Note
Go to the end to download the full example code.
101: Linear Regression and export to ONNX¶
scikit-learn and torch to train a linear regression.
data¶
import numpy as np
from sklearn.datasets import make_regression
from sklearn.linear_model import LinearRegression, SGDRegressor
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.model_selection import train_test_split
import torch
from onnxruntime import InferenceSession
from experimental_experiment.helpers import pretty_onnx
from onnx_array_api.plotting.graphviz_helper import plot_dot
from experimental_experiment.torch_interpreter import to_onnx
X, y = make_regression(1000, n_features=5, noise=10.0, n_informative=2)
print(X.shape, y.shape)
X_train, X_test, y_train, y_test = train_test_split(X, y)
(1000, 5) (1000,)
scikit-learn: the simple regression¶
clr = LinearRegression()
clr.fit(X_train, y_train)
print(f"coefficients: {clr.coef_}, {clr.intercept_}")
coefficients: [31.55793987 -0.15404633 -0.29814966 -0.12105706 4.35872861], 0.10233234583956419
Evaluation¶
LinearRegression: l2=98.79912059521222, r2=0.9060205536990547
scikit-learn: SGD algorithm¶
SGD = Stochastic Gradient Descent
clr = SGDRegressor(max_iter=5, verbose=1)
clr.fit(X_train, y_train)
print(f"coefficients: {clr.coef_}, {clr.intercept_}")
-- Epoch 1
Norm: 27.04, NNZs: 5, Bias: 0.677888, T: 750, Avg. loss: 143.210602
Total training time: 0.00 seconds.
-- Epoch 2
Norm: 30.49, NNZs: 5, Bias: 0.405055, T: 1500, Avg. loss: 55.468876
Total training time: 0.00 seconds.
-- Epoch 3
Norm: 31.30, NNZs: 5, Bias: 0.126806, T: 2250, Avg. loss: 51.837841
Total training time: 0.00 seconds.
-- Epoch 4
Norm: 31.69, NNZs: 5, Bias: 0.142602, T: 3000, Avg. loss: 51.466929
Total training time: 0.00 seconds.
-- Epoch 5
Norm: 31.72, NNZs: 5, Bias: 0.088899, T: 3750, Avg. loss: 51.384296
Total training time: 0.00 seconds.
/home/xadupre/vv/this312/lib/python3.12/site-packages/sklearn/linear_model/_stochastic_gradient.py:1603: ConvergenceWarning: Maximum number of iteration reached before convergence. Consider increasing max_iter to improve the fit.
warnings.warn(
coefficients: [31.41452968 -0.20326068 -0.24422897 -0.18402664 4.35053917], [0.08889909]
Evaluation
SGDRegressor: sl2=98.39413498803201, sr2=0.9064057830704636
Linrar Regression with pytorch¶
class TorchLinearRegression(torch.nn.Module):
def __init__(self, n_dims: int, n_targets: int):
super().__init__()
self.linear = torch.nn.Linear(n_dims, n_targets)
def forward(self, x):
return self.linear(x)
def train_loop(dataloader, model, loss_fn, optimizer):
total_loss = 0.0
# Set the model to training mode - important for batch normalization and dropout layers
# Unnecessary in this situation but added for best practices
model.train()
for X, y in dataloader:
# Compute prediction and loss
pred = model(X)
loss = loss_fn(pred.ravel(), y)
# Backpropagation
loss.backward()
optimizer.step()
optimizer.zero_grad()
# training loss
total_loss += loss
return total_loss
model = TorchLinearRegression(X_train.shape[1], 1)
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
loss_fn = torch.nn.MSELoss()
device = "cpu"
model = model.to(device)
dataset = torch.utils.data.TensorDataset(
torch.Tensor(X_train).to(device), torch.Tensor(y_train).to(device)
)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=1)
for i in range(5):
loss = train_loop(dataloader, model, loss_fn, optimizer)
print(f"iteration {i}, loss={loss}")
iteration 0, loss=312444.125
iteration 1, loss=91631.875
iteration 2, loss=78284.1171875
iteration 3, loss=77413.71875
iteration 4, loss=77361.1484375
Let’s check the error
TorchLinearRegression: tl2=99.30217465702843, tr2=0.905542039903546
And the coefficients.
print("coefficients:")
for p in model.parameters():
print(p)
coefficients:
Parameter containing:
tensor([[31.5076, 0.1727, -0.3712, -0.2093, 4.3239]], requires_grad=True)
Parameter containing:
tensor([-0.0265], requires_grad=True)
Conversion to ONNX¶
Let’s convert it to ONNX.
onx = to_onnx(model, (torch.Tensor(X_test[:2]),), input_names=["x"])
Let’s check it is work.
sess = InferenceSession(onx.SerializeToString(), providers=["CPUExecutionProvider"])
res = sess.run(None, {"x": X_test.astype(np.float32)[:2]})
print(res)
[array([[-49.87089 ],
[ 52.269424]], dtype=float32)]
And the model.
With dynamic shapes¶
The dynamic shapes are used by torch.export.export()
and must
follow the convention described there.
onx = to_onnx(
model,
(torch.Tensor(X_test[:2]),),
input_names=["x"],
dynamic_shapes={"x": {0: torch.export.Dim("batch")}},
)
print(pretty_onnx(onx))
opset: domain='' version=18
doc_string: large_model=False, inline=False, external_threshold=102...
input: name='x' type=dtype('float32') shape=['batch', 5]
init: name='linear.weight' type=float32 shape=(1, 5) -- DynamoInterpret.placeholder.1/P(linear.weight)
init: name='linear.bias' type=float32 shape=(1,) -- array([-0.0265037], dtype=float32)-- DynamoInterpret.placeholder.1/P(linear.bias)
Transpose(linear.weight, perm=[1,0]) -> _onx_transpose0
Transpose(_onx_transpose0, perm=[1,0]) -> GemmTransposePattern--_onx_transpose0
Gemm(x, GemmTransposePattern--_onx_transpose0, linear.bias, transB=1) -> output_0
output: name='output_0' type=dtype('float32') shape=['batch', 1]
Total running time of the script: (0 minutes 8.298 seconds)
Related examples
101: A custom backend for torch
101: A custom backend for torch
101: Some dummy examples with torch.export.export
101: Some dummy examples with torch.export.export
102: Convolution and Matrix Multiplication
102: Convolution and Matrix Multiplication