experimental_experiment.xbuilder¶
- experimental_experiment.xbuilder._dtype_helper
- experimental_experiment.xbuilder._graph_builder_runtime
- experimental_experiment.xbuilder._onnx_helper
- experimental_experiment.xbuilder._shape_helper
- experimental_experiment.xbuilder.expression_dimension
- experimental_experiment.xbuilder.graph_builder
- experimental_experiment.xbuilder.graph_builder_opset
- experimental_experiment.xbuilder.model_container
- experimental_experiment.xbuilder.optimization_options
- experimental_experiment.xbuilder.shape_type_compute
- experimental_experiment.xbuilder.type_inference
GraphBuilder¶
- class experimental_experiment.xbuilder.GraphBuilder(target_opset_or_existing_proto: int | Dict[str, int] | ModelProto | FunctionProto, input_names: Sequence[str] | None = None, as_function: bool = False, optimization_options: OptimizationOptions | None = None, args: List[Any] | None = None, kwargs: Dict[str, Any] | None = None, ir_version: int | None = None, verbose: int = 0, infer_shapes_options: InferShapesOptions = InferShapesOptions.NONE, raise_list: Set[str] | None = None, dynamic_shapes: Dict[str, Any] | Tuple[Any] | None = None, local_domain: str = 'local_function', signature: Any | None = None, check_empty_source: bool = False, graph_module: torch.fx.GraphModule | None = None)[source]¶
Simplifies the creation of a model.
- Parameters:
target_opset_or_existing_proto – a ModelProto, an integer, a dictionary of domain, version
input_names – input names
as_function – export as a function or a model there are less assert when as_function is True
optimization_options – optimizations options, see
OptimizationOptions
args – example of inputs
kwargs – example of inputs
ir_version – ir version when exporting
verbose – verbosity
infer_shapes_options – options when running shape inference for an existing model
raise_list – raise an exception if a new operator belongs to that list
dynamic_shapes – dynamic shapes
local_domain – domain name to use for local functions if not specified
signature – the signature is unused but helps for debugging purposes
check_empty_source – checks source are not empty
graph_module – only used for debugging purpose
Important attributes:
input_names: List[str]: list of input names
as_function: bool: the model must be exported as a function or as a model, there are less assert when as_function is True
optimization_options: OptimizationOptions:
nodes: List[NodeProto]: list of nodes
initializers_dict: Dict[str, Any]: initializers
initializers_dict_sources: Dict[str, InitializerInfo]: information about where the initiliazers was created
inputs: List[ValueInfoTensorProto]: inputs
outputs: List[ValueInfoTensorProto]: outputs
ir_version: int: ir version
opsets: Dict[str, int]: declared opsets
input_args: List[T]: input tensors when the class is used to convert an existing model
input_kwargs: Dict[str, T]: input tensors when the class is used to convert an existing model
functions: Dict[Tuple[str,str], FunctionProto]: dictionary of functions to add to the model
value_info: List[ValueInfoProto]: value info of the original model
dynamic_shapes: Union[Dict[str, Any], Tuple[Any]]]: dynamic_shapes informations
_parameter_renaming: Dict[str, str]: to rename parameter and give them a name which can be found in
module.named_parameter
Computed attributes:
_unique_names: used to create unused result names
_unique_node_names: used to create unused node names
_known_names: set of existing results names
_known_shapes: Dict[str, DYNAMIC_SHAPE]: declared shapes
_known_types: Dict[str, int]: declared element types
_known_value_shape: Dict[str, Any]: if a result is a shape or not (for example the output of operator Shape)
_known_ranks: Dict[str, int]: declared ranks
_known_sequences: Dict[str, Dict[str, Any]]: known sequences
_dynamic_examples: Dict[str, Set[Union[int,float]]]: example of dynamic dimensions
constants_node_: Dict[bytes, NodeProto]: constant node
constants_alias_: Dict[str, str]: alias for constant
constants_: Dict[str, Any]: constant values
constants_computed_: Dict[str, Any]: computed constant values
dynamic_objects: Dict[str, torch.SymInt]: list of dynamic dimension
dynamic_objects_rev: Dict[str, str]: reverse dictionary to fasten lookups
_cache_shape: Dict[key,str]: cache concatenation of shapes
_values: Dict[key,str]: cache initializer value to merge those which are equal
- _dynamic_alias: Dict[str,str]: used when the user gives a different
name to the dynamic shapes
- constraints_: Dict[str, Set[Any]]:
if a broadcast implies a constraints on a dynamic shape, it is stored here
_events: is used ot retrieve any information useful to debug
Debugging attributes:
_raise_list: Set[str]: the builder stop if a result falls in that list (debugging tool)
You can setup environment variable
ONNXSTOP
,ONNXSTOPSHAPE
,ONNXSTOPTYPE
to raise an exception when the type or shape of a variable is set. Example:ONNXSTOP=attn_output python ...
.ONNXCST=1
shows which constant is computed,NULLSHAPE=1
raises an exception as soon as a null shape occurs. The code includes:self._debug_null_shape = int(os.environ.get("NULLSHAPE", "0")) self._debug_stop = os.environ.get("ONNXSTOP", "#?#") self._debug_stop_shape = os.environ.get("ONNXSTOPSHAPE", "#?#") self._debug_stop_type = os.environ.get("ONNXSTOPTYPE", "#?#") self._debug_get_constant = int(os.environ.get("ONNXCST", "0")) self._debug_local_function = int(os.environ.get("ONNXFUNC", "0"))
- class InitializerInfo(name: str, source: str, same_as: str | None = None)[source]¶
Tracks the location where the initializer was created.
- Parameters:
name – initializer name
source – information
same_as – same as an existing initializers
- class ShapeConstant(name: str, shape: Tuple[int, ...], node: NodeProto)[source]¶
Wraps a constant shape even if the input producing the shape is not.
- class WrapSym(sym: torch.SymInt | torch.SymFloat)[source]¶
Wraps a symbolic int (a dimension for example).
- add_constant_node(node: NodeProto) bytes | None [source]¶
Adds a constant node. Any constant equivalent to this one will be fused. self.optimization_options.constant_fusing must be True.
- add_domain(domain: str, version: int = 1)[source]¶
Adds a domain to the list of supported ones. Checks the version is the same if it exists.
- add_dynamic_object(key: str, value: Any, name: str | None = None, dim: int | None = None, parse: bool = False, check_tokens: bool = True)[source]¶
Registers a dynamic object such as a dynamic dimension.
- Parameters:
key – string
value – SymInt, Dim, _DerivedDim
name – input name it comes from
dim – dimension for this dimension in input
parse – parse the expression add pieces of it as well
check_token – check that the subtoken are registered prior to this addition
- add_function(f: FunctionProto, rename_allowed: bool = False, merge_allowed: bool = False, builder: GraphBuilder | None = None) Tuple[str, str] [source]¶
Adds a new local function.
- Parameters:
f – new function to register
rename_allowed – the function can be renamed if a function with the same name already exists, the proto is modified inplace
merge_allowed – the function is not added if another function of the same name already exists and is the same
builder – GraphBuilder used to build the local function, it contains shape information the function does not have
- Returns:
function name
This function does not add the domain to the list of supported opsets. You should use method
make_local_function()
for this.
- add_initializer(name: str, value: Any, itype: int | None = None, shape: Tuple[int, ...] | None = None, cst: Any | None = None, key: Any | None = None, existing: bool = False, allow_empty: bool = False, parameter_name: str | None = None, source: str = '')[source]¶
Adds an initializer.
- Parameters:
name – constant name
value – initializer
itype – to overwrite the type
shape – to overwrite the shape
cst – value to send to
update_node_constant
key – used to register the initializer
existing – if True, shape and type should exist, if False, it should not exist, if None, both case are allowed
allow_empty – allow empty tensor anyway
parameter_name – the parameter name is different than its name in the fx graph, they are restored when the model is finally exported into onnx, until then, the mapping is kept in attribute
_parameter_renaming
source – any additional information, this field is usually used to let the number know where the initializer was created.
- compute_constant(name: str, exc: bool = True, only_array: bool = False, allow_empty: bool = False) Tuple[ndarray, Dict[str, ndarray] | None] [source]¶
Computes a constant.
- Parameters:
name – constant name
exc – raises an exception if any failure
only_array – do not return TensorProto
allow_empty – allow empty result
- Returns:
constant
If returns None if the constant is a FakeTensor.
- constant_folding(convert_into_initializer: bool = True) Dict[str, float] [source]¶
Folds all constants. Constants are marked during the creation of the graph. There is no need to propagate this information.
- Parameters:
convert_into_initializer – moves the constant as an initializer, otherwise, just evaluates it
- Returns:
dictionary of statistics
- empty_copy(as_function: bool = False, constant_size: int = 16777216) GraphBuilder [source]¶
Creates an empty copy but with the same opsets.
- get_attribute(node: NodeProto, att_name: str, exc: bool = True) AttributeProto | None [source]¶
Returns an attribute for a node.
- get_attributes_with_default(node: NodeProto, **default_values) Dict[str, Any] [source]¶
Returns int or float attributes. If missing, the default value is returned.
- Parameters:
node – node
default_values – default values
- get_constant(name: str, exc: bool = True, computed_value: bool = False, as_shape: bool = False, multiple_outputs: bool = False) ndarray | NodeProto [source]¶
The method returns the constant name. It is a tensor (numpy array) or a NodeProto which must be evaluated. If computed_value is True, the NodeProto is evaluated wuth the ReferenceEvaluator.
- Parameters:
name – constant name
exc – raise an exception if anything is impossible to do
computed_value – compute the value if not a constant
as_shape – returns a tuple for a shape
multiple_outputs – allow multiple outputs
- Returns:
value
- get_constant_or_attribute(node: NodeProto, input_index: int, att_name: str) Any [source]¶
Tells if an input is a constant or returns true if in an older opset, it was named as an attribute.
- get_debug_msg(limit: int = 1000) str [source]¶
Returns a string providing as much information as possible to help the developper understand why a conversion failed.
- Parameters:
limit – limit the string if the model is big
- Returns:
many pieces of informations about the on going conversion
- get_initializer_size(name: str) int [source]¶
Returns the size of an initializer.
- Parameters:
name – name
- Returns:
size
- get_input_dynamic_shape(name: str, input_index: int, example_shape: Tuple[int, ...], dynamic_shapes: Any | None = None, example_value: Any | None = None) Tuple[int | torch.SymInt | torch.SymFloat | float | str, ...] [source]¶
Updates the shape based on the available information.
- Parameters:
name – input name
input_index – input index
example_shape – the shape of the given input
dynamic_shapes – used to handle nested dynamic shapes
example_value – one example of the value
- Returns:
dynamic shape
- get_is_dimension(name: str, elem_type: int | None = None, shape: Tuple[int, ...] | None = None, n_outputs: int | None = None, exc: bool = True) bool [source]¶
Tells if a result is a dynamic dimension or not.
- get_local_function(name: str, domain: str = '') FunctionProto [source]¶
Returns a local function.
- get_local_function_outputs(name: str, domain: str = '') List[str] [source]¶
Returns the outputs of a local function.
- get_opset(domain: str) int [source]¶
Returns the opset version for a specific domain.
- Parameters:
domain – domain name
- Returns:
version
- get_registered_constraints() Dict[str, Set[str | int]] [source]¶
Returns the constraints registered so far.
- get_type_known(name: str, exc: bool = False) int | None [source]¶
Returns the type known by torch to help solve mismatches.
- has_dynamic_object(name: str) bool [source]¶
Tells if a result is a dynamic object, torch.SymInt for torch.
- infer_shapes() Dict[str, Tuple[Tuple[int | torch.SymInt | torch.SymFloat | float | str, ...], Tuple[int | torch.SymInt | torch.SymFloat | float | str, ...]]] [source]¶
Runs custom shape inference. Returns the updates.
- inline_functions(verbose: int = 0) int [source]¶
Inlines local functions. Returns the number of inlined nodes.
- insert_and_remove_nodes(insert_at: int | None, new_nodes: List[NodeProto], removed: List[int], opsets: Dict[str, int] | None = None, debug: Any | None = None) List[NodeProto] [source]¶
Inserts new nodes and removes others.
- Parameters:
insert_at – insert the new nodes at this position, if empty, the function guesses where to add them
new_nodes – list of nodes to insert
removed – list of nodes to removed (based on their positions)
opsets – opsets used
debug – anything added to exception messages
- Returns:
list of removed nodes
- is_constant_or_attribute(node: NodeProto, input_index: int, att_name: str) bool [source]¶
Tells if an input is a constant or returns true if in an older opset, it was named as an attribute.
- is_exact_same_constant(node: NodeProto) NodeProto | None [source]¶
Adds a constant node. Any constant equivalent to this one will be fused. self.optimization_options.constant_fusing must be True.
- property main_opset¶
Returns the opset for the main domain (assuming it is used).
- make_dynamic_object(name: str, value: Any, shape_as_input: bool = False, input_name: str | None = None, axis: int | None = None) str [source]¶
Creates a dynamic shapes.
- Parameters:
name – name
value – value
shape_as_input – adds the name to the list of the inputs of the onnx model
input_name – the dimension comes from this input
axis – the dimension comes this axis
- Returns:
the name
- make_initializer(name: str, value: Any, external: bool = False, msg: str = '', parameter_name: str | None = None, source: str = '') str [source]¶
Adds an initializer to the graph. The function detects duplicated small containers, only if they are integers. Other type might be used as weights. Even similar, they could change after training.
- Parameters:
name – name, if empty (“”), a unique names is given, if not empty, it is more like a prefix, the method might change it to make it unique
value – value (TensorProto)
external – external initializer or not (not stored in the graph model)
msg – added to the error message if something goes wrong
parameter_name – the parameter name is different than its name in the fx graph, they are restored when the model is finally exported into onnx, until then, the mapping is kept in attribute
_parameter_renaming
source – any additional information, this field is usually used to let the number know where the initializer was created.
- Returns:
name of the initializer
- make_key(value: Any) Tuple[int | str, ...] | None [source]¶
Builds a key identifying a value. Returns None if it is not possible.
- make_local_function(builder: GraphBuilder, function_options: FunctionOptions, optimize: bool = False) Tuple[List[str], Tuple[str, str]] [source]¶
Adds a local function to exiting graph.
- Parameters:
builder – builder
function_options – to define how to handle weights
optimize – optimize the function
- Returns:
the list of added initializers if move_initializer_to_constant is True, and the function name (domain, name), it can be changed if one is already existing
Method
GraphBuilder.inline_functions()
,GraphBuilder.move_initializers_to_constant()
are called on the builder if move_initializer_to_constant is True. It modifies the builder inplace.
- make_new_dynamic_shape(rank: int, prefix: str = 'd') Tuple[torch.SymInt, ...] [source]¶
Creates a dynamic shape of a known rank with new dynamic dimension.
- make_node(op_type: str, inputs: str | List[str], outputs: int | List[str] | str = 1, domain: str = '', attributes: List[AttributeProto] | None = None, check: bool | None = None, name: str | None = None, sts: Dict[str, Any] | None = None, do_not_remove: bool = False, insert_position: int | None = None, **kwargs) str | List[str] [source]¶
Adds a node in the graph.
- Parameters:
op_type – operator type
inputs – input names
outputs – output names, may be None, in that case, the builder chooses them for the user
domain – domain
attributes – list of attributes to add as AttributeProto
check – do some verification
name – node name
sts – if not specified, tries to set the shape and the type of the new results aftr the node is added, it is not possible for every node, there is no tool which determines the output shape of just one node
do_not_remove – prevent this node from being removed
insert_position – insert the node at the end (None) or at the top (HEAD).
kwargs – additional attributes to add the node
- Returns:
output names
- make_nodes(builder: GraphBuilder, input_names: List[str], output_names: List[str], prefix: str = '', function_options: FunctionOptions | None = None, optimize: bool = False) str | List[str] [source]¶
Appends all nodes and initializers from another builder. Handles the renaming of results. The content stored in ‘builder’ is modified inplace to avoid copying.
- Parameters:
builder – other builder
input_names – input names
output_names – output names
prefix – prefix all name from this builder if function_options is None
function_options – defines how to create a local function if needed
optimize – optimize the function
- Returns:
output names
- make_shape_from_results(shape: Tuple[int | torch.SymInt | torch.SymFloat | float | str, ...], name='') str [source]¶
Creates a shape coming from intermediate results.
- make_subset_builder(input_names: List[str], name: str, domain: str) GraphBuilder [source]¶
Creates a copy of the existing builder but with information reduced to the input_names considered as inputs.
- Parameters:
input_names – new inputs
name – function name
domain – domain name for the function
- Returns:
shortened builder
- make_tensor_input(name: str | Tuple[str], elem_type: Any | None = None, shape: Tuple[int | torch.SymInt | torch.SymFloat | float | str, ...] | None = None, is_dimension: bool = False, marker: str = '', default_initializer: Any | None = None) str [source]¶
Adds a tensor input to the onnx graph.
- Parameters:
name – name or tuple of names, in case, all inputs are create with the same element type and shape
elem_type – element type
shape – shape
is_dimension – torch is using torch.SymInt to add a dynamic input to the graph
marker – to known from this input was created
default_initializer – add an initializer with the same name of the input
- Returns:
input name
- make_tensor_output(name: str | List[str], elem_type: int | None = None, shape: Tuple[int, ...] | None = None, indexed: bool = True, is_dimension: bool | None = None) str | List[str] [source]¶
Adds a tensor output to the onnx graph.
- Parameters:
name – name
elem_type – element type
shape – shape
indexed – the name must be indexed?
is_dimension – torch is using torch.SymInt to add a dynamic input to the graph
- Returns:
output name
- make_tensor_sequence_input(name: str, elem_type: Any, shape: Tuple[int | torch.SymInt | torch.SymFloat | float | str, ...], marker: str = '') str [source]¶
Adds a tensor input to the onnx graph.
- Parameters:
name – name
elem_type – element type
shape – shape
marker – to known from this input was created
- Returns:
input name
- move_initializers_to_constant(full_parameter_name, threshold: int | None = None, verbose: int = 0) int [source]¶
Moves initializers as constant nodes.
- Parameters:
full_parameter_name – keeps the local name or the full name for the parameters
threshold – only move intializers to constant if their size is below this limit
verbose – verbosity
- Returns:
number of moved initializers
- parse_dimension_expression(expr: str, exc: bool = True) Expression [source]¶
Parses an expression involving dimension.
- Parameters:
expr – expr
exc – raises an exception if it fails
- Returns:
an expression or None if exc is False and the parsing failed
- process(graph_module: torch.fx.GraphModule, interpreter: DynamoInterpreter)[source]¶
Environment variable
ONNX_BUILDER_PROGRESS=1
can be used to show a progress bar on big models.
- rank(name: str) int [source]¶
Shortcut to
get_rank()
.
- register_constraint_dimension(dim_name: str, value: Any)[source]¶
Registers a constraint on a dimension.
- Parameters:
dim_name – dimension name
value – value to register
- register_dynamic_objects_from_dim(dim: str)[source]¶
Registers all the dynamic objects required in a dimension.
- register_dynamic_objects_from_shape(shape: Tuple[int | torch.SymInt | torch.SymFloat | float | str, ...])[source]¶
Registers all the dynamic objects required in this shape.
- register_users(name: str, users: Iterable[str])[source]¶
Registers users. This is not used except to check the conversion is valid.
- remove_identity_nodes() Tuple[int, int] [source]¶
Removes identity nodes. Returns the number of removed nodes and the number of added nodes.
Note
onnxruntime does not handle well when it is executing from domain ‘org.pytorch.aten’ (ATen for example) which outputs results on CPU where the expected output is on CUDA. An identity node must be kept or inserted in that case. In that particular case, a node can be marked so that it does not get deleted: its name must start with
'_DONOTREMOVE_'
.
- remove_unused() int [source]¶
Simple function to remove unused nodes. It does not look into subgraphs and assumes there is none. Everything is done in one pass. Returns the number of removed nodes.
- rename_in_local_functions(replacements: Dict[Tuple[str, str], Tuple[str, str]], list_keys: List[Tuple[str, str]], proto: FunctionProto) FunctionProto [source]¶
Renames local function in a given list of local functions.
- Parameters:
replacements – replacements to make
list_keys – list of local function to modify
proto – one function to update as well
- Returns:
the modified proto for proto
The function does not modify inplace the functions, it creates a copy assuming this one is not too big.
- select_outputs(output_names: List[str])[source]¶
Selects new outputs. The type is assumed to be unknown. The method only wipes out the outputs to replace them by others. It assumes the unused nodes are removed afterwards.
- Parameters:
output_names – new outputs
- set_rank(name: str, value: int)[source]¶
Sets the rank for a result.
- Parameters:
name – result name
value – rank
- set_sequence(name: str, dtype: int | Tuple[int, ...], shapes: Tuple[Tuple[int | torch.SymInt | torch.SymFloat | float | str, ...], ...] | None = None, ranks: Tuple[int, ...] | None = None, unknown: bool = False)[source]¶
Defines a result as a sequence.
- set_shape(name: str, shape: Tuple[int | torch.SymInt | torch.SymFloat | float | str, ...], set_rank: bool = True, set_if_more_precise: bool = False, exc: bool = False)[source]¶
Sets the shape for a result. It is exists, it checks the new shape is equal to the existing one.
- Parameters:
name – result name
shape – shape
set_rank – set the rank as well
set_if_more_precise – change the shape if it is more precise
exc – raise an exception if inconsistency
- set_type(name: str, dtype: int, exc: bool = True)[source]¶
Sets the shape for a result. It is exists, it checks the new shape is equal to the existing one.
- Parameters:
name – name
dtype – element type (an integer, ONNX)
exc – raises an exception
- set_type_shape_or_rank(name: str, like: str)[source]¶
Sets the type and the shape of name like like.
- set_value_shape(name: str, value: Any, equal_to: Tuple[str, str] | None = None)[source]¶
Sets the value for a shape result.
- Parameters:
name – name
value – it cannot be empty
equal_to – if specified, the value is also equal to this value
- simple_update_value_shape_with_node(node) bool [source]¶
Updates
_known`_value_shape
for a particular node.
- to_onnx(optimize: bool = True, large_model: bool = False, external_threshold: int = 1024, return_optimize_report: bool = False, inline: bool = False, function_options: FunctionOptions | None = None, mask_outputs: List[bool] | None = None) FunctionProto | ModelProto | TorchModelContainer | Dict[str, Any] [source]¶
Conversion to onnx. Only then the initializers are converted into TensorProto.
- Parameters:
optimize – disable or enable the optimization, the optimization are set when the class constructor is called
large_model – if True returns a
onnx.model_container.ModelContainer
, it lets the user to decide later if the weights should be part of the model or saved as external weightsexternal_threshold – if large_model is True, every tensor above this limit is stored as external
return_optimize_report – return statistics about the optimization as well
inline – inline local functions, this is done before any optimization takes place
function_options – to be set to export as a function
mask_outputs – to filter out some outputs if not None
- Returns:
the proto
FunctionOptions¶
- class experimental_experiment.xbuilder.FunctionOptions(export_as_function: bool = False, name: str = '', domain: str = '', external_threshold: int = 33554432, move_initializer_to_constant: bool = False, return_initializer: bool = False, inline: bool = False, merge_allowed: bool = False, rename_allowed: bool = False)[source]¶
Defines how local functions must behave.
- Parameters:
name – function name
domain – function domain
export_as_function – export the onnx as functions or keep local function
external_threshold – whether or not keep initializer as input for the function or move them as constant of the function
move_initializer_to_constant – move initializers as constant first before creating the function proto, that depends on the size defined by external_threshold
return_initializer – return the remaining initializer and add them as input to the function
inline – inline functions
rename_allowed – allow to rename the function if a duplicate is detected
merge_allowed – allow to merge a function in case the same code is detected
InferShapesOptions¶
- class experimental_experiment.xbuilder.InferShapesOptions(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)[source]¶
Defines options when running shape inference on an existing model. Options
NEW
means shapes informations is removed by running it again.
OptimizationOptions¶
- class experimental_experiment.xbuilder.OptimizationOptions(remove_unused: bool = True, constant_folding: bool = False, constant_size: int = 1024, constant_fusing: bool = True, remove_identity: bool = True, patterns: str | List[PatternOptimization] = 'default', max_iter: int = -1, recursive: bool = False, stop_after: int = -1, verbose: int = 0, verifies: bool = False, dump_applied_patterns: str | None = None, processor: str = 'CPU', order: OrderAlgorithm | None = None)[source]¶
Defines all the optimization to apply.
- Parameters:
remove_unused – remove all unused nodes, this must be true if pattern optimization is enabled
constant_folding – folds constant as much as possible
constant_size – all node Constant above this threshold should be defined as initializer
remove_identity – remove identity nodes
patterns – list of pattern optimization to apply to the graph, it looks a a specific subsequence of nodes in a graph and do some replacements, ‘default’ means a default list of optimization patterns are applied, see below for the most common values
constant_fusing – similar node Constant and ConstantOfShape are used, this options avoids creating new nodes when they are the same
max_iter – maximum number of iteration when doing pattern optimizations, -1 to let it undefined
recursive – optimizes subgraphs and functions as well
stop_after – for investigation, stop_after this number of applies patterns, -1 to never stop
verbose – verbosity level (for pattern optimization)
verifies – run verifications to ensure the model is correct everytime it is modifies, it is mostly to find bugs, it is very slow
dump_applied_patterns – dump applied patterns in a folder, the users can check every pattern dumped as a FunctionProto
processor – optimization should be made for this processor or this list of processors (comma separated value)
order – order algorithm to apply
It is possible to define a precise of the pattern to apply to a model. The value is interpreter by
experimental_experiment.xoptim.get_pattern_list()
.patterns=None
: no pattern optimizationpatterns="TransposeTranspose,TransposeMatMul"
: applies two patternspatterns=["FusedMatMul"]
: applies one patternpatterns=[RotaryEmbeddingPattern(verbose=10)]
: applies one pattern with a specific verbosity valuepatterns="default
: applies all patterns modifying standard onnx operators into other standard onnx operatorspatterns="default+onnxruntime
: applies all patterns modifying standard onnx operators into other standard onnx operators as well as patterns fusing nodes into custom operators implemented by onnxruntimepatterns="default+onnxruntime+experimental
: applies all patterns modifying standard onnx operators into other standard onnx operators, patterns fusing nodes into custom operators implemented by onnxruntime,