Note
Go to the end to download the full example code.
to_onnx and submodules from LLMs¶
Big models are hard to read once converted into onnx. Let’s see how to improve their readibility. The code is inspired from LLM from scratch with Pytorch.
A simple LLM¶
All comments were removed from the code to make it less verbose. A few fixes were applied to the original code.
import onnx
from onnx.inliner import inline_local_functions
from onnx_array_api.plotting.graphviz_helper import plot_dot
from onnx_array_api.reference import compare_onnx_execution
from onnx_diagnostic.helpers import max_diff
from onnx_diagnostic.helpers.onnx_helper import pretty_onnx
import torch
from onnxruntime import InferenceSession
from experimental_experiment.reference import ExtendedReferenceEvaluator
from experimental_experiment.torch_interpreter import to_onnx
from experimental_experiment.xbuilder import OptimizationOptions
class Embedding(torch.nn.Module):
def __init__(self, vocab_size: int, embedding_dim: int):
super().__init__()
self.embedding = torch.nn.Embedding(vocab_size, embedding_dim)
self.pe = torch.nn.Embedding(vocab_size, embedding_dim)
def forward(self, x):
word_emb = self.embedding(x)
word_pe = self.pe(x)
return word_emb + word_pe
class AttentionBlock(torch.nn.Module):
def __init__(self, embedding_dim: int, context_size: int):
super().__init__()
self.query = torch.nn.Linear(embedding_dim, embedding_dim, bias=False)
self.key = torch.nn.Linear(embedding_dim, embedding_dim, bias=False)
self.value = torch.nn.Linear(embedding_dim, embedding_dim, bias=False)
ones = torch.ones(size=[context_size, context_size], dtype=torch.float)
self.register_buffer(name="mask", tensor=torch.tril(input=ones))
def forward(self, x):
_B, T, C = x.size()
query = self.query(x)
key = self.key(x)
value = self.value(x)
qk = query @ key.transpose(-2, -1) * C**-0.5
attention = qk.masked_fill(self.mask[:T, :T] == 0, float("-inf"))
attention = torch.nn.functional.softmax(input=attention, dim=-1)
out = attention @ value
return out
class MultiAttentionBlock(torch.nn.Module):
def __init__(self, embedding_dim: int, num_heads: int, context_size: int):
super().__init__()
self.attention = torch.nn.ModuleList(
modules=[AttentionBlock(embedding_dim, context_size) for _ in range(num_heads)]
)
self.linear = torch.nn.Linear(
in_features=embedding_dim * num_heads, out_features=embedding_dim
)
def forward(self, x):
out = torch.cat(tensors=[attention(x) for attention in self.attention], dim=-1)
x = self.linear(out)
return x
class FeedForward(torch.nn.Module):
def __init__(self, embedding_dim: int, ff_dim: int):
super().__init__()
self.linear_1 = torch.nn.Linear(embedding_dim, ff_dim)
self.relu = torch.nn.ReLU()
self.linear_2 = torch.nn.Linear(ff_dim, embedding_dim)
def forward(self, x):
x = self.linear_1(x)
x = self.relu(x)
x = self.linear_2(x)
return x
class DecoderLayer(torch.nn.Module):
def __init__(self, embedding_dim: int, num_heads: int, context_size: int, ff_dim: int):
super().__init__()
self.attention = MultiAttentionBlock(embedding_dim, num_heads, context_size)
self.feed_forward = FeedForward(embedding_dim, ff_dim)
self.norm_1 = torch.nn.LayerNorm(normalized_shape=embedding_dim)
self.norm_2 = torch.nn.LayerNorm(normalized_shape=embedding_dim)
def forward(self, x):
x_norm = self.norm_1(x)
attention = self.attention(x_norm)
attention = attention + x
attention_norm = self.norm_2(attention)
ff = self.feed_forward(attention_norm)
ff = ff + attention
return ff
class LLM(torch.nn.Module):
def __init__(
self,
vocab_size: int = 1024,
embedding_dim: int = 16,
num_heads: int = 2,
context_size: int = 256,
ff_dim: int = 128,
):
super().__init__()
self.embedding = Embedding(vocab_size, embedding_dim)
self.decoder = DecoderLayer(embedding_dim, num_heads, context_size, ff_dim)
def forward(self, input_ids):
x = self.embedding(input_ids)
y = self.decoder(x)
return y
llm = LLM()
dim = (1, 30)
input_ids = torch.randint(0, 1024, dim).to(torch.int64)
y = llm(input_ids)
print(f"output: shape={y.shape}, min={y.min()}, max={y.max()}")
output: shape=torch.Size([1, 30, 16]), min=-4.500553607940674, max=5.789700508117676
First conversion to ONNX¶
The conversion relies on torch.export.export().
which gives:
ep = torch.export.export(llm, (input_ids,))
print(ep.graph)
graph():
%p_embedding_embedding_weight : [num_users=1] = placeholder[target=p_embedding_embedding_weight]
%p_embedding_pe_weight : [num_users=1] = placeholder[target=p_embedding_pe_weight]
%p_decoder_attention_attention_0_query_weight : [num_users=1] = placeholder[target=p_decoder_attention_attention_0_query_weight]
%p_decoder_attention_attention_0_key_weight : [num_users=1] = placeholder[target=p_decoder_attention_attention_0_key_weight]
%p_decoder_attention_attention_0_value_weight : [num_users=1] = placeholder[target=p_decoder_attention_attention_0_value_weight]
%p_decoder_attention_attention_1_query_weight : [num_users=1] = placeholder[target=p_decoder_attention_attention_1_query_weight]
%p_decoder_attention_attention_1_key_weight : [num_users=1] = placeholder[target=p_decoder_attention_attention_1_key_weight]
%p_decoder_attention_attention_1_value_weight : [num_users=1] = placeholder[target=p_decoder_attention_attention_1_value_weight]
%p_decoder_attention_linear_weight : [num_users=1] = placeholder[target=p_decoder_attention_linear_weight]
%p_decoder_attention_linear_bias : [num_users=1] = placeholder[target=p_decoder_attention_linear_bias]
%p_decoder_feed_forward_linear_1_weight : [num_users=1] = placeholder[target=p_decoder_feed_forward_linear_1_weight]
%p_decoder_feed_forward_linear_1_bias : [num_users=1] = placeholder[target=p_decoder_feed_forward_linear_1_bias]
%p_decoder_feed_forward_linear_2_weight : [num_users=1] = placeholder[target=p_decoder_feed_forward_linear_2_weight]
%p_decoder_feed_forward_linear_2_bias : [num_users=1] = placeholder[target=p_decoder_feed_forward_linear_2_bias]
%p_decoder_norm_1_weight : [num_users=1] = placeholder[target=p_decoder_norm_1_weight]
%p_decoder_norm_1_bias : [num_users=1] = placeholder[target=p_decoder_norm_1_bias]
%p_decoder_norm_2_weight : [num_users=1] = placeholder[target=p_decoder_norm_2_weight]
%p_decoder_norm_2_bias : [num_users=1] = placeholder[target=p_decoder_norm_2_bias]
%b_decoder_attention_attention_0_mask : [num_users=1] = placeholder[target=b_decoder_attention_attention_0_mask]
%b_decoder_attention_attention_1_mask : [num_users=1] = placeholder[target=b_decoder_attention_attention_1_mask]
%input_ids : [num_users=2] = placeholder[target=input_ids]
%embedding : [num_users=1] = call_function[target=torch.ops.aten.embedding.default](args = (%p_embedding_embedding_weight, %input_ids), kwargs = {})
%embedding_1 : [num_users=1] = call_function[target=torch.ops.aten.embedding.default](args = (%p_embedding_pe_weight, %input_ids), kwargs = {})
%add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%embedding, %embedding_1), kwargs = {})
%layer_norm : [num_users=6] = call_function[target=torch.ops.aten.layer_norm.default](args = (%add, [16], %p_decoder_norm_1_weight, %p_decoder_norm_1_bias), kwargs = {})
%linear : [num_users=1] = call_function[target=torch.ops.aten.linear.default](args = (%layer_norm, %p_decoder_attention_attention_0_query_weight), kwargs = {})
%linear_1 : [num_users=1] = call_function[target=torch.ops.aten.linear.default](args = (%layer_norm, %p_decoder_attention_attention_0_key_weight), kwargs = {})
%linear_2 : [num_users=1] = call_function[target=torch.ops.aten.linear.default](args = (%layer_norm, %p_decoder_attention_attention_0_value_weight), kwargs = {})
%transpose : [num_users=1] = call_function[target=torch.ops.aten.transpose.int](args = (%linear_1, -2, -1), kwargs = {})
%matmul : [num_users=1] = call_function[target=torch.ops.aten.matmul.default](args = (%linear, %transpose), kwargs = {})
%mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%matmul, 0.25), kwargs = {})
%slice_1 : [num_users=1] = call_function[target=torch.ops.aten.slice.Tensor](args = (%b_decoder_attention_attention_0_mask, 0, 0, 30), kwargs = {})
%slice_2 : [num_users=1] = call_function[target=torch.ops.aten.slice.Tensor](args = (%slice_1, 1, 0, 30), kwargs = {})
%eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%slice_2, 0), kwargs = {})
%masked_fill : [num_users=1] = call_function[target=torch.ops.aten.masked_fill.Scalar](args = (%mul, %eq, -inf), kwargs = {})
%softmax : [num_users=1] = call_function[target=torch.ops.aten.softmax.int](args = (%masked_fill, -1), kwargs = {})
%matmul_1 : [num_users=1] = call_function[target=torch.ops.aten.matmul.default](args = (%softmax, %linear_2), kwargs = {})
%linear_3 : [num_users=1] = call_function[target=torch.ops.aten.linear.default](args = (%layer_norm, %p_decoder_attention_attention_1_query_weight), kwargs = {})
%linear_4 : [num_users=1] = call_function[target=torch.ops.aten.linear.default](args = (%layer_norm, %p_decoder_attention_attention_1_key_weight), kwargs = {})
%linear_5 : [num_users=1] = call_function[target=torch.ops.aten.linear.default](args = (%layer_norm, %p_decoder_attention_attention_1_value_weight), kwargs = {})
%transpose_1 : [num_users=1] = call_function[target=torch.ops.aten.transpose.int](args = (%linear_4, -2, -1), kwargs = {})
%matmul_2 : [num_users=1] = call_function[target=torch.ops.aten.matmul.default](args = (%linear_3, %transpose_1), kwargs = {})
%mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%matmul_2, 0.25), kwargs = {})
%slice_3 : [num_users=1] = call_function[target=torch.ops.aten.slice.Tensor](args = (%b_decoder_attention_attention_1_mask, 0, 0, 30), kwargs = {})
%slice_4 : [num_users=1] = call_function[target=torch.ops.aten.slice.Tensor](args = (%slice_3, 1, 0, 30), kwargs = {})
%eq_1 : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%slice_4, 0), kwargs = {})
%masked_fill_1 : [num_users=1] = call_function[target=torch.ops.aten.masked_fill.Scalar](args = (%mul_1, %eq_1, -inf), kwargs = {})
%softmax_1 : [num_users=1] = call_function[target=torch.ops.aten.softmax.int](args = (%masked_fill_1, -1), kwargs = {})
%matmul_3 : [num_users=1] = call_function[target=torch.ops.aten.matmul.default](args = (%softmax_1, %linear_5), kwargs = {})
%cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%matmul_1, %matmul_3], -1), kwargs = {})
%linear_6 : [num_users=1] = call_function[target=torch.ops.aten.linear.default](args = (%cat, %p_decoder_attention_linear_weight, %p_decoder_attention_linear_bias), kwargs = {})
%add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%linear_6, %add), kwargs = {})
%layer_norm_1 : [num_users=1] = call_function[target=torch.ops.aten.layer_norm.default](args = (%add_1, [16], %p_decoder_norm_2_weight, %p_decoder_norm_2_bias), kwargs = {})
%linear_7 : [num_users=1] = call_function[target=torch.ops.aten.linear.default](args = (%layer_norm_1, %p_decoder_feed_forward_linear_1_weight, %p_decoder_feed_forward_linear_1_bias), kwargs = {})
%relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%linear_7,), kwargs = {})
%linear_8 : [num_users=1] = call_function[target=torch.ops.aten.linear.default](args = (%relu, %p_decoder_feed_forward_linear_2_weight, %p_decoder_feed_forward_linear_2_bias), kwargs = {})
%add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%linear_8, %add_1), kwargs = {})
return (add_2,)
Then function to_onnx
converts it into ONNX.
onx = to_onnx(llm, (input_ids,))
print(pretty_onnx(onx))
opset: domain='' version=18
input: name='input_ids' type=dtype('int64') shape=[1, 30]
init: name='b_decoder_attention_attention_0_mask' type=float32 shape=(256, 256)-- DynamoInterpret.placeholder.0
init: name='b_decoder_attention_attention_1_mask' type=float32 shape=(256, 256)-- DynamoInterpret.placeholder.0
init: name='init7_s1_1' type=int64 shape=(1,) -- array([1]) -- Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape
init: name='init7_s1_0' type=int64 shape=(1,) -- array([0]) -- Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape
init: name='init7_s1_30' type=int64 shape=(1,) -- array([30]) -- Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape
init: name='init1_s1_3' type=float32 shape=(1,) -- array([-inf], dtype=float32)-- Opset.make_node.1/Small##Opset.make_node.1/Small
init: name='p_decoder_attention_attention_0_query_weight::T10' type=float32 shape=(16, 16)-- GraphBuilder.constant_folding.from/fold(p_decoder_attention_attention_0_query_weight)##p_decoder_attention_attention_0_query_weight/DynamoInterpret.placeholder.1/P(decoder.attention.attention.0.query.weight)
init: name='p_decoder_attention_attention_0_key_weight::T10' type=float32 shape=(16, 16)-- GraphBuilder.constant_folding.from/fold(p_decoder_attention_attention_0_key_weight)##p_decoder_attention_attention_0_key_weight/DynamoInterpret.placeholder.1/P(decoder.attention.attention.0.key.weight)
init: name='p_decoder_attention_attention_0_value_weight::T10' type=float32 shape=(16, 16)-- GraphBuilder.constant_folding.from/fold(p_decoder_attention_attention_0_value_weight)##p_decoder_attention_attention_0_value_weight/DynamoInterpret.placeholder.1/P(decoder.attention.attention.0.value.weight)
init: name='init1_s_::RSh1' type=float32 shape=(1,) -- array([0.25], dtype=float32)-- GraphBuilder.constant_folding.from/fold(init1_s_,init7_s1_1)##init1_s_/shape_type_compute._cast_inputs.1(mul_Tensor)##shape_type_compute._cast_inputs.1(mul_Tensor)##init7_s1_1/Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape
init: name='init1_s_2::RSh1' type=float32 shape=(1,) -- array([0.], dtype=float32)-- GraphBuilder.constant_folding.from/fold(init1_s_2,init7_s1_1)##init1_s_2/shape_type_compute._cast_inputs.0##shape_type_compute._cast_inputs.0##init7_s1_1/Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape
init: name='p_decoder_attention_attention_1_query_weight::T10' type=float32 shape=(16, 16)-- GraphBuilder.constant_folding.from/fold(p_decoder_attention_attention_1_query_weight)##p_decoder_attention_attention_1_query_weight/DynamoInterpret.placeholder.1/P(decoder.attention.attention.1.query.weight)
init: name='p_decoder_attention_attention_1_key_weight::T10' type=float32 shape=(16, 16)-- GraphBuilder.constant_folding.from/fold(p_decoder_attention_attention_1_key_weight)##p_decoder_attention_attention_1_key_weight/DynamoInterpret.placeholder.1/P(decoder.attention.attention.1.key.weight)
init: name='p_decoder_attention_attention_1_value_weight::T10' type=float32 shape=(16, 16)-- GraphBuilder.constant_folding.from/fold(p_decoder_attention_attention_1_value_weight)##p_decoder_attention_attention_1_value_weight/DynamoInterpret.placeholder.1/P(decoder.attention.attention.1.value.weight)
init: name='p_decoder_attention_linear_weight::T10' type=float32 shape=(32, 16)-- GraphBuilder.constant_folding.from/fold(p_decoder_attention_linear_weight)##p_decoder_attention_linear_weight/DynamoInterpret.placeholder.1/P(decoder.attention.linear.weight)
init: name='p_decoder_feed_forward_linear_1_weight::T10' type=float32 shape=(16, 128)-- GraphBuilder.constant_folding.from/fold(p_decoder_feed_forward_linear_1_weight)##p_decoder_feed_forward_linear_1_weight/DynamoInterpret.placeholder.1/P(decoder.feed_forward.linear_1.weight)
init: name='p_decoder_feed_forward_linear_2_weight::T10' type=float32 shape=(128, 16)-- GraphBuilder.constant_folding.from/fold(p_decoder_feed_forward_linear_2_weight)##p_decoder_feed_forward_linear_2_weight/DynamoInterpret.placeholder.1/P(decoder.feed_forward.linear_2.weight)
init: name='init1_s16_' type=float32 shape=(16,) -- LayerNormalizationPattern.apply.scale##LayerNormalizationPattern.apply.scale
init: name='init1_s16_2' type=float32 shape=(16,) -- LayerNormalizationPattern.apply.bias##LayerNormalizationPattern.apply.bias
init: name='embedding.embedding.weight' type=float32 shape=(1024, 16) -- DynamoInterpret.placeholder.1/P(embedding.embedding.weight)
init: name='embedding.pe.weight' type=float32 shape=(1024, 16) -- DynamoInterpret.placeholder.1/P(embedding.pe.weight)
init: name='decoder.attention.linear.bias' type=float32 shape=(16,) -- DynamoInterpret.placeholder.1/P(decoder.attention.linear.bias)
init: name='decoder.feed_forward.linear_1.bias' type=float32 shape=(128,)-- DynamoInterpret.placeholder.1/P(decoder.feed_forward.linear_1.bias)
init: name='decoder.feed_forward.linear_2.bias' type=float32 shape=(16,)-- DynamoInterpret.placeholder.1/P(decoder.feed_forward.linear_2.bias)
Concat(init7_s1_0, init7_s1_1, axis=0) -> SliceSlicePattern_init7_s1_1_axis
Concat(init7_s1_30, init7_s1_30, axis=0) -> SliceSlicePattern_init7_s1_30_end
Concat(init7_s1_0, init7_s1_0, axis=0) -> SliceSlicePattern_init7_s1_0_start
Slice(b_decoder_attention_attention_0_mask, SliceSlicePattern_init7_s1_0_start, SliceSlicePattern_init7_s1_30_end, SliceSlicePattern_init7_s1_1_axis) -> slice_2
Equal(slice_2, init1_s_2::RSh1) -> eq
Gather(embedding.embedding.weight, input_ids) -> embedding
Gather(embedding.pe.weight, input_ids) -> embedding_1
Add(embedding, embedding_1) -> add
LayerNormalization(add, init1_s16_, init1_s16_2, axis=-1, epsilon=0.00, stash_type=1) -> _onx_div_sub_add
MatMul(_onx_div_sub_add, p_decoder_attention_attention_0_query_weight::T10) -> linear
MatMul(_onx_div_sub_add, p_decoder_attention_attention_0_key_weight::T10) -> linear_1
Transpose(linear_1, perm=[0,2,1]) -> transpose
MatMul(linear, transpose) -> matmul
Mul(matmul, init1_s_::RSh1) -> _onx_mul_matmul
Where(eq, init1_s1_3, _onx_mul_matmul) -> masked_fill
Softmax(masked_fill, axis=-1) -> softmax
MatMul(_onx_div_sub_add, p_decoder_attention_attention_0_value_weight::T10) -> linear_2
MatMul(softmax, linear_2) -> matmul_1
MatMul(_onx_div_sub_add, p_decoder_attention_attention_1_query_weight::T10) -> linear_3
MatMul(_onx_div_sub_add, p_decoder_attention_attention_1_key_weight::T10) -> linear_4
Transpose(linear_4, perm=[0,2,1]) -> transpose_1
MatMul(linear_3, transpose_1) -> matmul_2
Mul(matmul_2, init1_s_::RSh1) -> _onx_mul_matmul_2
MatMul(_onx_div_sub_add, p_decoder_attention_attention_1_value_weight::T10) -> linear_5
Slice(b_decoder_attention_attention_1_mask, SliceSlicePattern_init7_s1_0_start, SliceSlicePattern_init7_s1_30_end, SliceSlicePattern_init7_s1_1_axis) -> slice_4
Equal(slice_4, init1_s_2::RSh1) -> eq_1
Where(eq_1, init1_s1_3, _onx_mul_matmul_2) -> masked_fill_1
Softmax(masked_fill_1, axis=-1) -> softmax_1
MatMul(softmax_1, linear_5) -> matmul_3
Concat(matmul_1, matmul_3, axis=-1) -> cat
MatMul(cat, p_decoder_attention_linear_weight::T10) -> _onx_matmul_cat
Add(_onx_matmul_cat, decoder.attention.linear.bias) -> linear_6
Add(linear_6, add) -> add_1
LayerNormalization(add_1, init1_s16_, init1_s16_2, axis=-1, epsilon=0.00, stash_type=1) -> _onx_div_sub_add_1
MatMul(_onx_div_sub_add_1, p_decoder_feed_forward_linear_1_weight::T10) -> _onx_matmul_layer_norm_1
Add(_onx_matmul_layer_norm_1, decoder.feed_forward.linear_1.bias) -> linear_7
Relu(linear_7) -> relu
MatMul(relu, p_decoder_feed_forward_linear_2_weight::T10) -> _onx_matmul_relu
Add(_onx_matmul_relu, decoder.feed_forward.linear_2.bias) -> linear_8
Add(linear_8, add_1) -> output_0
output: name='output_0' type=dtype('float32') shape=[1, 30, 16]
Let’s check there is no discrepancy.
output: shape=(1, 30, 16), min=-4.500553607940674, max=5.789700508117676
max discrepancy=4.76837158203125e-07
Let’s save the ONNX model.
onnx.save(onx, "plot_exporter_recipes_c_modules.inlined.onnx")
ONNX with submodules¶
Let’s produce an ONNX model with submodules.
Function to_onnx
is calling the function torch.export.unflatten.unflatten()
under the hood. The fx graph looks like the following.
ep = torch.export.export(llm, (input_ids,))
unflatten_ep = torch.export.unflatten(ep)
print(unflatten_ep.graph)
/usr/lib/python3.12/copyreg.py:99: FutureWarning: `isinstance(treespec, LeafSpec)` is deprecated, use `isinstance(treespec, TreeSpec) and treespec.is_leaf()` instead.
return cls.__new__(cls, *args)
graph():
%input_ids : [num_users=1] = placeholder[target=input_ids]
%embedding : [num_users=1] = call_module[target=embedding](args = (%input_ids,), kwargs = {})
%decoder : [num_users=1] = call_module[target=decoder](args = (%embedding,), kwargs = {})
return (decoder,)
The exported graph looks simpler and shows something like:
%decoder : [num_users=1] = call_module[target=decoder](args = (%embedding,), kwargs = {})
It preserves the hierarchy but it does not necessarily preserves the signatures
of the initial modules. That’s was not one of our goals.
The tricky part is module called (embedding) is not an instance Embedding
but an instance of InterpreterModule
and contains the fx nodes contributing to the submodule and coming from the
previous graph.
Now the ONNX graph.
onx_module = to_onnx(llm, (input_ids,), export_modules_as_functions=True)
print(pretty_onnx(onx_module))
/usr/lib/python3.12/copyreg.py:99: FutureWarning: `isinstance(treespec, LeafSpec)` is deprecated, use `isinstance(treespec, TreeSpec) and treespec.is_leaf()` instead.
return cls.__new__(cls, *args)
opset: domain='' version=18
opset: domain='aten_local_function' version=1
input: name='input_ids' type=dtype('int64') shape=[1, 30]
init: name='embedding.embedding.weight' type=float32 shape=(1024, 16) -- GraphBuilder.make_local_function/from(embedding.embedding.weight)
init: name='embedding.pe.weight' type=float32 shape=(1024, 16) -- GraphBuilder.make_local_function/from(embedding.pe.weight)
init: name='mask' type=float32 shape=(256, 256) -- GraphBuilder.make_local_function/from(mask)
init: name='weight::T10' type=float32 shape=(16, 16) -- GraphBuilder.make_local_function/from(weight::T10)
init: name='weight::T102' type=float32 shape=(16, 16) -- GraphBuilder.make_local_function/from(weight::T102)
init: name='weight::T103' type=float32 shape=(16, 16) -- GraphBuilder.make_local_function/from(weight::T103)
init: name='mask2' type=float32 shape=(256, 256) -- GraphBuilder.make_local_function/from(mask2)
init: name='weight::T104' type=float32 shape=(16, 16) -- GraphBuilder.make_local_function/from(weight::T104)
init: name='weight::T1022' type=float32 shape=(16, 16) -- GraphBuilder.make_local_function/from(weight::T1022)
init: name='weight::T1032' type=float32 shape=(16, 16) -- GraphBuilder.make_local_function/from(weight::T1032)
init: name='weight::T105' type=float32 shape=(32, 16) -- GraphBuilder.make_local_function/from(weight::T105)
init: name='decoder.feed_forward.linear_1.bias' type=float32 shape=(128,)-- GraphBuilder.make_local_function/from(decoder.feed_forward.linear_1.bias)
init: name='weight::T106' type=float32 shape=(16, 128) -- GraphBuilder.make_local_function/from(weight::T106)
init: name='weight::T1023' type=float32 shape=(128, 16) -- GraphBuilder.make_local_function/from(weight::T1023)
Constant(value=[1.0, 1.0,...) -> init1_s16_
Gather(embedding.embedding.weight, input_ids) -> embedding2
Gather(embedding.pe.weight, input_ids) -> pe
Add(embedding2, pe) -> embedding
Constant(value=[0.0, 0.0,...) -> init1_s16_2
LayerNormalization(embedding, init1_s16_, init1_s16_2, axis=-1, epsilon=0.00, stash_type=1) -> norm_1
MatMul(norm_1, weight::T10) -> query
Constant(value=[-inf]) -> init1_s1_
Constant(value=[0.25]) -> init1_s_::RSh1
Constant(value=[0.0]) -> init1_s_2::RSh1
Constant(value=[0, 0]) -> SliceSlicePattern_init7_s1_0_start
Constant(value=[30, 30]) -> SliceSlicePattern_init7_s1_30_end
Constant(value=[0, 1]) -> SliceSlicePattern_init7_s1_1_axis
Slice(mask, SliceSlicePattern_init7_s1_0_start, SliceSlicePattern_init7_s1_30_end, SliceSlicePattern_init7_s1_1_axis) -> slice_2
Equal(slice_2, init1_s_2::RSh1) -> eq
MatMul(norm_1, weight::T102) -> key
Transpose(key, perm=[0,2,1]) -> transpose
MatMul(query, transpose) -> matmul
Mul(matmul, init1_s_::RSh1) -> _onx_mul_matmul
Where(eq, init1_s1_, _onx_mul_matmul) -> masked_fill
Softmax(masked_fill, axis=-1) -> softmax
MatMul(norm_1, weight::T103) -> value
MatMul(softmax, value) -> attention_0
Constant(value=[-inf]) -> init1_s1_2
Constant(value=[0.25]) -> init1_s_::RSh12
Constant(value=[0.0]) -> init1_s_2::RSh12
Constant(value=[0, 0]) -> SliceSlicePattern_init7_s1_0_start2
Constant(value=[30, 30]) -> SliceSlicePattern_init7_s1_30_end2
Constant(value=[0, 1]) -> SliceSlicePattern_init7_s1_1_axis2
Slice(mask2, SliceSlicePattern_init7_s1_0_start2, SliceSlicePattern_init7_s1_30_end2, SliceSlicePattern_init7_s1_1_axis2) -> slice_22
Equal(slice_22, init1_s_2::RSh12) -> eq2
MatMul(norm_1, weight::T104) -> query2
MatMul(norm_1, weight::T1022) -> key2
Transpose(key2, perm=[0,2,1]) -> transpose2
MatMul(query2, transpose2) -> matmul2
Mul(matmul2, init1_s_::RSh12) -> _onx_mul_matmul2
Where(eq2, init1_s1_2, _onx_mul_matmul2) -> masked_fill2
Softmax(masked_fill2, axis=-1) -> softmax2
MatMul(norm_1, weight::T1032) -> value2
MatMul(softmax2, value2) -> attention_1
Concat(attention_0, attention_1, axis=-1) -> cat
MatMul(cat, weight::T105) -> _onx_matmul_cat
Constant(value=[-0.157050...) -> bias
Add(_onx_matmul_cat, bias) -> attention
Add(attention, embedding) -> add_1
Constant(value=[1.0, 1.0,...) -> init1_s16_3
Constant(value=[0.0, 0.0,...) -> init1_s16_22
LayerNormalization(add_1, init1_s16_3, init1_s16_22, axis=-1, epsilon=0.00, stash_type=1) -> norm_2
MatMul(norm_2, weight::T106) -> _onx_matmul_layer_norm_1
Add(_onx_matmul_layer_norm_1, decoder.feed_forward.linear_1.bias) -> linear_1
Relu(linear_1) -> relu
MatMul(relu, weight::T1023) -> _onx_matmul_relu
Constant(value=[0.0367000...) -> bias2
Add(_onx_matmul_relu, bias2) -> feed_forward
Add(feed_forward, add_1) -> output_0
output: name='output_0' type=dtype('float32') shape=[1, 30, 16]
We check again there is no new discrepancies.
output: shape=(1, 30, 16), min=-4.500553607940674, max=5.789700508117676
max discrepancy=4.76837158203125e-07
Let’s save the ONNX model.
onnx.save(onx_module, "plot_exporter_recipes_c_modules.module.onnx")
And visually.

Inlining¶
The ONNX graph can still be inline after this.
opset: domain='' version=18
opset: domain='aten_local_function' version=1
input: name='input_ids' type=dtype('int64') shape=[1, 30]
init: name='embedding.embedding.weight' type=float32 shape=(1024, 16) -- GraphBuilder.make_local_function/from(embedding.embedding.weight)
init: name='embedding.pe.weight' type=float32 shape=(1024, 16) -- GraphBuilder.make_local_function/from(embedding.pe.weight)
init: name='mask' type=float32 shape=(256, 256) -- GraphBuilder.make_local_function/from(mask)
init: name='weight::T10' type=float32 shape=(16, 16) -- GraphBuilder.make_local_function/from(weight::T10)
init: name='weight::T102' type=float32 shape=(16, 16) -- GraphBuilder.make_local_function/from(weight::T102)
init: name='weight::T103' type=float32 shape=(16, 16) -- GraphBuilder.make_local_function/from(weight::T103)
init: name='mask2' type=float32 shape=(256, 256) -- GraphBuilder.make_local_function/from(mask2)
init: name='weight::T104' type=float32 shape=(16, 16) -- GraphBuilder.make_local_function/from(weight::T104)
init: name='weight::T1022' type=float32 shape=(16, 16) -- GraphBuilder.make_local_function/from(weight::T1022)
init: name='weight::T1032' type=float32 shape=(16, 16) -- GraphBuilder.make_local_function/from(weight::T1032)
init: name='weight::T105' type=float32 shape=(32, 16) -- GraphBuilder.make_local_function/from(weight::T105)
init: name='decoder.feed_forward.linear_1.bias' type=float32 shape=(128,)-- GraphBuilder.make_local_function/from(decoder.feed_forward.linear_1.bias)
init: name='weight::T106' type=float32 shape=(16, 128) -- GraphBuilder.make_local_function/from(weight::T106)
init: name='weight::T1023' type=float32 shape=(128, 16) -- GraphBuilder.make_local_function/from(weight::T1023)
Constant(value=[1.0, 1.0,...) -> init1_s16_
Gather(embedding.embedding.weight, input_ids) -> embedding2
Gather(embedding.pe.weight, input_ids) -> pe
Add(embedding2, pe) -> embedding
Constant(value=[0.0, 0.0,...) -> init1_s16_2
LayerNormalization(embedding, init1_s16_, init1_s16_2, axis=-1, epsilon=0.00, stash_type=1) -> norm_1
MatMul(norm_1, weight::T10) -> query
Constant(value=[-inf]) -> init1_s1_
Constant(value=[0.25]) -> init1_s_::RSh1
Constant(value=[0.0]) -> init1_s_2::RSh1
Constant(value=[0, 0]) -> SliceSlicePattern_init7_s1_0_start
Constant(value=[30, 30]) -> SliceSlicePattern_init7_s1_30_end
Constant(value=[0, 1]) -> SliceSlicePattern_init7_s1_1_axis
Slice(mask, SliceSlicePattern_init7_s1_0_start, SliceSlicePattern_init7_s1_30_end, SliceSlicePattern_init7_s1_1_axis) -> slice_2
Equal(slice_2, init1_s_2::RSh1) -> eq
MatMul(norm_1, weight::T102) -> key
Transpose(key, perm=[0,2,1]) -> transpose
MatMul(query, transpose) -> matmul
Mul(matmul, init1_s_::RSh1) -> _onx_mul_matmul
Where(eq, init1_s1_, _onx_mul_matmul) -> masked_fill
Softmax(masked_fill, axis=-1) -> softmax
MatMul(norm_1, weight::T103) -> value
MatMul(softmax, value) -> attention_0
Constant(value=[-inf]) -> init1_s1_2
Constant(value=[0.25]) -> init1_s_::RSh12
Constant(value=[0.0]) -> init1_s_2::RSh12
Constant(value=[0, 0]) -> SliceSlicePattern_init7_s1_0_start2
Constant(value=[30, 30]) -> SliceSlicePattern_init7_s1_30_end2
Constant(value=[0, 1]) -> SliceSlicePattern_init7_s1_1_axis2
Slice(mask2, SliceSlicePattern_init7_s1_0_start2, SliceSlicePattern_init7_s1_30_end2, SliceSlicePattern_init7_s1_1_axis2) -> slice_22
Equal(slice_22, init1_s_2::RSh12) -> eq2
MatMul(norm_1, weight::T104) -> query2
MatMul(norm_1, weight::T1022) -> key2
Transpose(key2, perm=[0,2,1]) -> transpose2
MatMul(query2, transpose2) -> matmul2
Mul(matmul2, init1_s_::RSh12) -> _onx_mul_matmul2
Where(eq2, init1_s1_2, _onx_mul_matmul2) -> masked_fill2
Softmax(masked_fill2, axis=-1) -> softmax2
MatMul(norm_1, weight::T1032) -> value2
MatMul(softmax2, value2) -> attention_1
Concat(attention_0, attention_1, axis=-1) -> cat
MatMul(cat, weight::T105) -> _onx_matmul_cat
Constant(value=[-0.157050...) -> bias
Add(_onx_matmul_cat, bias) -> attention
Add(attention, embedding) -> add_1
Constant(value=[1.0, 1.0,...) -> init1_s16_3
Constant(value=[0.0, 0.0,...) -> init1_s16_22
LayerNormalization(add_1, init1_s16_3, init1_s16_22, axis=-1, epsilon=0.00, stash_type=1) -> norm_2
MatMul(norm_2, weight::T106) -> _onx_matmul_layer_norm_1
Add(_onx_matmul_layer_norm_1, decoder.feed_forward.linear_1.bias) -> linear_1
Relu(linear_1) -> relu
MatMul(relu, weight::T1023) -> _onx_matmul_relu
Constant(value=[0.0367000...) -> bias2
Add(_onx_matmul_relu, bias2) -> feed_forward
Add(feed_forward, add_1) -> output_0
output: name='output_0' type=dtype('float32') shape=[1, 30, 16]
Optimizations¶
The ONNX graph produced by the exporter without any optimization is very verbose and less efficient. That’s why some optimizations are made to the model by default. It is also possible to introduce kernels implemented in onnxruntime. Let’s how it goes.
onx_optimized = to_onnx(
llm,
(input_ids,),
options=OptimizationOptions(patterns="default+onnxruntime", constant_folding=True, verbose=2),
)
print(pretty_onnx(onx_optimized))
[GraphBuilder-ACU.optimize] start with 73 nodes
[GraphBuilder-ACU.optimize] #patterns=102
[GraphBuilder-ACU.remove_unused] remove_initializer 1:1/47:embedding.embedding.weight:torch.float32[torch.Size([1024, 16])]
[GraphBuilder-ACU.remove_unused] remove_initializer 2:3/47:embedding.pe.weight:torch.float32[torch.Size([1024, 16])]
[GraphBuilder-ACU.remove_unused] remove_initializer 3:5/47:decoder.attention.attention.0.query.weight:torch.float32[torch.Size([16, 16])]
[GraphBuilder-ACU.remove_unused] remove_initializer 4:7/47:decoder.attention.attention.0.key.weight:torch.float32[torch.Size([16, 16])]
[GraphBuilder-ACU.remove_unused] remove_initializer 5:9/47:decoder.attention.attention.0.value.weight:torch.float32[torch.Size([16, 16])]
[GraphBuilder-ACU.remove_unused] remove_initializer 6:11/47:decoder.attention.attention.1.query.weight:torch.float32[torch.Size([16, 16])]
[GraphBuilder-ACU.remove_unused] remove_initializer 7:13/47:decoder.attention.attention.1.key.weight:torch.float32[torch.Size([16, 16])]
[GraphBuilder-ACU.remove_unused] remove_initializer 8:15/47:decoder.attention.attention.1.value.weight:torch.float32[torch.Size([16, 16])]
[GraphBuilder-ACU.remove_unused] remove_initializer 9:17/47:decoder.attention.linear.weight:torch.float32[torch.Size([16, 32])]
[GraphBuilder-ACU.remove_unused] remove_initializer 10:19/47:decoder.attention.linear.bias:torch.float32[torch.Size([16])]
[GraphBuilder-ACU.remove_unused] remove_initializer 11:21/47:decoder.feed_forward.linear_1.weight:torch.float32[torch.Size([128, 16])]
[GraphBuilder-ACU.remove_unused] remove_initializer 12:23/47:decoder.feed_forward.linear_1.bias:torch.float32[torch.Size([128])]
[GraphBuilder-ACU.remove_unused] remove_initializer 13:25/47:decoder.feed_forward.linear_2.weight:torch.float32[torch.Size([16, 128])]
[GraphBuilder-ACU.remove_unused] remove_initializer 14:27/47:decoder.feed_forward.linear_2.bias:torch.float32[torch.Size([16])]
[GraphBuilder-ACU.remove_unused] remove_initializer 15:29/47:decoder.norm_1.weight:torch.float32[torch.Size([16])]
[GraphBuilder-ACU.remove_unused] remove_initializer 16:31/47:decoder.norm_1.bias:torch.float32[torch.Size([16])]
[GraphBuilder-ACU.remove_unused] remove_initializer 17:33/47:decoder.norm_2.weight:torch.float32[torch.Size([16])]
[GraphBuilder-ACU.remove_unused] remove_initializer 18:35/47:decoder.norm_2.bias:torch.float32[torch.Size([16])]
[GraphBuilder-ACU.remove_unused] remove_initializer 1:2/46:p_decoder_attention_attention_0_query_weight:torch.float32[torch.Size([16, 16])]
[GraphBuilder-ACU.remove_unused] remove_initializer 2:3/46:p_decoder_attention_attention_0_key_weight:torch.float32[torch.Size([16, 16])]
[GraphBuilder-ACU.remove_unused] remove_initializer 3:4/46:p_decoder_attention_attention_0_value_weight:torch.float32[torch.Size([16, 16])]
[GraphBuilder-ACU.remove_unused] remove_initializer 4:5/46:p_decoder_attention_attention_1_query_weight:torch.float32[torch.Size([16, 16])]
[GraphBuilder-ACU.remove_unused] remove_initializer 5:6/46:p_decoder_attention_attention_1_key_weight:torch.float32[torch.Size([16, 16])]
[GraphBuilder-ACU.remove_unused] remove_initializer 6:7/46:p_decoder_attention_attention_1_value_weight:torch.float32[torch.Size([16, 16])]
[GraphBuilder-ACU.remove_unused] remove_initializer 7:8/46:p_decoder_attention_linear_weight:torch.float32[torch.Size([16, 32])]
[GraphBuilder-ACU.remove_unused] remove_initializer 8:10/46:p_decoder_feed_forward_linear_1_weight:torch.float32[torch.Size([128, 16])]
[GraphBuilder-ACU.remove_unused] remove_initializer 9:12/46:p_decoder_feed_forward_linear_2_weight:torch.float32[torch.Size([16, 128])]
[GraphBuilder-ACU.remove_unused] remove_initializer 10:18/46:b_decoder_attention_attention_0_mask:torch.float32[torch.Size([256, 256])]
[GraphBuilder-ACU.remove_unused] remove_initializer 11:19/46:b_decoder_attention_attention_1_mask:torch.float32[torch.Size([256, 256])]
[GraphBuilder-ACU.remove_unused] remove_initializer 12:23/46:init1_s_:float32[()]
[GraphBuilder-ACU.remove_unused] remove_initializer 13:24/46:init7_s1_1:int64[(1,)]
[GraphBuilder-ACU.remove_unused] remove_initializer 14:25/46:init7_s1_0:int64[(1,)]
[GraphBuilder-ACU.remove_unused] remove_initializer 15:26/46:init7_s1_30:int64[(1,)]
[GraphBuilder-ACU.remove_unused] remove_initializer 16:27/46:init1_s_2:float32[()]
[GraphBuilder-ACU.remove_unused] remove_initializer 17:33/46:slice_1:torch.float32[torch.Size([30, 256])]
[GraphBuilder-ACU.remove_unused] remove_initializer 18:40/46:slice_3:torch.float32[torch.Size([30, 256])]
[GraphBuilderPatternOptimization-ACU.optimize] start with 53 nodes, 28 initializers, 102 patterns, priorities=[0, 1, 2, 3], max_iter=212
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 1/102 - P0 - BatchNormalizationPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 2/102 - P0 - BatchNormalizationTrainingPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 3/102 - P0 - CastCastPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 4/102 - P0 - CastPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 5/102 - P0 - ConcatGatherPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 6/102 - P0 - ConcatReshapePattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 7/102 - P0 - ConvBiasNullPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 8/102 - P0 - ExpandPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 9/102 - P0 - FunctionAttentionPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 10/102 - P0 - GeluErfPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 11/102 - P0 - GeluOrtPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 12/102 - P0 - GeluPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 13/102 - P0 - IdentityPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 14/102 - P0 - LeakyReluPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 15/102 - P0 - ReshapePattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 16/102 - P0 - ReshapeReshapePattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 17/102 - P0 - SameChildrenFromInputPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 18/102 - P0 - SameChildrenPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 19/102 - P0 - ShapeBasedEditDistanceReshapePattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 20/102 - P0 - ShapeBasedIdentityPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 21/102 - P0 - ShapeBasedReshapeIsSqueezePattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 22/102 - P0 - ShapeBasedSameChildrenPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 23/102 - P0 - ShapeBasedShapeShapeAddPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 24/102 - P0 - ShapeBasedStaticExpandPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 25/102 - P0 - ShapedBasedReshapePattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 26/102 - P0 - SoftmaxCrossEntropyLossCastPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 27/102 - P0 - SqueezeAddPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 28/102 - P0 - SqueezeBinaryUnsqueezePattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 29/102 - P0 - SqueezeUnsqueezePattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 30/102 - P0 - StaticConcatReshapePattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 31/102 - P0 - SwapExpandReshapePattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 32/102 - P0 - TransposeReshapeTransposePattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 33/102 - P0 - TransposeTransposePattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 34/102 - P0 - UnsqueezeReshapePattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 35/102 - P0 - UnsqueezeUnsqueezePattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 36/102 - P1 - BiasGeluPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 37/102 - P1 - BiasSoftmaxPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 38/102 - P1 - CastCastBinaryPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 39/102 - P1 - CastLayerNormalizationCastPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 40/102 - P1 - CastOpCastPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 41/102 - P1 - ClipClipPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 42/102 - P1 - ComputationCastOpCastPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 43/102 - P1 - ConcatEmptyPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 44/102 - P1 - ConcatTwiceUnaryPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 45/102 - P1 - ContribRotaryEmbedding3DPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 46/102 - P1 - DropoutPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 47/102 - P1 - ExpandBroadcastPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 48/102 - P1 - ExpandSwapPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 49/102 - P1 - FastGeluPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 50/102 - P1 - FunctionCausalMaskMulAddPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 51/102 - P1 - FunctionCausalMaskPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 52/102 - P1 - FunctionCosSinCachePattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 53/102 - P1 - FunctionHalfRotaryEmbeddingPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 54/102 - P1 - GemmTransposePattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 55/102 - P1 - LayerNormalizationPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 56/102 - P1 - LayerNormalizationScalePattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 57/102 - P1 - MatMulReshape2Of3Pattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 58/102 - P1 - MulMulMatMulPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 59/102 - P1 - MulMulMulScalarPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 60/102 - P1 - MultiHeadAttention3DPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 61/102 - P1 - OrtBatchNormalizationTrainingPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 62/102 - P1 - QuickGeluPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 63/102 - P1 - RMSNormalizationPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 64/102 - P1 - ReduceReshapePattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 65/102 - P1 - ReduceSumNormalizePattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 66/102 - P1 - Reshape2Of3Pattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 67/102 - P1 - ReshapeMatMulReshapePattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 68/102 - P1 - ReshapeReshapeBinaryPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 69/102 - P1 - RotaryConcatPartPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 70/102 - P1 - RotaryEmbeddingPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 71/102 - P1 - SequenceConstructAtPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 72/102 - P1 - ShapeBasedConcatExpandPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 73/102 - P1 - ShapeBasedExpandBroadcastMatMulPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 74/102 - P1 - ShapeBasedExpandBroadcastPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 75/102 - P1 - ShapeBasedExpandCastWhereSwapPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 76/102 - P1 - ShapeBasedExpandSwapPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 77/102 - P1 - ShapeBasedMatMulToMulPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 78/102 - P1 - SimplifiedLayerNormalizationMulPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 79/102 - P1 - SimplifiedLayerNormalizationPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 80/102 - P1 - SkipLayerNormalizationPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 81/102 - P1 - SkipSimplifiedLayerNormalizationMulPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 82/102 - P1 - SkipSimplifiedLayerNormalizationPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 83/102 - P1 - SliceSlicePattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 84/102 - P1 - SlicesSplitPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 85/102 - P1 - SoftmaxGradPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 86/102 - P1 - SplitConcatPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 87/102 - P1 - Sub1MulPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 88/102 - P1 - SwitchOrderBinaryPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 89/102 - P1 - SwitchReshapeActivationPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 90/102 - P1 - TransposeEqualReshapePattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 91/102 - P1 - TransposeMatMulPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 92/102 - P1 - TransposeReshapeMatMulPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 93/102 - P1 - UnsqueezeEqualPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 94/102 - P2 - ContribRotaryEmbeddingPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 95/102 - P2 - FusedConvPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 96/102 - P2 - FusedMatMulDivPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 97/102 - P2 - FusedMatMulPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 98/102 - P3 - FusedMatMulTransposePattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 99/102 - P3 - FusedMatMulx2Pattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 100/102 - P3 - MatMulAddPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 101/102 - P3 - ReshapeGemmPattern()
[GraphBuilderPatternOptimization-ACU.optimize] use pattern 102/102 - P3 - TransposeFusedMatMulBPattern()
[GraphBuilderPatternOptimization-ACU.optimize] same children={'SameChildrenFromInputPattern', 'SameChildrenPattern'}
[GraphBuilderPatternOptimization-ACU.optimize] iteration 0: 53 nodes, priority=0
[GraphBuilderPatternOptimization-ACU.optimize] applies 6 matches, 2*CastPattern, 4*IdentityPattern - time=0.009 | max_time=GeluErfPattern:0.002
[GraphBuilder-ACU.remove_unused] remove_initializer 1:5/28:p_decoder_norm_1_weight:torch.float32[torch.Size([16])]
[GraphBuilder-ACU.remove_unused] remove_initializer 2:6/28:p_decoder_norm_1_bias:torch.float32[torch.Size([16])]
[GraphBuilder-ACU.remove_unused] remove_initializer 3:7/28:p_decoder_norm_2_weight:torch.float32[torch.Size([16])]
[GraphBuilder-ACU.remove_unused] remove_initializer 4:8/28:p_decoder_norm_2_bias:torch.float32[torch.Size([16])]
[GraphBuilderPatternOptimization-ACU.optimize] iteration 1: 47 nodes, priority=0
[GraphBuilderPatternOptimization-ACU.optimize] increase priority to 1
[GraphBuilderPatternOptimization-ACU.optimize] iteration 2: 47 nodes, priority=1
[GraphBuilderPatternOptimization-ACU.optimize] applies 2 matches, 2*LayerNormalizationPattern - time=0.005 | max_time=IdentityPattern:0.000
[GraphBuilder-ACU.remove_unused] remove_initializer 1:5/26:init7_s1_-1:int64[(1,)]
[GraphBuilder-ACU.remove_unused] remove_initializer 2:6/26:init1_s1_:float32[(1,)]
[GraphBuilder-ACU.remove_unused] remove_initializer 3:7/26:init1_s1_2:float32[(1,)]
[GraphBuilderPatternOptimization-ACU.optimize] iteration 3: 35 nodes, priority=1
[GraphBuilderPatternOptimization-ACU.optimize] applies 2 matches, 2*SkipLayerNormalizationPattern - time=0.003 | max_time=IdentityPattern:0.000
[GraphBuilderPatternOptimization-ACU.optimize] iteration 4: 33 nodes, priority=1
[GraphBuilderPatternOptimization-ACU.optimize] increase priority to 2
[GraphBuilderPatternOptimization-ACU.optimize] iteration 5: 33 nodes, priority=2
[GraphBuilderPatternOptimization-ACU.optimize] applies 2 matches, 2*FusedMatMulPattern - time=0.004 | max_time=IdentityPattern:0.000
[GraphBuilder-ACU.remove_unused] remove_initializer 1:9/23:init1_s_::RSh1:float32[(1,)]
[GraphBuilder-ACU.remove_unused] remove_initializer 2:15/23:init1_s_::RSh12:float32[(1,)]
[GraphBuilderPatternOptimization-ACU.optimize] iteration 6: 29 nodes, priority=2
[GraphBuilderPatternOptimization-ACU.optimize] increase priority to 3
[GraphBuilderPatternOptimization-ACU.optimize] iteration 7: 29 nodes, priority=3
[GraphBuilderPatternOptimization-ACU.optimize] stops current_priority_index=4, priorities=[0, 1, 2, 3]
[GraphBuilderPatternOptimization-ACU.optimize] done after 8 iterations with 29 nodes in 0.052
STAT apply_CastPattern +2 -2 #it=1 maxmatch=1 i=2 - time=0.0001885939964267891
STAT apply_FusedMatMulPattern +2 -6 #it=1 maxmatch=1 i=2 - time=0.0006855690007796511
STAT apply_IdentityPattern +4 -4 #it=1 maxmatch=5 i=4 - time=0.00027474399757920764
STAT apply_LayerNormalizationPattern +2 -14 #it=1 maxmatch=1 i=2 - time=0.0004809579986613244
STAT apply_SkipLayerNormalizationPattern +2 -4 #it=1 maxmatch=1 i=2 - time=0.00019513599909259938
STAT build_graph_for_pattern +0 -0 #it=8 maxmatch=0 i=0 - time=0.0012872370025434066
STAT check_pattern_00 +0 -0 #it=1 maxmatch=0 i=0 - time=0.0002791379993141163
STAT check_pattern_A0 +0 -0 #it=4 maxmatch=0 i=0 - time=0.0012117680016672239
STAT check_pattern_B0 +0 -0 #it=8 maxmatch=0 i=0 - time=0.002238924993434921
STAT insert_and_remove_nodes +0 -0 #it=0 maxmatch=0 i=0 - time=0.0008783430021139793
STAT match_BatchNormalizationPattern +0 -0 #it=8 maxmatch=0 i=0 - time=0.00032548400122323073
STAT match_BatchNormalizationTrainingPattern +0 -0 #it=8 maxmatch=0 i=0 - time=0.00023920000239741057
STAT match_BiasGeluPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.0001557649993628729
STAT match_BiasSoftmaxPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.0001429980002285447
STAT match_CastCastBinaryPattern +0 -0 #it=6 maxmatch=0 i=0 - time=0.00040759900366538204
STAT match_CastCastPattern +0 -0 #it=8 maxmatch=2 i=0 - time=0.0002480109942553099
STAT match_CastLayerNormalizationCastPattern +0 -0 #it=6 maxmatch=0 i=0 - time=0.0001963299982890021
STAT match_CastOpCastPattern +0 -0 #it=6 maxmatch=0 i=0 - time=0.000386555002478417
STAT match_CastPattern +0 -0 #it=8 maxmatch=2 i=2 - time=0.0002735839952947572
STAT match_ClipClipPattern +0 -0 #it=6 maxmatch=0 i=0 - time=0.00016561099982936867
STAT match_ComputationCastOpCastPattern +0 -0 #it=6 maxmatch=0 i=0 - time=0.00024530199880246073
STAT match_ConcatEmptyPattern +0 -0 #it=6 maxmatch=0 i=0 - time=0.00021343499247450382
STAT match_ConcatGatherPattern +0 -0 #it=8 maxmatch=2 i=0 - time=0.0002852400066331029
STAT match_ConcatReshapePattern +0 -0 #it=8 maxmatch=2 i=0 - time=0.000235641000472242
STAT match_ConcatTwiceUnaryPattern +0 -0 #it=6 maxmatch=0 i=0 - time=0.00016231399786192924
STAT match_ContribRotaryEmbedding3DPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.00018237400581710972
STAT match_ContribRotaryEmbeddingPattern +0 -0 #it=3 maxmatch=0 i=0 - time=7.715200263191946e-05
STAT match_ConvBiasNullPattern +0 -0 #it=8 maxmatch=2 i=0 - time=0.0002506000018911436
STAT match_DropoutPattern +0 -0 #it=6 maxmatch=0 i=0 - time=0.00012828500257455744
STAT match_ExpandBroadcastPattern +0 -0 #it=6 maxmatch=0 i=0 - time=0.00013850899995304644
STAT match_ExpandPattern +0 -0 #it=8 maxmatch=2 i=0 - time=0.00023278001026483253
STAT match_ExpandSwapPattern +0 -0 #it=6 maxmatch=0 i=0 - time=0.00013484400187735446
STAT match_FastGeluPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.0001536089985165745
STAT match_FunctionAttentionPattern +0 -0 #it=8 maxmatch=6 i=0 - time=0.0002734360059548635
STAT match_FunctionCausalMaskMulAddPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.00020203999520163052
STAT match_FunctionCausalMaskPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.00015536100181634538
STAT match_FunctionCosSinCachePattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.00014732499403180555
STAT match_FunctionHalfRotaryEmbeddingPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.00014243700570659712
STAT match_FusedConvPattern +0 -0 #it=3 maxmatch=0 i=0 - time=7.495099634979852e-05
STAT match_FusedMatMulDivPattern +0 -0 #it=3 maxmatch=2 i=0 - time=0.00017691700486466289
STAT match_FusedMatMulPattern +0 -0 #it=3 maxmatch=2 i=2 - time=0.0003985959992860444
STAT match_FusedMatMulTransposePattern +0 -0 #it=1 maxmatch=0 i=0 - time=6.717699943692423e-05
STAT match_FusedMatMulx2Pattern +0 -0 #it=1 maxmatch=0 i=0 - time=9.748000229592435e-05
STAT match_GeluErfPattern +0 -0 #it=8 maxmatch=6 i=0 - time=0.003968451001128415
STAT match_GeluOrtPattern +0 -0 #it=8 maxmatch=6 i=0 - time=0.003076731001783628
STAT match_GeluPattern +0 -0 #it=8 maxmatch=2 i=0 - time=9.348001185571775e-06
STAT match_GemmTransposePattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.0001622300005692523
STAT match_IdentityPattern +0 -0 #it=8 maxmatch=6 i=4 - time=0.002988143991387915
STAT match_LayerNormalizationPattern +0 -0 #it=6 maxmatch=2 i=2 - time=0.0003055179950024467
STAT match_LayerNormalizationScalePattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.00015324100604630075
STAT match_LeakyReluPattern +0 -0 #it=8 maxmatch=6 i=0 - time=0.0027481260076456238
STAT match_MatMulAddPattern +0 -0 #it=1 maxmatch=0 i=0 - time=6.798499816795811e-05
STAT match_MatMulReshape2Of3Pattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.0006229889986570925
STAT match_MulMulMatMulPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.00035041399678448215
STAT match_MulMulMulScalarPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.0001853159956226591
STAT match_MultiHeadAttention3DPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.0001838730022427626
STAT match_OrtBatchNormalizationTrainingPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.00024746000053710304
STAT match_QuickGeluPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.0001475650024076458
STAT match_RMSNormalizationPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.0001459219965909142
STAT match_ReduceReshapePattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.000195075997908134
STAT match_ReduceSumNormalizePattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.00015325699496315792
STAT match_Reshape2Of3Pattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.00040715599971008487
STAT match_ReshapeGemmPattern +0 -0 #it=1 maxmatch=0 i=0 - time=2.4444001610390842e-05
STAT match_ReshapeMatMulReshapePattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.0003118599961453583
STAT match_ReshapePattern +0 -0 #it=8 maxmatch=6 i=0 - time=0.00019957200129283592
STAT match_ReshapeReshapeBinaryPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.00027001500347978435
STAT match_ReshapeReshapePattern +0 -0 #it=8 maxmatch=6 i=0 - time=0.00020701099856523797
STAT match_RotaryConcatPartPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.00021032499716966413
STAT match_RotaryEmbeddingPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.00013525900067179464
STAT match_SameChildrenFromInputPattern +0 -0 #it=8 maxmatch=6 i=0 - time=0.0004365900058473926
STAT match_SameChildrenPattern +0 -0 #it=8 maxmatch=6 i=0 - time=0.0007758529936836567
STAT match_SequenceConstructAtPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.00014961900160415098
STAT match_ShapeBasedConcatExpandPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.0001554280024720356
STAT match_ShapeBasedEditDistanceReshapePattern +0 -0 #it=8 maxmatch=6 i=0 - time=0.0001990289965760894
STAT match_ShapeBasedExpandBroadcastMatMulPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.00042491499698371626
STAT match_ShapeBasedExpandBroadcastPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.00038390200279536657
STAT match_ShapeBasedExpandCastWhereSwapPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.0001709300049697049
STAT match_ShapeBasedExpandSwapPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.00035198799741920084
STAT match_ShapeBasedIdentityPattern +0 -0 #it=8 maxmatch=6 i=0 - time=0.000231715999689186
STAT match_ShapeBasedMatMulToMulPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.0004037630023958627
STAT match_ShapeBasedReshapeIsSqueezePattern +0 -0 #it=8 maxmatch=6 i=0 - time=0.00023134499497245997
STAT match_ShapeBasedSameChildrenPattern +0 -0 #it=8 maxmatch=6 i=0 - time=0.0002103160004480742
STAT match_ShapeBasedShapeShapeAddPattern +0 -0 #it=8 maxmatch=6 i=0 - time=0.00027045201204600744
STAT match_ShapeBasedStaticExpandPattern +0 -0 #it=8 maxmatch=6 i=0 - time=0.00022192699543666095
STAT match_ShapedBasedReshapePattern +0 -0 #it=8 maxmatch=6 i=0 - time=0.0002024099994741846
STAT match_SimplifiedLayerNormalizationMulPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.00018851600179914385
STAT match_SimplifiedLayerNormalizationPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.00027797399525297806
STAT match_SkipLayerNormalizationPattern +0 -0 #it=6 maxmatch=2 i=2 - time=0.0002057369965768885
STAT match_SkipSimplifiedLayerNormalizationMulPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.00017509899771539494
STAT match_SkipSimplifiedLayerNormalizationPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.00016801800302346237
STAT match_SliceSlicePattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.0001340469971182756
STAT match_SlicesSplitPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.0001463980006519705
STAT match_SoftmaxCrossEntropyLossCastPattern +0 -0 #it=8 maxmatch=6 i=0 - time=0.0035700940061360598
STAT match_SoftmaxGradPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.0001478870071878191
STAT match_SplitConcatPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.00014370800272445194
STAT match_SqueezeAddPattern +0 -0 #it=8 maxmatch=6 i=0 - time=0.000372420996427536
STAT match_SqueezeBinaryUnsqueezePattern +0 -0 #it=8 maxmatch=6 i=0 - time=0.0002093600014632102
STAT match_SqueezeUnsqueezePattern +0 -0 #it=8 maxmatch=6 i=0 - time=0.0002429120104352478
STAT match_StaticConcatReshapePattern +0 -0 #it=8 maxmatch=6 i=0 - time=0.00020865000260528177
STAT match_Sub1MulPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.0001644320072955452
STAT match_SwapExpandReshapePattern +0 -0 #it=8 maxmatch=6 i=0 - time=0.00020195399702060968
STAT match_SwitchOrderBinaryPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.00045169399891165085
STAT match_SwitchReshapeActivationPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.00022703899230691604
STAT match_TransposeEqualReshapePattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.0002247320044261869
STAT match_TransposeFusedMatMulBPattern +0 -0 #it=1 maxmatch=0 i=0 - time=0.00010796599963214248
STAT match_TransposeMatMulPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.00034367300395388156
STAT match_TransposeReshapeMatMulPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.0003635969951574225
STAT match_TransposeReshapeTransposePattern +0 -0 #it=8 maxmatch=6 i=0 - time=0.0002534320046834182
STAT match_TransposeTransposePattern +0 -0 #it=8 maxmatch=6 i=0 - time=0.00023189300554804504
STAT match_UnsqueezeEqualPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.0002838100008375477
STAT match_UnsqueezeReshapePattern +0 -0 #it=8 maxmatch=6 i=0 - time=0.00023653299649595283
STAT match_UnsqueezeUnsqueezePattern +0 -0 #it=8 maxmatch=6 i=0 - time=0.00021943000319879502
STAT remove_duplicated_shape +0 -0 #it=8 maxmatch=0 i=0 - time=5.1017999794567004e-05
STAT remove_identity_nodes +9 -15 #it=8 maxmatch=0 i=0 - time=0.0019527340009517502
STAT remove_unused +0 -0 #it=8 maxmatch=0 i=0 - time=0.002112569003656972
--MODEL: 29 nodes, 1 inputs, 1 outputs, 21 initializers--
INPUT: 1 x 7t
INPUT-SEQ: 1 x Falset
OUTPUT: 1 x 1t
OUTPUT-SEQ: 1 x Falset
INIT: 21 x 1t
NODE: 4 x Add
NODE: 1 x Concat
NODE: 2 x Equal
NODE: 2 x Gather
NODE: 11 x MatMul
NODE: 1 x Relu
NODE: 2 x Softmax
NODE: 2 x Where
NODE: 2 x com.microsoft.FusedMatMul
NODE: 2 x com.microsoft.SkipLayerNormalization
--MODEL: 29 nodes, 1 inputs, 1 outputs, 21 initializers--DETAILED--
INPUT: 1 x 7t[1x30]
OUTPUT: 1 x 1t[1x30x16]
INIT: 2 x 1t[1024x16]
INIT: 1 x 1t[128]
INIT: 1 x 1t[128x16]
INIT: 4 x 1t[16]
INIT: 1 x 1t[16x128]
INIT: 6 x 1t[16x16]
INIT: 3 x 1t[1]
INIT: 2 x 1t[30x30]
INIT: 1 x 1t[32x16]
NODE: 1 x Add -SIG- 1t[1x30x128], 1t[128]
NODE: 2 x Add -SIG- 1t[1x30x16], 1t[16]
NODE: 1 x Add -SIG- 1t[1x30x16], 1t[1x30x16]
NODE: 1 x Concat -SIG- 1t[1x30x16], 1t[1x30x16]
NODE: 2 x Equal -SIG- 1t[30x30], 1t[1]
NODE: 2 x Gather -SIG- 1t[1024x16], 7t[1x30]
NODE: 1 x MatMul -SIG- 1t[1x30x128], 1t[128x16]
NODE: 1 x MatMul -SIG- 1t[1x30x16], 1t[16x128]
NODE: 6 x MatMul -SIG- 1t[1x30x16], 1t[16x16]
NODE: 2 x MatMul -SIG- 1t[1x30x30], 1t[1x30x16]
NODE: 1 x MatMul -SIG- 1t[1x30x32], 1t[32x16]
NODE: 1 x Relu -SIG- 1t[1x30x128]
NODE: 2 x Softmax -SIG- 1t[1x30x30]
NODE: 2 x Where -SIG- 9t[30x30], 1t[1], 1t[1x30x30]
NODE: 2 x com.microsoft.FusedMatMul -SIG- 1t[1x30x16], 1t[1x30x16]
NODE: 2 x com.microsoft.SkipLayerNormalization -SIG- 1t[1x30x16], 1t[1x30x16], 1t[16], 1t[16]
[GraphBuilder-ACU.remove_unused] remove_initializer 1:15/21:init1_s_2::RSh12:float32[(1,)]
[GraphBuilder-ACU.optimize] done with 29 nodes in 0.064
opset: domain='' version=18
opset: domain='com.microsoft' version=1
input: name='input_ids' type=dtype('int64') shape=[1, 30]
init: name='init1_s1_3' type=float32 shape=(1,) -- array([-inf], dtype=float32)-- Opset.make_node.1/Small##Opset.make_node.1/Small
init: name='p_decoder_attention_attention_0_query_weight::T10' type=float32 shape=(16, 16)-- GraphBuilder.constant_folding.from/fold(p_decoder_attention_attention_0_query_weight)##p_decoder_attention_attention_0_query_weight/DynamoInterpret.placeholder.1/P(decoder.attention.attention.0.query.weight)
init: name='p_decoder_attention_attention_0_key_weight::T10' type=float32 shape=(16, 16)-- GraphBuilder.constant_folding.from/fold(p_decoder_attention_attention_0_key_weight)##p_decoder_attention_attention_0_key_weight/DynamoInterpret.placeholder.1/P(decoder.attention.attention.0.key.weight)
init: name='p_decoder_attention_attention_0_value_weight::T10' type=float32 shape=(16, 16)-- GraphBuilder.constant_folding.from/fold(p_decoder_attention_attention_0_value_weight)##p_decoder_attention_attention_0_value_weight/DynamoInterpret.placeholder.1/P(decoder.attention.attention.0.value.weight)
init: name='slice_2' type=float32 shape=(30, 30) -- GraphBuilder.constant_folding.from/fold(init7_s1_0,init7_s1_1,init7_s1_30,slice_1)##slice_1/GraphBuilder.constant_folding.from/fold(b_decoder_attention_attention_0_mask,init7_s1_0,init7_s1_30)##b_decoder_attention_attention_0_mask/DynamoInterpret.placeholder.0##init7_s1_0/Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##init7_s1_30/Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##init7_s1_0/Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##init7_s1_30/Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##init7_s1_1/Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape
init: name='init1_s_2::RSh1' type=float32 shape=(1,) -- array([0.], dtype=float32)-- GraphBuilder.constant_folding.from/fold(init1_s_2,init7_s1_1)##init1_s_2/shape_type_compute._cast_inputs.0##shape_type_compute._cast_inputs.0##init7_s1_1/Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape
init: name='p_decoder_attention_attention_1_query_weight::T10' type=float32 shape=(16, 16)-- GraphBuilder.constant_folding.from/fold(p_decoder_attention_attention_1_query_weight)##p_decoder_attention_attention_1_query_weight/DynamoInterpret.placeholder.1/P(decoder.attention.attention.1.query.weight)
init: name='p_decoder_attention_attention_1_key_weight::T10' type=float32 shape=(16, 16)-- GraphBuilder.constant_folding.from/fold(p_decoder_attention_attention_1_key_weight)##p_decoder_attention_attention_1_key_weight/DynamoInterpret.placeholder.1/P(decoder.attention.attention.1.key.weight)
init: name='p_decoder_attention_attention_1_value_weight::T10' type=float32 shape=(16, 16)-- GraphBuilder.constant_folding.from/fold(p_decoder_attention_attention_1_value_weight)##p_decoder_attention_attention_1_value_weight/DynamoInterpret.placeholder.1/P(decoder.attention.attention.1.value.weight)
init: name='slice_4' type=float32 shape=(30, 30) -- GraphBuilder.constant_folding.from/fold(init7_s1_0,init7_s1_1,init7_s1_30,slice_3)##slice_3/GraphBuilder.constant_folding.from/fold(b_decoder_attention_attention_1_mask,init7_s1_0,init7_s1_30)##b_decoder_attention_attention_1_mask/DynamoInterpret.placeholder.0##init7_s1_0/Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##init7_s1_30/Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##init7_s1_0/Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##init7_s1_30/Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##init7_s1_1/Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape
init: name='p_decoder_attention_linear_weight::T10' type=float32 shape=(32, 16)-- GraphBuilder.constant_folding.from/fold(p_decoder_attention_linear_weight)##p_decoder_attention_linear_weight/DynamoInterpret.placeholder.1/P(decoder.attention.linear.weight)
init: name='p_decoder_feed_forward_linear_1_weight::T10' type=float32 shape=(16, 128)-- GraphBuilder.constant_folding.from/fold(p_decoder_feed_forward_linear_1_weight)##p_decoder_feed_forward_linear_1_weight/DynamoInterpret.placeholder.1/P(decoder.feed_forward.linear_1.weight)
init: name='p_decoder_feed_forward_linear_2_weight::T10' type=float32 shape=(128, 16)-- GraphBuilder.constant_folding.from/fold(p_decoder_feed_forward_linear_2_weight)##p_decoder_feed_forward_linear_2_weight/DynamoInterpret.placeholder.1/P(decoder.feed_forward.linear_2.weight)
init: name='init1_s16_' type=float32 shape=(16,) -- LayerNormalizationPattern.apply.scale##LayerNormalizationPattern.apply.scale
init: name='init1_s16_2' type=float32 shape=(16,) -- LayerNormalizationPattern.apply.bias##LayerNormalizationPattern.apply.bias
init: name='embedding.embedding.weight' type=float32 shape=(1024, 16) -- DynamoInterpret.placeholder.1/P(embedding.embedding.weight)
init: name='embedding.pe.weight' type=float32 shape=(1024, 16) -- DynamoInterpret.placeholder.1/P(embedding.pe.weight)
init: name='decoder.attention.linear.bias' type=float32 shape=(16,) -- DynamoInterpret.placeholder.1/P(decoder.attention.linear.bias)
init: name='decoder.feed_forward.linear_1.bias' type=float32 shape=(128,)-- DynamoInterpret.placeholder.1/P(decoder.feed_forward.linear_1.bias)
init: name='decoder.feed_forward.linear_2.bias' type=float32 shape=(16,)-- DynamoInterpret.placeholder.1/P(decoder.feed_forward.linear_2.bias)
Equal(slice_2, init1_s_2::RSh1) -> eq
Gather(embedding.embedding.weight, input_ids) -> embedding
Gather(embedding.pe.weight, input_ids) -> embedding_1
SkipLayerNormalization[com.microsoft](embedding, embedding_1, init1_s16_, init1_s16_2, epsilon=0.00) -> _onx_div_sub_add, unused, unused2, add
MatMul(_onx_div_sub_add, p_decoder_attention_attention_0_query_weight::T10) -> linear
MatMul(_onx_div_sub_add, p_decoder_attention_attention_0_key_weight::T10) -> linear_1
FusedMatMul[com.microsoft](linear, linear_1, alpha=0.25, transA=0, transB=1, transBatchA=0, transBatchB=0) -> _onx_mul_matmul
Where(eq, init1_s1_3, _onx_mul_matmul) -> masked_fill
Softmax(masked_fill, axis=-1) -> softmax
MatMul(_onx_div_sub_add, p_decoder_attention_attention_0_value_weight::T10) -> linear_2
MatMul(softmax, linear_2) -> matmul_1
MatMul(_onx_div_sub_add, p_decoder_attention_attention_1_query_weight::T10) -> linear_3
MatMul(_onx_div_sub_add, p_decoder_attention_attention_1_key_weight::T10) -> linear_4
FusedMatMul[com.microsoft](linear_3, linear_4, alpha=0.25, transA=0, transB=1, transBatchA=0, transBatchB=0) -> _onx_mul_matmul_2
MatMul(_onx_div_sub_add, p_decoder_attention_attention_1_value_weight::T10) -> linear_5
Equal(slice_4, init1_s_2::RSh1) -> eq_1
Where(eq_1, init1_s1_3, _onx_mul_matmul_2) -> masked_fill_1
Softmax(masked_fill_1, axis=-1) -> softmax_1
MatMul(softmax_1, linear_5) -> matmul_3
Concat(matmul_1, matmul_3, axis=-1) -> cat
MatMul(cat, p_decoder_attention_linear_weight::T10) -> _onx_matmul_cat
Add(_onx_matmul_cat, decoder.attention.linear.bias) -> linear_6
SkipLayerNormalization[com.microsoft](linear_6, add, init1_s16_, init1_s16_2, epsilon=0.00) -> _onx_div_sub_add_1, unused3, unused4, add_1
MatMul(_onx_div_sub_add_1, p_decoder_feed_forward_linear_1_weight::T10) -> _onx_matmul_layer_norm_1
Add(_onx_matmul_layer_norm_1, decoder.feed_forward.linear_1.bias) -> linear_7
Relu(linear_7) -> relu
MatMul(relu, p_decoder_feed_forward_linear_2_weight::T10) -> _onx_matmul_relu
Add(_onx_matmul_relu, decoder.feed_forward.linear_2.bias) -> linear_8
Add(linear_8, add_1) -> output_0
output: name='output_0' type=dtype('float32') shape=[1, 30, 16]
This shows a kernel FusedMatMul[com.microsoft] which implement a kernel equivalent Gemm
but working for any tensors, not only 2D.
How does it work on the model which keeps exports the moduels as local functions?
The optimizer optimizes every local function independantly.
We reduce the verbosity…
onx_module_optimized = to_onnx(
llm,
(input_ids,),
options=OptimizationOptions(patterns="default+onnxruntime", constant_folding=True),
export_modules_as_functions=True,
)
print(pretty_onnx(onx_module_optimized))
/usr/lib/python3.12/copyreg.py:99: FutureWarning: `isinstance(treespec, LeafSpec)` is deprecated, use `isinstance(treespec, TreeSpec) and treespec.is_leaf()` instead.
return cls.__new__(cls, *args)
opset: domain='' version=18
opset: domain='aten_local_function' version=1
opset: domain='com.microsoft' version=1
input: name='input_ids' type=dtype('int64') shape=[1, 30]
init: name='embedding.embedding.weight' type=float32 shape=(1024, 16) -- GraphBuilder.make_local_function/from(embedding.embedding.weight)
init: name='embedding.pe.weight' type=float32 shape=(1024, 16) -- GraphBuilder.make_local_function/from(embedding.pe.weight)
init: name='weight::T10' type=float32 shape=(16, 16) -- GraphBuilder.make_local_function/from(weight::T10)
init: name='weight::T102' type=float32 shape=(16, 16) -- GraphBuilder.make_local_function/from(weight::T102)
init: name='weight::T103' type=float32 shape=(16, 16) -- GraphBuilder.make_local_function/from(weight::T103)
init: name='slice_2' type=float32 shape=(30, 30) -- GraphBuilder.make_local_function/from(slice_2)
init: name='weight::T104' type=float32 shape=(16, 16) -- GraphBuilder.make_local_function/from(weight::T104)
init: name='weight::T1022' type=float32 shape=(16, 16) -- GraphBuilder.make_local_function/from(weight::T1022)
init: name='weight::T1032' type=float32 shape=(16, 16) -- GraphBuilder.make_local_function/from(weight::T1032)
init: name='slice_4' type=float32 shape=(30, 30) -- GraphBuilder.make_local_function/from(slice_4)
init: name='weight::T105' type=float32 shape=(32, 16) -- GraphBuilder.make_local_function/from(weight::T105)
init: name='decoder.feed_forward.linear_1.bias' type=float32 shape=(128,)-- GraphBuilder.make_local_function/from(decoder.feed_forward.linear_1.bias)
init: name='weight::T106' type=float32 shape=(16, 128) -- GraphBuilder.make_local_function/from(weight::T106)
init: name='weight::T1023' type=float32 shape=(128, 16) -- GraphBuilder.make_local_function/from(weight::T1023)
init: name='init1_s16_3' type=float32 shape=(16,) -- GraphBuilder.constant_folding.from/fold()
init: name='init1_s16_22' type=float32 shape=(16,) -- GraphBuilder.constant_folding.from/fold()
init: name='bias2' type=float32 shape=(16,) -- GraphBuilder.constant_folding.from/fold()
init: name='bias' type=float32 shape=(16,) -- GraphBuilder.constant_folding.from/fold()
init: name='init1_s1_2' type=float32 shape=(1,) -- array([-inf], dtype=float32)-- GraphBuilder.constant_folding.from/fold()
init: name='init1_s_2::RSh12' type=float32 shape=(1,) -- array([0.], dtype=float32)-- GraphBuilder.constant_folding.from/fold()
Equal(slice_2, init1_s_2::RSh12) -> eq
Gather(embedding.embedding.weight, input_ids) -> embedding2
Gather(embedding.pe.weight, input_ids) -> pe
SkipLayerNormalization[com.microsoft](embedding2, pe, init1_s16_3, init1_s16_22, epsilon=0.00) -> norm_1, unused, unused2, embedding
MatMul(norm_1, weight::T10) -> query
MatMul(norm_1, weight::T102) -> key
FusedMatMul[com.microsoft](query, key, alpha=0.25, transA=0, transB=1, transBatchA=0, transBatchB=0) -> _onx_mul_matmul
Where(eq, init1_s1_2, _onx_mul_matmul) -> masked_fill
Softmax(masked_fill, axis=-1) -> softmax
MatMul(norm_1, weight::T103) -> value
MatMul(softmax, value) -> attention_0
MatMul(norm_1, weight::T104) -> query2
MatMul(norm_1, weight::T1022) -> key2
FusedMatMul[com.microsoft](query2, key2, alpha=0.25, transA=0, transB=1, transBatchA=0, transBatchB=0) -> _onx_mul_matmul2
MatMul(norm_1, weight::T1032) -> value2
Equal(slice_4, init1_s_2::RSh12) -> eq2
Where(eq2, init1_s1_2, _onx_mul_matmul2) -> masked_fill2
Softmax(masked_fill2, axis=-1) -> softmax2
MatMul(softmax2, value2) -> attention_1
Concat(attention_0, attention_1, axis=-1) -> cat
MatMul(cat, weight::T105) -> _onx_matmul_cat
Add(_onx_matmul_cat, bias) -> attention
SkipLayerNormalization[com.microsoft](attention, embedding, init1_s16_3, init1_s16_22, epsilon=0.00) -> norm_2, unused3, unused4, add_1
MatMul(norm_2, weight::T106) -> _onx_matmul_layer_norm_1
Add(_onx_matmul_layer_norm_1, decoder.feed_forward.linear_1.bias) -> linear_1
Relu(linear_1) -> relu
MatMul(relu, weight::T1023) -> _onx_matmul_relu
Add(_onx_matmul_relu, bias2) -> feed_forward
Add(feed_forward, add_1) -> output_0
output: name='output_0' type=dtype('float32') shape=[1, 30, 16]
It seems to be working as well on this simple case even though the optimizers were not tested on such models. However, keeping the submodule information might be useful to implement optimizer for a fmaily of models sharing the same components.
Optimizations for CUDA¶
The optimizer may have a different behaviour knowning the model is running on CUDA. It may use different kernels and do different optimization if needed. That may not be the good place to do it as the runtime may choose to run one kernel on CPU, another one on CUDA. The current optimization does not know that and is not able to decide which provider would be more useful for some kernels. This coudl even be decided at runtime.
onx_cuda_optimized = to_onnx(
llm,
(input_ids,),
options=OptimizationOptions(
patterns="default+onnxruntime", constant_folding=True, verbose=2, processor="CUDA"
),
)
print(pretty_onnx(onx_cuda_optimized))
[GraphBuilder-MNW.optimize] start with 73 nodes
[GraphBuilder-MNW.optimize] #patterns=102
[GraphBuilder-MNW.remove_unused] remove_initializer 1:1/47:embedding.embedding.weight:torch.float32[torch.Size([1024, 16])]
[GraphBuilder-MNW.remove_unused] remove_initializer 2:3/47:embedding.pe.weight:torch.float32[torch.Size([1024, 16])]
[GraphBuilder-MNW.remove_unused] remove_initializer 3:5/47:decoder.attention.attention.0.query.weight:torch.float32[torch.Size([16, 16])]
[GraphBuilder-MNW.remove_unused] remove_initializer 4:7/47:decoder.attention.attention.0.key.weight:torch.float32[torch.Size([16, 16])]
[GraphBuilder-MNW.remove_unused] remove_initializer 5:9/47:decoder.attention.attention.0.value.weight:torch.float32[torch.Size([16, 16])]
[GraphBuilder-MNW.remove_unused] remove_initializer 6:11/47:decoder.attention.attention.1.query.weight:torch.float32[torch.Size([16, 16])]
[GraphBuilder-MNW.remove_unused] remove_initializer 7:13/47:decoder.attention.attention.1.key.weight:torch.float32[torch.Size([16, 16])]
[GraphBuilder-MNW.remove_unused] remove_initializer 8:15/47:decoder.attention.attention.1.value.weight:torch.float32[torch.Size([16, 16])]
[GraphBuilder-MNW.remove_unused] remove_initializer 9:17/47:decoder.attention.linear.weight:torch.float32[torch.Size([16, 32])]
[GraphBuilder-MNW.remove_unused] remove_initializer 10:19/47:decoder.attention.linear.bias:torch.float32[torch.Size([16])]
[GraphBuilder-MNW.remove_unused] remove_initializer 11:21/47:decoder.feed_forward.linear_1.weight:torch.float32[torch.Size([128, 16])]
[GraphBuilder-MNW.remove_unused] remove_initializer 12:23/47:decoder.feed_forward.linear_1.bias:torch.float32[torch.Size([128])]
[GraphBuilder-MNW.remove_unused] remove_initializer 13:25/47:decoder.feed_forward.linear_2.weight:torch.float32[torch.Size([16, 128])]
[GraphBuilder-MNW.remove_unused] remove_initializer 14:27/47:decoder.feed_forward.linear_2.bias:torch.float32[torch.Size([16])]
[GraphBuilder-MNW.remove_unused] remove_initializer 15:29/47:decoder.norm_1.weight:torch.float32[torch.Size([16])]
[GraphBuilder-MNW.remove_unused] remove_initializer 16:31/47:decoder.norm_1.bias:torch.float32[torch.Size([16])]
[GraphBuilder-MNW.remove_unused] remove_initializer 17:33/47:decoder.norm_2.weight:torch.float32[torch.Size([16])]
[GraphBuilder-MNW.remove_unused] remove_initializer 18:35/47:decoder.norm_2.bias:torch.float32[torch.Size([16])]
[GraphBuilder-MNW.remove_unused] remove_initializer 1:2/46:p_decoder_attention_attention_0_query_weight:torch.float32[torch.Size([16, 16])]
[GraphBuilder-MNW.remove_unused] remove_initializer 2:3/46:p_decoder_attention_attention_0_key_weight:torch.float32[torch.Size([16, 16])]
[GraphBuilder-MNW.remove_unused] remove_initializer 3:4/46:p_decoder_attention_attention_0_value_weight:torch.float32[torch.Size([16, 16])]
[GraphBuilder-MNW.remove_unused] remove_initializer 4:5/46:p_decoder_attention_attention_1_query_weight:torch.float32[torch.Size([16, 16])]
[GraphBuilder-MNW.remove_unused] remove_initializer 5:6/46:p_decoder_attention_attention_1_key_weight:torch.float32[torch.Size([16, 16])]
[GraphBuilder-MNW.remove_unused] remove_initializer 6:7/46:p_decoder_attention_attention_1_value_weight:torch.float32[torch.Size([16, 16])]
[GraphBuilder-MNW.remove_unused] remove_initializer 7:8/46:p_decoder_attention_linear_weight:torch.float32[torch.Size([16, 32])]
[GraphBuilder-MNW.remove_unused] remove_initializer 8:10/46:p_decoder_feed_forward_linear_1_weight:torch.float32[torch.Size([128, 16])]
[GraphBuilder-MNW.remove_unused] remove_initializer 9:12/46:p_decoder_feed_forward_linear_2_weight:torch.float32[torch.Size([16, 128])]
[GraphBuilder-MNW.remove_unused] remove_initializer 10:18/46:b_decoder_attention_attention_0_mask:torch.float32[torch.Size([256, 256])]
[GraphBuilder-MNW.remove_unused] remove_initializer 11:19/46:b_decoder_attention_attention_1_mask:torch.float32[torch.Size([256, 256])]
[GraphBuilder-MNW.remove_unused] remove_initializer 12:23/46:init1_s_:float32[()]
[GraphBuilder-MNW.remove_unused] remove_initializer 13:24/46:init7_s1_1:int64[(1,)]
[GraphBuilder-MNW.remove_unused] remove_initializer 14:25/46:init7_s1_0:int64[(1,)]
[GraphBuilder-MNW.remove_unused] remove_initializer 15:26/46:init7_s1_30:int64[(1,)]
[GraphBuilder-MNW.remove_unused] remove_initializer 16:27/46:init1_s_2:float32[()]
[GraphBuilder-MNW.remove_unused] remove_initializer 17:33/46:slice_1:torch.float32[torch.Size([30, 256])]
[GraphBuilder-MNW.remove_unused] remove_initializer 18:40/46:slice_3:torch.float32[torch.Size([30, 256])]
[GraphBuilderPatternOptimization-MNW.optimize] start with 53 nodes, 28 initializers, 102 patterns, priorities=[0, 1, 2, 3], max_iter=212
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 1/102 - P0 - BatchNormalizationPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 2/102 - P0 - BatchNormalizationTrainingPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 3/102 - P0 - CastCastPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 4/102 - P0 - CastPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 5/102 - P0 - ConcatGatherPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 6/102 - P0 - ConcatReshapePattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 7/102 - P0 - ConvBiasNullPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 8/102 - P0 - ExpandPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 9/102 - P0 - FunctionAttentionPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 10/102 - P0 - GeluErfPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 11/102 - P0 - GeluOrtPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 12/102 - P0 - GeluPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 13/102 - P0 - IdentityPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 14/102 - P0 - LeakyReluPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 15/102 - P0 - ReshapePattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 16/102 - P0 - ReshapeReshapePattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 17/102 - P0 - SameChildrenFromInputPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 18/102 - P0 - SameChildrenPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 19/102 - P0 - ShapeBasedEditDistanceReshapePattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 20/102 - P0 - ShapeBasedIdentityPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 21/102 - P0 - ShapeBasedReshapeIsSqueezePattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 22/102 - P0 - ShapeBasedSameChildrenPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 23/102 - P0 - ShapeBasedShapeShapeAddPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 24/102 - P0 - ShapeBasedStaticExpandPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 25/102 - P0 - ShapedBasedReshapePattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 26/102 - P0 - SoftmaxCrossEntropyLossCastPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 27/102 - P0 - SqueezeAddPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 28/102 - P0 - SqueezeBinaryUnsqueezePattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 29/102 - P0 - SqueezeUnsqueezePattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 30/102 - P0 - StaticConcatReshapePattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 31/102 - P0 - SwapExpandReshapePattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 32/102 - P0 - TransposeReshapeTransposePattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 33/102 - P0 - TransposeTransposePattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 34/102 - P0 - UnsqueezeReshapePattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 35/102 - P0 - UnsqueezeUnsqueezePattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 36/102 - P1 - BiasGeluPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 37/102 - P1 - BiasSoftmaxPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 38/102 - P1 - CastCastBinaryPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 39/102 - P1 - CastLayerNormalizationCastPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 40/102 - P1 - CastOpCastPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 41/102 - P1 - ClipClipPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 42/102 - P1 - ComputationCastOpCastPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 43/102 - P1 - ConcatEmptyPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 44/102 - P1 - ConcatTwiceUnaryPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 45/102 - P1 - ContribRotaryEmbedding3DPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 46/102 - P1 - DropoutPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 47/102 - P1 - ExpandBroadcastPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 48/102 - P1 - ExpandSwapPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 49/102 - P1 - FastGeluPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 50/102 - P1 - FunctionCausalMaskMulAddPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 51/102 - P1 - FunctionCausalMaskPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 52/102 - P1 - FunctionCosSinCachePattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 53/102 - P1 - FunctionHalfRotaryEmbeddingPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 54/102 - P1 - GemmTransposePattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 55/102 - P1 - LayerNormalizationPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 56/102 - P1 - LayerNormalizationScalePattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 57/102 - P1 - MatMulReshape2Of3Pattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 58/102 - P1 - MulMulMatMulPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 59/102 - P1 - MulMulMulScalarPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 60/102 - P1 - MultiHeadAttention3DPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 61/102 - P1 - OrtBatchNormalizationTrainingPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 62/102 - P1 - QuickGeluPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 63/102 - P1 - RMSNormalizationPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 64/102 - P1 - ReduceReshapePattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 65/102 - P1 - ReduceSumNormalizePattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 66/102 - P1 - Reshape2Of3Pattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 67/102 - P1 - ReshapeMatMulReshapePattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 68/102 - P1 - ReshapeReshapeBinaryPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 69/102 - P1 - RotaryConcatPartPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 70/102 - P1 - RotaryEmbeddingPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 71/102 - P1 - SequenceConstructAtPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 72/102 - P1 - ShapeBasedConcatExpandPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 73/102 - P1 - ShapeBasedExpandBroadcastMatMulPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 74/102 - P1 - ShapeBasedExpandBroadcastPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 75/102 - P1 - ShapeBasedExpandCastWhereSwapPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 76/102 - P1 - ShapeBasedExpandSwapPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 77/102 - P1 - ShapeBasedMatMulToMulPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 78/102 - P1 - SimplifiedLayerNormalizationMulPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 79/102 - P1 - SimplifiedLayerNormalizationPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 80/102 - P1 - SkipLayerNormalizationPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 81/102 - P1 - SkipSimplifiedLayerNormalizationMulPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 82/102 - P1 - SkipSimplifiedLayerNormalizationPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 83/102 - P1 - SliceSlicePattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 84/102 - P1 - SlicesSplitPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 85/102 - P1 - SoftmaxGradPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 86/102 - P1 - SplitConcatPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 87/102 - P1 - Sub1MulPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 88/102 - P1 - SwitchOrderBinaryPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 89/102 - P1 - SwitchReshapeActivationPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 90/102 - P1 - TransposeEqualReshapePattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 91/102 - P1 - TransposeMatMulPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 92/102 - P1 - TransposeReshapeMatMulPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 93/102 - P1 - UnsqueezeEqualPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 94/102 - P2 - ContribRotaryEmbeddingPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 95/102 - P2 - FusedConvPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 96/102 - P2 - FusedMatMulDivPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 97/102 - P2 - FusedMatMulPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 98/102 - P3 - FusedMatMulTransposePattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 99/102 - P3 - FusedMatMulx2Pattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 100/102 - P3 - MatMulAddPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 101/102 - P3 - ReshapeGemmPattern()
[GraphBuilderPatternOptimization-MNW.optimize] use pattern 102/102 - P3 - TransposeFusedMatMulBPattern()
[GraphBuilderPatternOptimization-MNW.optimize] same children={'SameChildrenFromInputPattern', 'SameChildrenPattern'}
[GraphBuilderPatternOptimization-MNW.optimize] iteration 0: 53 nodes, priority=0
[GraphBuilderPatternOptimization-MNW.optimize] applies 6 matches, 2*CastPattern, 4*IdentityPattern - time=0.006 | max_time=SoftmaxCrossEntropyLossCastPattern:0.002
[GraphBuilder-MNW.remove_unused] remove_initializer 1:5/28:p_decoder_norm_1_weight:torch.float32[torch.Size([16])]
[GraphBuilder-MNW.remove_unused] remove_initializer 2:6/28:p_decoder_norm_1_bias:torch.float32[torch.Size([16])]
[GraphBuilder-MNW.remove_unused] remove_initializer 3:7/28:p_decoder_norm_2_weight:torch.float32[torch.Size([16])]
[GraphBuilder-MNW.remove_unused] remove_initializer 4:8/28:p_decoder_norm_2_bias:torch.float32[torch.Size([16])]
[GraphBuilderPatternOptimization-MNW.optimize] iteration 1: 47 nodes, priority=0
[GraphBuilderPatternOptimization-MNW.optimize] increase priority to 1
[GraphBuilderPatternOptimization-MNW.optimize] iteration 2: 47 nodes, priority=1
[GraphBuilderPatternOptimization-MNW.optimize] applies 2 matches, 2*LayerNormalizationPattern - time=0.005 | max_time=IdentityPattern:0.000
[GraphBuilder-MNW.remove_unused] remove_initializer 1:5/26:init7_s1_-1:int64[(1,)]
[GraphBuilder-MNW.remove_unused] remove_initializer 2:6/26:init1_s1_:float32[(1,)]
[GraphBuilder-MNW.remove_unused] remove_initializer 3:7/26:init1_s1_2:float32[(1,)]
[GraphBuilderPatternOptimization-MNW.optimize] iteration 3: 35 nodes, priority=1
[GraphBuilderPatternOptimization-MNW.optimize] applies 2 matches, 2*SkipLayerNormalizationPattern - time=0.003 | max_time=IdentityPattern:0.000
[GraphBuilderPatternOptimization-MNW.optimize] iteration 4: 33 nodes, priority=1
[GraphBuilderPatternOptimization-MNW.optimize] increase priority to 2
[GraphBuilderPatternOptimization-MNW.optimize] iteration 5: 33 nodes, priority=2
[GraphBuilderPatternOptimization-MNW.optimize] applies 2 matches, 2*FusedMatMulPattern - time=0.003 | max_time=GeluOrtPattern:0.000
[GraphBuilder-MNW.remove_unused] remove_initializer 1:9/23:init1_s_::RSh1:float32[(1,)]
[GraphBuilder-MNW.remove_unused] remove_initializer 2:15/23:init1_s_::RSh12:float32[(1,)]
[GraphBuilderPatternOptimization-MNW.optimize] iteration 6: 29 nodes, priority=2
[GraphBuilderPatternOptimization-MNW.optimize] increase priority to 3
[GraphBuilderPatternOptimization-MNW.optimize] iteration 7: 29 nodes, priority=3
[GraphBuilderPatternOptimization-MNW.optimize] stops current_priority_index=4, priorities=[0, 1, 2, 3]
[GraphBuilderPatternOptimization-MNW.optimize] done after 8 iterations with 29 nodes in 0.042
STAT apply_CastPattern +2 -2 #it=1 maxmatch=1 i=2 - time=0.00016328200217685662
STAT apply_FusedMatMulPattern +2 -6 #it=1 maxmatch=1 i=2 - time=0.00047822000124142505
STAT apply_IdentityPattern +4 -4 #it=1 maxmatch=5 i=4 - time=0.00023145399609347805
STAT apply_LayerNormalizationPattern +2 -14 #it=1 maxmatch=1 i=2 - time=0.00045434599815052934
STAT apply_SkipLayerNormalizationPattern +2 -4 #it=1 maxmatch=1 i=2 - time=0.00017654499970376492
STAT build_graph_for_pattern +0 -0 #it=8 maxmatch=0 i=0 - time=0.0010946979964501224
STAT check_pattern_00 +0 -0 #it=1 maxmatch=0 i=0 - time=0.00013521099754143506
STAT check_pattern_A0 +0 -0 #it=4 maxmatch=0 i=0 - time=0.001169749997643521
STAT check_pattern_B0 +0 -0 #it=8 maxmatch=0 i=0 - time=0.0019305630194139667
STAT insert_and_remove_nodes +0 -0 #it=0 maxmatch=0 i=0 - time=0.0007083319978846703
STAT match_BatchNormalizationPattern +0 -0 #it=8 maxmatch=0 i=0 - time=0.0002275240076414775
STAT match_BatchNormalizationTrainingPattern +0 -0 #it=8 maxmatch=0 i=0 - time=0.00018863400691770948
STAT match_BiasGeluPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.0001218450051965192
STAT match_BiasSoftmaxPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.00031873700572759844
STAT match_CastCastBinaryPattern +0 -0 #it=6 maxmatch=0 i=0 - time=0.0003499200029182248
STAT match_CastCastPattern +0 -0 #it=8 maxmatch=2 i=0 - time=0.00018547300351201557
STAT match_CastLayerNormalizationCastPattern +0 -0 #it=6 maxmatch=0 i=0 - time=0.00015791699479450472
STAT match_CastOpCastPattern +0 -0 #it=6 maxmatch=0 i=0 - time=0.00032358399766962975
STAT match_CastPattern +0 -0 #it=8 maxmatch=2 i=2 - time=0.0002001369939534925
STAT match_ClipClipPattern +0 -0 #it=6 maxmatch=0 i=0 - time=0.00012561300536617637
STAT match_ComputationCastOpCastPattern +0 -0 #it=6 maxmatch=0 i=0 - time=0.00021212500359979458
STAT match_ConcatEmptyPattern +0 -0 #it=6 maxmatch=0 i=0 - time=0.0001941499976965133
STAT match_ConcatGatherPattern +0 -0 #it=8 maxmatch=2 i=0 - time=0.000229769000725355
STAT match_ConcatReshapePattern +0 -0 #it=8 maxmatch=2 i=0 - time=0.0001786030043149367
STAT match_ConcatTwiceUnaryPattern +0 -0 #it=6 maxmatch=0 i=0 - time=0.0001349199992546346
STAT match_ContribRotaryEmbedding3DPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.0001189299946418032
STAT match_ContribRotaryEmbeddingPattern +0 -0 #it=3 maxmatch=0 i=0 - time=5.9319001593394205e-05
STAT match_ConvBiasNullPattern +0 -0 #it=8 maxmatch=2 i=0 - time=0.00017198299974552356
STAT match_DropoutPattern +0 -0 #it=6 maxmatch=0 i=0 - time=0.00010795799971674569
STAT match_ExpandBroadcastPattern +0 -0 #it=6 maxmatch=0 i=0 - time=0.00011969699698965997
STAT match_ExpandPattern +0 -0 #it=8 maxmatch=2 i=0 - time=0.00017331599519820884
STAT match_ExpandSwapPattern +0 -0 #it=6 maxmatch=0 i=0 - time=0.00011628199717961252
STAT match_FastGeluPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.00012374400466796942
STAT match_FunctionAttentionPattern +0 -0 #it=8 maxmatch=6 i=0 - time=0.0002522550021240022
STAT match_FunctionCausalMaskMulAddPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.00016782300372142345
STAT match_FunctionCausalMaskPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.0001566600039950572
STAT match_FunctionCosSinCachePattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.0002141069999197498
STAT match_FunctionHalfRotaryEmbeddingPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.00017531200137455016
STAT match_FusedConvPattern +0 -0 #it=3 maxmatch=0 i=0 - time=5.47620038560126e-05
STAT match_FusedMatMulDivPattern +0 -0 #it=3 maxmatch=2 i=0 - time=0.0001260919962078333
STAT match_FusedMatMulPattern +0 -0 #it=3 maxmatch=2 i=2 - time=0.00031501900230068713
STAT match_FusedMatMulTransposePattern +0 -0 #it=1 maxmatch=0 i=0 - time=4.688600165536627e-05
STAT match_FusedMatMulx2Pattern +0 -0 #it=1 maxmatch=0 i=0 - time=5.38929998583626e-05
STAT match_GeluErfPattern +0 -0 #it=8 maxmatch=6 i=0 - time=0.0018943459981528576
STAT match_GeluOrtPattern +0 -0 #it=8 maxmatch=6 i=0 - time=0.0024612349916424137
STAT match_GeluPattern +0 -0 #it=8 maxmatch=2 i=0 - time=6.03299486101605e-06
STAT match_GemmTransposePattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.00012359100219327956
STAT match_IdentityPattern +0 -0 #it=8 maxmatch=6 i=4 - time=0.002273370006150799
STAT match_LayerNormalizationPattern +0 -0 #it=6 maxmatch=2 i=2 - time=0.00026916200295090675
STAT match_LayerNormalizationScalePattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.00014736500088474713
STAT match_LeakyReluPattern +0 -0 #it=8 maxmatch=6 i=0 - time=0.002310866995685501
STAT match_MatMulAddPattern +0 -0 #it=1 maxmatch=0 i=0 - time=5.314900045050308e-05
STAT match_MatMulReshape2Of3Pattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.000530122997588478
STAT match_MulMulMatMulPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.0003056379973713774
STAT match_MulMulMulScalarPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.00016327000412275083
STAT match_MultiHeadAttention3DPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.00014574200031347573
STAT match_OrtBatchNormalizationTrainingPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.00021547900178120472
STAT match_QuickGeluPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.00012218900155858137
STAT match_RMSNormalizationPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.00011870099842781201
STAT match_ReduceReshapePattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.0001674599916441366
STAT match_ReduceSumNormalizePattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.00011974699737038463
STAT match_Reshape2Of3Pattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.0003544819956005085
STAT match_ReshapeGemmPattern +0 -0 #it=1 maxmatch=0 i=0 - time=1.9148999854223803e-05
STAT match_ReshapeMatMulReshapePattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.0002711950037337374
STAT match_ReshapePattern +0 -0 #it=8 maxmatch=6 i=0 - time=0.00023376999524771236
STAT match_ReshapeReshapeBinaryPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.00028334099260973744
STAT match_ReshapeReshapePattern +0 -0 #it=8 maxmatch=6 i=0 - time=0.00017636999473324977
STAT match_RotaryConcatPartPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.0001679860033618752
STAT match_RotaryEmbeddingPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.00011106900274171494
STAT match_SameChildrenFromInputPattern +0 -0 #it=8 maxmatch=6 i=0 - time=0.0003943030060327146
STAT match_SameChildrenPattern +0 -0 #it=8 maxmatch=6 i=0 - time=0.0006762810044165235
STAT match_SequenceConstructAtPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.00018846100283553824
STAT match_ShapeBasedConcatExpandPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.00012490400331444107
STAT match_ShapeBasedEditDistanceReshapePattern +0 -0 #it=8 maxmatch=6 i=0 - time=0.00016698700346751139
STAT match_ShapeBasedExpandBroadcastMatMulPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.0003718980005942285
STAT match_ShapeBasedExpandBroadcastPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.0003586149941838812
STAT match_ShapeBasedExpandCastWhereSwapPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.00014622800154029392
STAT match_ShapeBasedExpandSwapPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.00030972699823905714
STAT match_ShapeBasedIdentityPattern +0 -0 #it=8 maxmatch=6 i=0 - time=0.00020080499598407187
STAT match_ShapeBasedMatMulToMulPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.000330789993313374
STAT match_ShapeBasedReshapeIsSqueezePattern +0 -0 #it=8 maxmatch=6 i=0 - time=0.00019694200091180392
STAT match_ShapeBasedSameChildrenPattern +0 -0 #it=8 maxmatch=6 i=0 - time=0.00018088100114255212
STAT match_ShapeBasedShapeShapeAddPattern +0 -0 #it=8 maxmatch=6 i=0 - time=0.00025431899848626927
STAT match_ShapeBasedStaticExpandPattern +0 -0 #it=8 maxmatch=6 i=0 - time=0.00017006999769364484
STAT match_ShapedBasedReshapePattern +0 -0 #it=8 maxmatch=6 i=0 - time=0.00017395400209352374
STAT match_SimplifiedLayerNormalizationMulPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.0001540119992569089
STAT match_SimplifiedLayerNormalizationPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.0002338640006200876
STAT match_SkipLayerNormalizationPattern +0 -0 #it=6 maxmatch=2 i=2 - time=0.00014351000572787598
STAT match_SkipSimplifiedLayerNormalizationMulPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.0001363239971396979
STAT match_SkipSimplifiedLayerNormalizationPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.00011566499961190857
STAT match_SliceSlicePattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.00012057999992975965
STAT match_SlicesSplitPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.00012339699969743378
STAT match_SoftmaxCrossEntropyLossCastPattern +0 -0 #it=8 maxmatch=6 i=0 - time=0.003189224993548123
STAT match_SoftmaxGradPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.00012112699550925754
STAT match_SplitConcatPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.00012160499682067893
STAT match_SqueezeAddPattern +0 -0 #it=8 maxmatch=6 i=0 - time=0.0002801240007102024
STAT match_SqueezeBinaryUnsqueezePattern +0 -0 #it=8 maxmatch=6 i=0 - time=0.0001843350000854116
STAT match_SqueezeUnsqueezePattern +0 -0 #it=8 maxmatch=6 i=0 - time=0.00018335199638386257
STAT match_StaticConcatReshapePattern +0 -0 #it=8 maxmatch=6 i=0 - time=0.00016874099674168974
STAT match_Sub1MulPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.00013352900714380667
STAT match_SwapExpandReshapePattern +0 -0 #it=8 maxmatch=6 i=0 - time=0.00016670000695739873
STAT match_SwitchOrderBinaryPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.0003891580090567004
STAT match_SwitchReshapeActivationPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.00018675999672268517
STAT match_TransposeEqualReshapePattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.00018497000201023184
STAT match_TransposeFusedMatMulBPattern +0 -0 #it=1 maxmatch=0 i=0 - time=6.95550006639678e-05
STAT match_TransposeMatMulPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.00030761999732931145
STAT match_TransposeReshapeMatMulPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.00028330699569778517
STAT match_TransposeReshapeTransposePattern +0 -0 #it=8 maxmatch=6 i=0 - time=0.00019186899589840323
STAT match_TransposeTransposePattern +0 -0 #it=8 maxmatch=6 i=0 - time=0.00019036600133404136
STAT match_UnsqueezeEqualPattern +0 -0 #it=6 maxmatch=2 i=0 - time=0.00025403100153198466
STAT match_UnsqueezeReshapePattern +0 -0 #it=8 maxmatch=6 i=0 - time=0.00017220400332007557
STAT match_UnsqueezeUnsqueezePattern +0 -0 #it=8 maxmatch=6 i=0 - time=0.00016572999811614864
STAT remove_duplicated_shape +0 -0 #it=8 maxmatch=0 i=0 - time=4.362199979368597e-05
STAT remove_identity_nodes +9 -15 #it=8 maxmatch=0 i=0 - time=0.001662053993641166
STAT remove_unused +0 -0 #it=8 maxmatch=0 i=0 - time=0.0018001399985223543
--MODEL: 29 nodes, 1 inputs, 1 outputs, 21 initializers--
INPUT: 1 x 7t
INPUT-SEQ: 1 x Falset
OUTPUT: 1 x 1t
OUTPUT-SEQ: 1 x Falset
INIT: 21 x 1t
NODE: 4 x Add
NODE: 1 x Concat
NODE: 2 x Equal
NODE: 2 x Gather
NODE: 11 x MatMul
NODE: 1 x Relu
NODE: 2 x Softmax
NODE: 2 x Where
NODE: 2 x com.microsoft.FusedMatMul
NODE: 2 x com.microsoft.SkipLayerNormalization
--MODEL: 29 nodes, 1 inputs, 1 outputs, 21 initializers--DETAILED--
INPUT: 1 x 7t[1x30]
OUTPUT: 1 x 1t[1x30x16]
INIT: 2 x 1t[1024x16]
INIT: 1 x 1t[128]
INIT: 1 x 1t[128x16]
INIT: 4 x 1t[16]
INIT: 1 x 1t[16x128]
INIT: 6 x 1t[16x16]
INIT: 3 x 1t[1]
INIT: 2 x 1t[30x30]
INIT: 1 x 1t[32x16]
NODE: 1 x Add -SIG- 1t[1x30x128], 1t[128]
NODE: 2 x Add -SIG- 1t[1x30x16], 1t[16]
NODE: 1 x Add -SIG- 1t[1x30x16], 1t[1x30x16]
NODE: 1 x Concat -SIG- 1t[1x30x16], 1t[1x30x16]
NODE: 2 x Equal -SIG- 1t[30x30], 1t[1]
NODE: 2 x Gather -SIG- 1t[1024x16], 7t[1x30]
NODE: 1 x MatMul -SIG- 1t[1x30x128], 1t[128x16]
NODE: 1 x MatMul -SIG- 1t[1x30x16], 1t[16x128]
NODE: 6 x MatMul -SIG- 1t[1x30x16], 1t[16x16]
NODE: 2 x MatMul -SIG- 1t[1x30x30], 1t[1x30x16]
NODE: 1 x MatMul -SIG- 1t[1x30x32], 1t[32x16]
NODE: 1 x Relu -SIG- 1t[1x30x128]
NODE: 2 x Softmax -SIG- 1t[1x30x30]
NODE: 2 x Where -SIG- 9t[30x30], 1t[1], 1t[1x30x30]
NODE: 2 x com.microsoft.FusedMatMul -SIG- 1t[1x30x16], 1t[1x30x16]
NODE: 2 x com.microsoft.SkipLayerNormalization -SIG- 1t[1x30x16], 1t[1x30x16], 1t[16], 1t[16]
[GraphBuilder-MNW.remove_unused] remove_initializer 1:15/21:init1_s_2::RSh12:float32[(1,)]
[GraphBuilder-MNW.optimize] done with 29 nodes in 0.052
opset: domain='' version=18
opset: domain='com.microsoft' version=1
input: name='input_ids' type=dtype('int64') shape=[1, 30]
init: name='init1_s1_3' type=float32 shape=(1,) -- array([-inf], dtype=float32)-- Opset.make_node.1/Small##Opset.make_node.1/Small
init: name='p_decoder_attention_attention_0_query_weight::T10' type=float32 shape=(16, 16)-- GraphBuilder.constant_folding.from/fold(p_decoder_attention_attention_0_query_weight)##p_decoder_attention_attention_0_query_weight/DynamoInterpret.placeholder.1/P(decoder.attention.attention.0.query.weight)
init: name='p_decoder_attention_attention_0_key_weight::T10' type=float32 shape=(16, 16)-- GraphBuilder.constant_folding.from/fold(p_decoder_attention_attention_0_key_weight)##p_decoder_attention_attention_0_key_weight/DynamoInterpret.placeholder.1/P(decoder.attention.attention.0.key.weight)
init: name='p_decoder_attention_attention_0_value_weight::T10' type=float32 shape=(16, 16)-- GraphBuilder.constant_folding.from/fold(p_decoder_attention_attention_0_value_weight)##p_decoder_attention_attention_0_value_weight/DynamoInterpret.placeholder.1/P(decoder.attention.attention.0.value.weight)
init: name='slice_2' type=float32 shape=(30, 30) -- GraphBuilder.constant_folding.from/fold(init7_s1_0,init7_s1_1,init7_s1_30,slice_1)##slice_1/GraphBuilder.constant_folding.from/fold(b_decoder_attention_attention_0_mask,init7_s1_0,init7_s1_30)##b_decoder_attention_attention_0_mask/DynamoInterpret.placeholder.0##init7_s1_0/Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##init7_s1_30/Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##init7_s1_0/Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##init7_s1_30/Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##init7_s1_1/Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape
init: name='init1_s_2::RSh1' type=float32 shape=(1,) -- array([0.], dtype=float32)-- GraphBuilder.constant_folding.from/fold(init1_s_2,init7_s1_1)##init1_s_2/shape_type_compute._cast_inputs.0##shape_type_compute._cast_inputs.0##init7_s1_1/Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape
init: name='p_decoder_attention_attention_1_query_weight::T10' type=float32 shape=(16, 16)-- GraphBuilder.constant_folding.from/fold(p_decoder_attention_attention_1_query_weight)##p_decoder_attention_attention_1_query_weight/DynamoInterpret.placeholder.1/P(decoder.attention.attention.1.query.weight)
init: name='p_decoder_attention_attention_1_key_weight::T10' type=float32 shape=(16, 16)-- GraphBuilder.constant_folding.from/fold(p_decoder_attention_attention_1_key_weight)##p_decoder_attention_attention_1_key_weight/DynamoInterpret.placeholder.1/P(decoder.attention.attention.1.key.weight)
init: name='p_decoder_attention_attention_1_value_weight::T10' type=float32 shape=(16, 16)-- GraphBuilder.constant_folding.from/fold(p_decoder_attention_attention_1_value_weight)##p_decoder_attention_attention_1_value_weight/DynamoInterpret.placeholder.1/P(decoder.attention.attention.1.value.weight)
init: name='slice_4' type=float32 shape=(30, 30) -- GraphBuilder.constant_folding.from/fold(init7_s1_0,init7_s1_1,init7_s1_30,slice_3)##slice_3/GraphBuilder.constant_folding.from/fold(b_decoder_attention_attention_1_mask,init7_s1_0,init7_s1_30)##b_decoder_attention_attention_1_mask/DynamoInterpret.placeholder.0##init7_s1_0/Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##init7_s1_30/Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##init7_s1_0/Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##init7_s1_30/Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##init7_s1_1/Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape
init: name='p_decoder_attention_linear_weight::T10' type=float32 shape=(32, 16)-- GraphBuilder.constant_folding.from/fold(p_decoder_attention_linear_weight)##p_decoder_attention_linear_weight/DynamoInterpret.placeholder.1/P(decoder.attention.linear.weight)
init: name='p_decoder_feed_forward_linear_1_weight::T10' type=float32 shape=(16, 128)-- GraphBuilder.constant_folding.from/fold(p_decoder_feed_forward_linear_1_weight)##p_decoder_feed_forward_linear_1_weight/DynamoInterpret.placeholder.1/P(decoder.feed_forward.linear_1.weight)
init: name='p_decoder_feed_forward_linear_2_weight::T10' type=float32 shape=(128, 16)-- GraphBuilder.constant_folding.from/fold(p_decoder_feed_forward_linear_2_weight)##p_decoder_feed_forward_linear_2_weight/DynamoInterpret.placeholder.1/P(decoder.feed_forward.linear_2.weight)
init: name='init1_s16_' type=float32 shape=(16,) -- LayerNormalizationPattern.apply.scale##LayerNormalizationPattern.apply.scale
init: name='init1_s16_2' type=float32 shape=(16,) -- LayerNormalizationPattern.apply.bias##LayerNormalizationPattern.apply.bias
init: name='embedding.embedding.weight' type=float32 shape=(1024, 16) -- DynamoInterpret.placeholder.1/P(embedding.embedding.weight)
init: name='embedding.pe.weight' type=float32 shape=(1024, 16) -- DynamoInterpret.placeholder.1/P(embedding.pe.weight)
init: name='decoder.attention.linear.bias' type=float32 shape=(16,) -- DynamoInterpret.placeholder.1/P(decoder.attention.linear.bias)
init: name='decoder.feed_forward.linear_1.bias' type=float32 shape=(128,)-- DynamoInterpret.placeholder.1/P(decoder.feed_forward.linear_1.bias)
init: name='decoder.feed_forward.linear_2.bias' type=float32 shape=(16,)-- DynamoInterpret.placeholder.1/P(decoder.feed_forward.linear_2.bias)
Equal(slice_2, init1_s_2::RSh1) -> eq
Gather(embedding.embedding.weight, input_ids) -> embedding
Gather(embedding.pe.weight, input_ids) -> embedding_1
SkipLayerNormalization[com.microsoft](embedding, embedding_1, init1_s16_, init1_s16_2, epsilon=0.00) -> _onx_div_sub_add, unused, unused2, add
MatMul(_onx_div_sub_add, p_decoder_attention_attention_0_query_weight::T10) -> linear
MatMul(_onx_div_sub_add, p_decoder_attention_attention_0_key_weight::T10) -> linear_1
FusedMatMul[com.microsoft](linear, linear_1, alpha=0.25, transA=0, transB=1, transBatchA=0, transBatchB=0) -> _onx_mul_matmul
Where(eq, init1_s1_3, _onx_mul_matmul) -> masked_fill
Softmax(masked_fill, axis=-1) -> softmax
MatMul(_onx_div_sub_add, p_decoder_attention_attention_0_value_weight::T10) -> linear_2
MatMul(softmax, linear_2) -> matmul_1
MatMul(_onx_div_sub_add, p_decoder_attention_attention_1_query_weight::T10) -> linear_3
MatMul(_onx_div_sub_add, p_decoder_attention_attention_1_key_weight::T10) -> linear_4
FusedMatMul[com.microsoft](linear_3, linear_4, alpha=0.25, transA=0, transB=1, transBatchA=0, transBatchB=0) -> _onx_mul_matmul_2
MatMul(_onx_div_sub_add, p_decoder_attention_attention_1_value_weight::T10) -> linear_5
Equal(slice_4, init1_s_2::RSh1) -> eq_1
Where(eq_1, init1_s1_3, _onx_mul_matmul_2) -> masked_fill_1
Softmax(masked_fill_1, axis=-1) -> softmax_1
MatMul(softmax_1, linear_5) -> matmul_3
Concat(matmul_1, matmul_3, axis=-1) -> cat
MatMul(cat, p_decoder_attention_linear_weight::T10) -> _onx_matmul_cat
Add(_onx_matmul_cat, decoder.attention.linear.bias) -> linear_6
SkipLayerNormalization[com.microsoft](linear_6, add, init1_s16_, init1_s16_2, epsilon=0.00) -> _onx_div_sub_add_1, unused3, unused4, add_1
MatMul(_onx_div_sub_add_1, p_decoder_feed_forward_linear_1_weight::T10) -> _onx_matmul_layer_norm_1
Add(_onx_matmul_layer_norm_1, decoder.feed_forward.linear_1.bias) -> linear_7
Relu(linear_7) -> relu
MatMul(relu, p_decoder_feed_forward_linear_2_weight::T10) -> _onx_matmul_relu
Add(_onx_matmul_relu, decoder.feed_forward.linear_2.bias) -> linear_8
Add(linear_8, add_1) -> output_0
output: name='output_0' type=dtype('float32') shape=[1, 30, 16]
Comparison optimized and not optimized?¶
The following tools is trying to match the node and shape inference from two models. If they are not too different, the functions is able to find out the differences. We can use to see which operators were fused into bigger ones only implemented by onnxruntime.
res1, res2, align, dc = compare_onnx_execution(
onx, onx_optimized, verbose=1, cls=ExtendedReferenceEvaluator
)
print("------------")
text = dc.to_str(res1, res2, align)
print(text)
[compare_onnx_execution] generate inputs
[compare_onnx_execution] execute with 1 inputs
[compare_onnx_execution] execute first model
[compare_onnx_execution] got 66 results
[compare_onnx_execution] execute second model
[compare_onnx_execution] got 66 results (first model)
[compare_onnx_execution] got 57 results (second model)
[compare_onnx_execution] compute edit distance
[compare_onnx_execution] got 66 pairs
[compare_onnx_execution] done
------------
001 ~ | INITIA float32 2:256x256 AOCQ b_ | INITIA float32 1:1 ?AAA in
002 - | INITIA float32 2:256x256 AOCQ b_ |
003 - | INITIA int64 1:1 BAAA in |
004 - | INITIA int64 1:1 AAAA in |
005 - | INITIA int64 1:1 EAAA in |
006 ~ | INITIA float32 1:1 ?AAA in | INITIA float32 2:16x16 AAAA p_
007 ~ | INITIA float32 2:16x16 AAAA p_ | INITIA float32 2:16x16 AAAZ p_
008 ~ | INITIA float32 2:16x16 AAAZ p_ | INITIA float32 2:16x16 AAAA p_
009 ~ | INITIA float32 2:16x16 AAAA p_ | INITIA float32 2:30x30 KGSP sl
010 = | INITIA float32 1:1 AAAA in | INITIA float32 1:1 AAAA in
011 ~ | INITIA float32 1:1 AAAA in | INITIA float32 2:16x16 AAAA p_
012 ~ | INITIA float32 2:16x16 AAAA p_ | INITIA float32 2:16x16 AABA p_
013 ~ | INITIA float32 2:16x16 AABA p_ | INITIA float32 2:16x16 AACB p_
014 ~ | INITIA float32 2:16x16 AACB p_ | INITIA float32 2:30x30 KGSP sl
015 = | INITIA float32 2:32x16 AAAA p_ | INITIA float32 2:32x16 AAAA p_
016 = | INITIA float32 2:16x128 VYBV p_ | INITIA float32 2:16x128 VYBV p_
017 = | INITIA float32 2:128x16 CABZ p_ | INITIA float32 2:128x16 CABZ p_
018 = | INITIA float32 1:16 EEEE in | INITIA float32 1:16 EEEE in
019 = | INITIA float32 1:16 AAAA in | INITIA float32 1:16 AAAA in
020 = | INITIA float32 2:1024x16 ACSE em | INITIA float32 2:1024x16 ACSE em
021 = | INITIA float32 2:1024x16 VYQK em | INITIA float32 2:1024x16 VYQK em
022 = | INITIA float32 1:16 AAAA de | INITIA float32 1:16 AAAA de
023 = | INITIA float32 1:128 BAAZ de | INITIA float32 1:128 BAAZ de
024 = | INITIA float32 1:16 AAAA de | INITIA float32 1:16 AAAA de
025 = | INPUT int64 2:1x30 COAD in | INPUT int64 2:1x30 COAD in
026 - | RESULT int64 1:2 ABAA Concat Sl |
027 - | RESULT int64 1:2 EEAA Concat Sl |
028 - | RESULT int64 1:2 AAAA Concat Sl |
029 = | RESULT float32 3:1x30x16 OIOQ Gather em | RESULT float32 3:1x30x16 OIOQ Gather em
030 = | RESULT float32 3:1x30x16 OQQE Gather em | RESULT float32 3:1x30x16 OQQE Gather em
031 ~ | RESULT float32 3:1x30x16 CZEU Add ad | RESULT float32 3:1x30x16 BZDX SkipLayerNormal _o
032 ~ | RESULT float32 3:1x30x16 BZDX LayerNormalizat _o | RESULT float32 3:1x30x1 ZABA SkipLayerNormal un
033 ~ | RESULT float32 3:1x30x16 SQRW MatMul li | RESULT float32 3:1x30x1 GFFE SkipLayerNormal un
034 ~ | RESULT float32 3:1x30x16 WDXZ MatMul li | RESULT float32 3:1x30x16 CZEU SkipLayerNormal ad
035 ~ | RESULT float32 3:1x30x16 BEQG MatMul li | RESULT float32 3:1x30x16 SQRW MatMul li
036 ~ | RESULT float32 3:1x16x30 GWZT Transpose tr | RESULT float32 3:1x30x16 WDXZ MatMul li
037 ~ | RESULT float32 3:1x30x30 WTFV MatMul ma | RESULT float32 3:1x30x30 TEBF FusedMatMul _o
038 ~ | RESULT float32 3:1x30x30 TEBF Mul _o | RESULT float32 3:1x30x16 BEQG MatMul li
039 - | RESULT float32 2:30x30 KGSP Slice sl |
040 = | RESULT bool 2:30x30 HLZC Equal eq | RESULT bool 2:30x30 HLZC Equal eq
041 = | RESULT float32 3:1x30x30 ???? Where ma | RESULT float32 3:1x30x30 ???? Where ma
042 = | RESULT float32 3:1x30x30 IHHH Softmax so | RESULT float32 3:1x30x30 IHHH Softmax so
043 = | RESULT float32 3:1x30x16 BBZA MatMul ma | RESULT float32 3:1x30x16 BBZA MatMul ma
044 = | RESULT float32 3:1x30x16 XAIF MatMul li | RESULT float32 3:1x30x16 XAIF MatMul li
045 = | RESULT float32 3:1x30x16 HCAA MatMul li | RESULT float32 3:1x30x16 HCAA MatMul li
046 ~ | RESULT float32 3:1x30x16 AXIB MatMul li | RESULT float32 3:1x30x30 FUYA FusedMatMul _o
047 ~ | RESULT float32 3:1x16x30 AIYD Transpose tr | RESULT float32 3:1x30x16 AXIB MatMul li
048 ~ | RESULT float32 3:1x30x30 VASB MatMul ma | RESULT bool 2:30x30 HLZC Equal eq
049 ~ | RESULT float32 3:1x30x30 FUYA Mul _o | RESULT float32 3:1x30x30 ???? Where ma
050 ~ | RESULT float32 2:30x30 KGSP Slice sl | RESULT float32 3:1x30x30 IGHH Softmax so
051 - | RESULT bool 2:30x30 HLZC Equal eq |
052 ~ | RESULT float32 3:1x30x30 ???? Where ma | RESULT float32 3:1x30x16 IZBB MatMul ma
053 ~ | RESULT float32 3:1x30x30 IGHH Softmax so | RESULT float32 3:1x30x32 JAAB Concat ca
054 ~ | RESULT float32 3:1x30x16 IZBB MatMul ma | RESULT float32 3:1x30x16 AACB MatMul _o
055 ~ | RESULT float32 3:1x30x32 JAAB Concat ca | RESULT float32 3:1x30x16 WVZY Add li
056 ~ | RESULT float32 3:1x30x16 AACB MatMul _o | RESULT float32 3:1x30x16 CYDX SkipLayerNormal _o
057 ~ | RESULT float32 3:1x30x16 WVZY Add li | RESULT float32 3:1x30x1 ZABA SkipLayerNormal un
058 ~ | RESULT float32 3:1x30x16 XUCS Add ad | RESULT float32 3:1x30x1 HFFE SkipLayerNormal un
059 ~ | RESULT float32 3:1x30x16 CYDX LayerNormalizat _o | RESULT float32 3:1x30x16 XUCS SkipLayerNormal ad
060 = | RESULT float32 3:1x30x128 UZFK MatMul _o | RESULT float32 3:1x30x128 UZFK MatMul _o
061 = | RESULT float32 3:1x30x128 CEMP Add li | RESULT float32 3:1x30x128 CEMP Add li
062 = | RESULT float32 3:1x30x128 GDME Relu re | RESULT float32 3:1x30x128 GDME Relu re
063 = | RESULT float32 3:1x30x16 DFDG MatMul _o | RESULT float32 3:1x30x16 DFDG MatMul _o
064 = | RESULT float32 3:1x30x16 FGFI Add li | RESULT float32 3:1x30x16 FGFI Add li
065 = | RESULT float32 3:1x30x16 CAHA Add ou | RESULT float32 3:1x30x16 CAHA Add ou
066 = | OUTPUT float32 3:1x30x16 CAHA ou | OUTPUT float32 3:1x30x16 CAHA ou
The conversion should handle dynamic shapes as well as the input sequence can be of any length. But that’s a topic for another example.
Total running time of the script: (0 minutes 1.917 seconds)
Related examples
to_onnx and padding one dimension to a mulitple of a constant
to_onnx and a custom operator registered with a function