
def multiplie_bruit_centree_duplique_rebalance(X, Y, classes=None):
    if classes is None:
        classes = numpy.unique(Y)
    XS = []
    YS = []
    for i in classes:
        X2 = numpy.random.random((X.shape[0], 3)) * 0.8 - 0.4
        X2[:, i] += 1  # * ((i % 2) * 2 - 1)
        Yb = i == Y
        XS.append(numpy.hstack([X, X2]))
        Yb = Yb.reshape((len(Yb), 1))
        YS.append(Yb)

    Xext = numpy.vstack(XS)
    Yext = numpy.vstack(YS)
    return Xext, Yext


dfb = comparaison_train_test(
    models, X, Y, mbruit=multiplie_bruit_centree_duplique_rebalance
)
dfb
100%|██████████| 11/11 [00:02<00:00,  4.74it/s]
[23]:
modelTT err_train err2_train err2b_train_clean err_test err2_test err2b_test_clean
10 AdaBoostClassifier 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333
3 DecisionTreeClassifier 0.026667 0.000000 0.180000 0.220000 0.353333 0.173333
4 ExtraTreeClassifier 0.026667 0.000000 0.163333 0.206667 0.313333 0.220000
6 ExtraTreesClassifier 0.026667 0.000000 0.120000 0.226667 0.206667 0.206667
8 GaussianNB 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333
1 GradientBoostingClassifier 0.063333 0.026667 0.163333 0.213333 0.246667 0.200000
9 KNeighborsClassifier 0.093333 0.103333 0.103333 0.173333 0.193333 0.160000
7 MLPClassifier 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333
0 OneVsRestClassifier 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333
2 RandomForestClassifier 0.033333 0.003333 0.143333 0.200000 0.233333 0.246667
5 XGBClassifier 0.053333 0.000000 0.160000 0.200000 0.246667 0.193333

Petite explication#

Dans tout le notebook, le score de la régression logistique est nul. Elle ne parvient pas à apprendre tout simplement parce que le problème choisi n’est pas linéaire séparable. S’il l’était, cela voudrait dire que le problème suivant l’est aussi.

[24]:
M = numpy.zeros((9, 6))
Y = numpy.zeros((9, 1))
for i in range(9):
    M[i, i // 3] = 1
    M[i, i % 3 + 3] = 1
    Y[i] = 1 if i // 3 == i % 3 else 0
M, Y
[24]:
(array([[1., 0., 0., 1., 0., 0.],
        [1., 0., 0., 0., 1., 0.],
        [1., 0., 0., 0., 0., 1.],
        [0., 1., 0., 1., 0., 0.],
        [0., 1., 0., 0., 1., 0.],
        [0., 1., 0., 0., 0., 1.],
        [0., 0., 1., 1., 0., 0.],
        [0., 0., 1., 0., 1., 0.],
        [0., 0., 1., 0., 0., 1.]]),
 array([[1.],
        [0.],
        [0.],
        [0.],
        [1.],
        [0.],
        [0.],
        [0.],
        [1.]]))
[25]:
clf = LogisticRegression(multi_class="ovr", solver="liblinear")
clf.fit(M, Y.ravel())
/home/xadupre/vv/this/lib/python3.10/site-packages/sklearn/linear_model/_logistic.py:1256: FutureWarning: 'multi_class' was deprecated in version 1.5 and will be removed in 1.7. Use OneVsRestClassifier(LogisticRegression(..)) instead. Leave it to its default value to avoid this warning.
  warnings.warn(
[25]:
LogisticRegression(multi_class='ovr', solver='liblinear')
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
[26]:
clf.predict(M)
[26]:
array([0., 0., 0., 0., 0., 0., 0., 0., 0.])

A revisiter.

[22]: