mlstatpy.ml.logreg¶
- mlstatpy.ml.logreg.criteria(X, y)[source][source]¶
Computes Gini, information gain, likelihood on a dataset with two features assuming the first coordinates is used to classify.
@param X 2D matrix @param y binary labels @return dataframe
- mlstatpy.ml.logreg.criteria2(X, y)[source][source]¶
Computes Gini, information gain, likelihood on a dataset with two features assuming the first coordinates is used to classify.
@param X 2D matrix @param y binary labels @return dataframe
- mlstatpy.ml.logreg.plot_ds(X, y, ax=None, title=None)[source][source]¶
Plots a dataset, X is a dataset with two features, y contains the binary labels.
- mlstatpy.ml.logreg.random_set_1d(n, kind)[source][source]¶
Builds a random dataset as describes in example Arbre d’indécision.
@param n number of observations @param kind 2, 3, 4 (see example) @return array 2D