101: Linear Regression and export to ONNX

scikit-learn and torch to train a linear regression.

data

import numpy as np
from sklearn.datasets import make_regression
from sklearn.linear_model import LinearRegression, SGDRegressor
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.model_selection import train_test_split
import torch
from onnxruntime import InferenceSession
from experimental_experiment.helpers import pretty_onnx
from onnx_array_api.plotting.graphviz_helper import plot_dot
from experimental_experiment.torch_interpreter import to_onnx


X, y = make_regression(1000, n_features=5, noise=10.0, n_informative=2)
print(X.shape, y.shape)

X_train, X_test, y_train, y_test = train_test_split(X, y)
(1000, 5) (1000,)

scikit-learn: the simple regression

A^* = (X'X)^{-1}X'Y

clr = LinearRegression()
clr.fit(X_train, y_train)

print(f"coefficients: {clr.coef_}, {clr.intercept_}")
coefficients: [-0.48536915 48.6400256   0.19296004 44.90213686 -0.51061736], 0.7028252286652337

Evaluation

y_pred = clr.predict(X_test)
l2 = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
print(f"LinearRegression: l2={l2}, r2={r2}")
LinearRegression: l2=105.22509699203135, r2=0.9799476959278043

scikit-learn: SGD algorithm

SGD = Stochastic Gradient Descent

clr = SGDRegressor(max_iter=5, verbose=1)
clr.fit(X_train, y_train)

print(f"coefficients: {clr.coef_}, {clr.intercept_}")
-- Epoch 1
Norm: 55.83, NNZs: 5, Bias: 1.452597, T: 750, Avg. loss: 493.131062
Total training time: 0.00 seconds.
-- Epoch 2
Norm: 63.16, NNZs: 5, Bias: 1.082858, T: 1500, Avg. loss: 75.754680
Total training time: 0.00 seconds.
-- Epoch 3
Norm: 65.20, NNZs: 5, Bias: 0.946441, T: 2250, Avg. loss: 58.469275
Total training time: 0.00 seconds.
-- Epoch 4
Norm: 65.75, NNZs: 5, Bias: 0.721562, T: 3000, Avg. loss: 56.890287
Total training time: 0.00 seconds.
-- Epoch 5
Norm: 66.03, NNZs: 5, Bias: 0.642538, T: 3750, Avg. loss: 56.705540
Total training time: 0.00 seconds.
~/vv/this312/lib/python3.12/site-packages/sklearn/linear_model/_stochastic_gradient.py:1579: ConvergenceWarning: Maximum number of iteration reached before convergence. Consider increasing max_iter to improve the fit.
  warnings.warn(
coefficients: [-0.48340075 48.48676089  0.21359264 44.81500575 -0.558345  ], [0.64253752]

Evaluation

y_pred = clr.predict(X_test)
sl2 = mean_squared_error(y_test, y_pred)
sr2 = r2_score(y_test, y_pred)
print(f"SGDRegressor: sl2={sl2}, sr2={sr2}")
SGDRegressor: sl2=105.23169993456445, sr2=0.9799464376328231

Linrar Regression with pytorch

class TorchLinearRegression(torch.nn.Module):
    def __init__(self, n_dims: int, n_targets: int):
        super().__init__()
        self.linear = torch.nn.Linear(n_dims, n_targets)

    def forward(self, x):
        return self.linear(x)


def train_loop(dataloader, model, loss_fn, optimizer):
    total_loss = 0.0

    # Set the model to training mode - important for batch normalization and dropout layers
    # Unnecessary in this situation but added for best practices
    model.train()
    for X, y in dataloader:
        # Compute prediction and loss
        pred = model(X)
        loss = loss_fn(pred.ravel(), y)

        # Backpropagation
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()

        # training loss
        total_loss += loss

    return total_loss


model = TorchLinearRegression(X_train.shape[1], 1)
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
loss_fn = torch.nn.MSELoss()

device = "cpu"
model = model.to(device)
dataset = torch.utils.data.TensorDataset(
    torch.Tensor(X_train).to(device), torch.Tensor(y_train).to(device)
)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=1)


for i in range(5):
    loss = train_loop(dataloader, model, loss_fn, optimizer)
    print(f"iteration {i}, loss={loss}")
iteration 0, loss=1125319.0
iteration 1, loss=141240.453125
iteration 2, loss=88272.703125
iteration 3, loss=85408.09375
iteration 4, loss=85268.703125

Let’s check the error

y_pred = model(torch.Tensor(X_test)).detach().numpy()
tl2 = mean_squared_error(y_test, y_pred)
tr2 = r2_score(y_test, y_pred)
print(f"TorchLinearRegression: tl2={tl2}, tr2={tr2}")
TorchLinearRegression: tl2=105.07504149743424, tr2=0.9799762913721553

And the coefficients.

print("coefficients:")
for p in model.parameters():
    print(p)
coefficients:
Parameter containing:
tensor([[-0.2614, 48.5669,  0.3430, 45.0643, -0.3191]], requires_grad=True)
Parameter containing:
tensor([0.7502], requires_grad=True)

Conversion to ONNX

Let’s convert it to ONNX.

onx = to_onnx(model, (torch.Tensor(X_test[:2]),), input_names=["x"])

Let’s check it is work.

sess = InferenceSession(onx.SerializeToString(), providers=["CPUExecutionProvider"])
res = sess.run(None, {"x": X_test.astype(np.float32)[:2]})
print(res)
[array([[-86.17143],
       [-35.2954 ]], dtype=float32)]

And the model.

plot torch linreg 101

With dynamic shapes

The dynamic shapes are used by torch.export.export() and must follow the convention described there. The dynamic dimension allows any value. The model is then valid for many different shapes. That’s usually what users need.

onx = to_onnx(
    model,
    (torch.Tensor(X_test[:2]),),
    input_names=["x"],
    dynamic_shapes={"x": {0: torch.export.Dim("batch")}},
)

print(pretty_onnx(onx))
opset: domain='' version=18
input: name='x' type=dtype('float32') shape=['batch', 5]
init: name='GemmTransposePattern--p_linear_weight::T10' type=float32 shape=(1, 5)-- GraphBuilder.constant_folding.from/fold(init7_s2_1_-1,p_linear_weight::T10)##p_linear_weight::T10/GraphBuilder.constant_folding.from/fold(p_linear_weight)##p_linear_weight/DynamoInterpret.placeholder.1/P(linear.weight)##init7_s2_1_-1/TransposeEqualReshapePattern.apply.new_shape
init: name='linear.bias' type=float32 shape=(1,) -- array([0.7502379], dtype=float32)-- DynamoInterpret.placeholder.1/P(linear.bias)
Gemm(x, GemmTransposePattern--p_linear_weight::T10, linear.bias, transB=1) -> output_0
output: name='output_0' type=dtype('float32') shape=['batch', 1]

For simplicity, it is possible to use torch.export.Dim.DYNAMIC or torch.export.Dim.AUTO.

onx = to_onnx(
    model,
    (torch.Tensor(X_test[:2]),),
    input_names=["x"],
    dynamic_shapes={"x": {0: torch.export.Dim.DYNAMIC}},
)

print(pretty_onnx(onx))
opset: domain='' version=18
input: name='x' type=dtype('float32') shape=['batch', 5]
init: name='GemmTransposePattern--p_linear_weight::T10' type=float32 shape=(1, 5)-- GraphBuilder.constant_folding.from/fold(init7_s2_1_-1,p_linear_weight::T10)##p_linear_weight::T10/GraphBuilder.constant_folding.from/fold(p_linear_weight)##p_linear_weight/DynamoInterpret.placeholder.1/P(linear.weight)##init7_s2_1_-1/TransposeEqualReshapePattern.apply.new_shape
init: name='linear.bias' type=float32 shape=(1,) -- array([0.7502379], dtype=float32)-- DynamoInterpret.placeholder.1/P(linear.bias)
Gemm(x, GemmTransposePattern--p_linear_weight::T10, linear.bias, transB=1) -> output_0
output: name='output_0' type=dtype('float32') shape=['batch', 1]

Total running time of the script: (0 minutes 3.139 seconds)

Related examples

101: A custom backend for torch

101: A custom backend for torch

201: Use torch to export a scikit-learn model into ONNX

201: Use torch to export a scikit-learn model into ONNX

201: Evaluate different ways to export a torch model to ONNX

201: Evaluate different ways to export a torch model to ONNX

101: Onnx Model Optimization based on Pattern Rewriting

101: Onnx Model Optimization based on Pattern Rewriting

101: Profile an existing model with onnxruntime

101: Profile an existing model with onnxruntime

Gallery generated by Sphinx-Gallery