201: Evaluate DORT Training

It compares DORT to eager mode and onnxrt backend.

To run the script:

python _doc/examples/plot_torch_aot --help

Some helpers

import warnings

try:
    with warnings.catch_warnings():
        warnings.simplefilter("ignore")
        import onnxruntime

        has_cuda = "CUDAExecutionProvider" in onnxruntime.get_available_providers()
except ImportError:
    print("onnxruntime not available.")
    import sys

    sys.exit(0)

import torch._dynamo
import contextlib
import itertools
import os
import gc
import platform

# import pickle
import pprint
import multiprocessing
import time
import cProfile
import pstats
import io
import logging
from pstats import SortKey

import numpy as np
import matplotlib.pyplot as plt
import pandas
import onnx
from onnx_array_api.profiling import profile2graph
import torch
from torch import nn
import torch.nn.functional as F
import experimental_experiment
from experimental_experiment.plotting.memory import memory_peak_plot
from experimental_experiment.ext_test_case import measure_time, get_figure
from experimental_experiment.args import get_parsed_args
from experimental_experiment.memory_peak import start_spying_on
from experimental_experiment.torch_models.training_helper import make_aot_ort
from tqdm import tqdm

has_cuda = has_cuda and torch.cuda.is_available()
logging.disable(logging.ERROR)


def system_info():
    obs = {}
    obs["processor"] = platform.processor()
    obs["cores"] = multiprocessing.cpu_count()
    try:
        obs["cuda"] = 1 if torch.cuda.is_available() else 0
        obs["cuda_count"] = torch.cuda.device_count()
        obs["cuda_name"] = torch.cuda.get_device_name()
        obs["cuda_capa"] = torch.cuda.get_device_capability()
    except (RuntimeError, AssertionError):
        # no cuda
        pass
    return obs


pprint.pprint(system_info())
{'cores': 20,
 'cuda': 1,
 'cuda_capa': (8, 9),
 'cuda_count': 1,
 'cuda_name': 'NVIDIA GeForce RTX 4060 Laptop GPU',
 'processor': 'x86_64'}

Scripts arguments

script_args = get_parsed_args(
    "plot_torch_aot",
    description=__doc__,
    scenarios={
        "small": "small model to test",
        "middle": "55Mb model",
        "large": "1Gb model",
    },
    warmup=5,
    repeat=5,
    repeat1=(1, "repeat for the first iteration"),
    maxtime=(
        2,
        "maximum time to run a model to measure the computation time, "
        "it is 0.1 when scenario is small",
    ),
    expose="scenarios,repeat,repeat1,warmup",
)

if script_args.scenario in (None, "small"):
    script_args.maxtime = 0.1
print(f"scenario={script_args.scenario or 'small'}")
print(f"warmup={script_args.warmup}")
print(f"repeat={script_args.repeat}")
print(f"repeat1={script_args.repeat1}")
print(f"maxtime={script_args.maxtime}")
scenario=small
warmup=5
repeat=5
repeat1=1
maxtime=0.1

The model

A simple model to convert.

class MyModelClass(nn.Module):
    def __init__(self, scenario=script_args.scenario):
        super().__init__()
        if scenario == "middle":
            self.large = False
            self.conv1 = nn.Conv2d(1, 32, 5)
            # self.conv2 = nn.Conv2d(128, 16, 5)
            self.fc1 = nn.Linear(30752, 1024)
            self.fcs = []
            self.fc2 = nn.Linear(1024, 128)
            self.fc3 = nn.Linear(128, 10)
        elif scenario in (None, "small"):
            self.large = False
            self.conv1 = nn.Conv2d(1, 16, 5)
            # self.conv2 = nn.Conv2d(16, 16, 5)
            self.fc1 = nn.Linear(144, 512)
            self.fcs = []
            self.fc2 = nn.Linear(512, 128)
            self.fc3 = nn.Linear(128, 10)
        elif scenario in (None, "large"):
            self.large = True
            self.conv1 = nn.Conv2d(1, 32, 5)
            # self.conv2 = nn.Conv2d(128, 16, 5)
            self.fc1 = nn.Linear(30752, 4096)
            # torch script does not support loops.
            self.fca = nn.Linear(4096, 4096)
            self.fcb = nn.Linear(4096, 4096)
            self.fcc = nn.Linear(4096, 4096)
            self.fcd = nn.Linear(4096, 4096)
            self.fce = nn.Linear(4096, 4096)
            self.fcf = nn.Linear(4096, 4096)
            self.fcg = nn.Linear(4096, 4096)
            self.fch = nn.Linear(4096, 4096)
            self.fci = nn.Linear(4096, 4096)
            # end of the unfolded loop.
            self.fc2 = nn.Linear(4096, 128)
            self.fc3 = nn.Linear(128, 10)
        else:
            raise ValueError(f"Unsupported scenario={scenario!r}.")

    def forward(self, x):
        x = F.max_pool2d(F.relu(self.conv1(x)), (4, 4))
        # x = F.max_pool2d(F.relu(self.conv2(x)), 2)
        x = torch.flatten(x, 1)
        x = F.relu(self.fc1(x))
        if self.large:
            # loop
            x = F.relu(self.fca(x))
            x = F.relu(self.fcb(x))
            x = F.relu(self.fcc(x))
            x = F.relu(self.fcd(x))
            x = F.relu(self.fce(x))
            x = F.relu(self.fcf(x))
            x = F.relu(self.fcg(x))
            x = F.relu(self.fch(x))
            x = F.relu(self.fci(x))
            # end of the loop
        x = F.relu(self.fc2(x))
        y = self.fc3(x)
        return y


def create_model_and_input(scenario=script_args.scenario):
    if scenario == "middle":
        shape = [1, 1, 128, 128]
    elif scenario in (None, "small"):
        shape = [1, 1, 16, 16]
    elif scenario == "large":
        shape = [1, 1, 128, 128]
    else:
        raise ValueError(f"Unsupported scenario={scenario!r}.")
    input_tensor = torch.rand(*shape).to(torch.float32)
    y = torch.rand((1, 10)).to(torch.float32)
    model = MyModelClass(scenario=scenario)
    assert model(input_tensor) is not None
    return model, (input_tensor, y)


def torch_model_size(model):
    size_model = 0
    for param in model.parameters():
        size = param.numel() * torch.finfo(param.data.dtype).bits / 8
        size_model += size
    return size_model


model, input_tensors = create_model_and_input()
model_size = torch_model_size(model)
print(f"model size={model_size / 2 ** 20} Mb")
model size=0.5401992797851562 Mb

Backends

def run(model, tensor_x, tensor_y):
    tensor_x = tensor_x.detach()
    tensor_y = tensor_y.detach()
    for param in model.parameters():
        param.grad = None
    try:
        output = model(tensor_x)
    except Exception as e:
        raise AssertionError(f"issue with {type(tensor_x)}") from e
    loss = F.mse_loss(output, tensor_y)

    # return loss
    def _backward_():
        loss.backward()

    _backward_()
    return loss, (param.grad for param in model.parameters())


def get_torch_eager(model, *args):
    def my_compiler(gm, example_inputs):
        return gm.forward

    with contextlib.redirect_stdout(io.StringIO()):
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            optimized_mod = torch.compile(model, fullgraph=True, backend=my_compiler)
            assert run(optimized_mod, *args)
            return optimized_mod


def get_torch_default(model, *args):
    with contextlib.redirect_stdout(io.StringIO()):
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            optimized_mod = torch.compile(model, fullgraph=True, mode="reduce-overhead")
            assert run(optimized_mod, *args)
            return optimized_mod


def get_torch_dort(model, *args):
    with contextlib.redirect_stdout(io.StringIO()):
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            local_aot_ort, _ = make_aot_ort(dynamic=True, rewrite=True)
            optimized_mod = torch.compile(model, backend=local_aot_ort, fullgraph=True)
            run(optimized_mod, *args)
            assert run(optimized_mod, *args)
            return optimized_mod

Let’s check they are working.

export_functions = [
    get_torch_eager,
    get_torch_default,
    get_torch_dort,
]

exporters = {f.__name__.replace("get_", ""): f for f in export_functions}

supported_exporters = {}
for k, v in exporters.items():
    print(f"run function {k}")
    filename = f"plot_torch_aot_{k}.onnx"
    torch._dynamo.reset()
    model, input_tensors = create_model_and_input()
    try:
        run(model, *input_tensors)
    except Exception as e:
        print(f"skipped due to {str(e)[:1000]}")  # noqa: F821
        continue
    supported_exporters[k] = v
    del model
    gc.collect()
    time.sleep(1)
run function torch_eager
run function torch_default
run function torch_dort

Compile and Memory

def flatten(ps):
    obs = ps["cpu"].to_dict(unit=2**20)
    if "gpus" in ps:
        for i, g in enumerate(ps["gpus"]):
            for k, v in g.to_dict(unit=2**20).items():
                obs[f"gpu{i}_{k}"] = v
    return obs


data = []

for k in supported_exporters:
    print(f"run compile for memory {k} on cpu")
    filename = f"plot_torch_aot_{k}.onnx"
    if has_cuda:
        torch.cuda.set_device(0)
    torch._dynamo.reset()
    # CPU
    model, input_tensors = create_model_and_input()
    stat = start_spying_on(cuda=1 if has_cuda else 0)
    run(model, *input_tensors)
    obs = flatten(stat.stop())
    print("done.")
    obs.update(dict(export=k, p="cpu"))
    data.append(obs)
    del model
    gc.collect()
    time.sleep(1)

    if not has_cuda:
        continue
    torch._dynamo.reset()
    # CUDA
    model, input_tensors = create_model_and_input()
    model = model.cuda()
    input_tensors = [i.cuda() for i in input_tensors]
    print(f"run compile for memory {k} on cuda")
    stat = start_spying_on(cuda=1 if has_cuda else 0)
    run(model, *input_tensors)
    obs = flatten(stat.stop())
    print("done.")
    obs.update(dict(export=k, p="cuda"))
    data.append(obs)
    del model
    gc.collect()
    time.sleep(1)
run compile for memory torch_eager on cpu
done.
run compile for memory torch_eager on cuda
done.
run compile for memory torch_default on cpu
done.
run compile for memory torch_default on cuda
done.
run compile for memory torch_dort on cpu
done.
run compile for memory torch_dort on cuda
done.

The result.

df1 = pandas.DataFrame(data)
df1.to_csv("plot_torch_aot_1_memory.csv", index=False)
df1.to_excel("plot_torch_aot_1_memory.xlsx", index=False)
print(df1)

for p in ["cpu", "cuda"]:
    if not has_cuda and p == "cuda":
        continue
    ax = memory_peak_plot(
        df1[df1["p"] == p],
        key=("export",),
        bars=[model_size * i / 2**20 for i in range(1, 5)],
        suptitle=f"Memory Consumption of the Compilation on {p}\n"
        f"model size={model_size / 2**20:1.0f} Mb",
    )
    get_figure(ax).savefig(f"plot_torch_aot_1_memory_{p}.png")
  • Memory Consumption of the Compilation on cpu model size=1 Mb, Memory peak (Mb), Memory peak - memory begin (Mb), Memory average - memory begin (Mb), GPU Memory peak (Mb), GPU Memory peak - memory begin (Mb), GPU Memory average - memory begin (Mb)
  • Memory Consumption of the Compilation on cuda model size=1 Mb, Memory peak (Mb), Memory peak - memory begin (Mb), Memory average - memory begin (Mb), GPU Memory peak (Mb), GPU Memory peak - memory begin (Mb), GPU Memory average - memory begin (Mb)
          peak         mean  n        begin          end    gpu0_peak    gpu0_mean  gpu0_n   gpu0_begin     gpu0_end         export     p
0  6214.968750  6213.976562  4  6214.968750  6212.984375  1527.617188  1527.617188       4  1527.617188  1527.617188    torch_eager   cpu
1  6215.484375  6214.239844  5  6212.988281  6215.484375  1555.617188  1548.417187       5  1527.617188  1555.617188    torch_eager  cuda
2  6215.488281  6215.478516  4  6215.480469  6215.480469  1555.617188  1555.617188       4  1555.617188  1555.617188  torch_default   cpu
3  6215.937500  6215.708984  2  6215.480469  6215.937500  1555.617188  1555.617188       2  1555.617188  1555.617188  torch_default  cuda
4  6217.917969  6217.253906  6  6217.917969  6217.917969  1555.617188  1555.617188       6  1555.617188  1555.617188     torch_dort   cpu
5  6215.937500  6215.937500  2  6215.937500  6215.937500  1555.617188  1555.617188       2  1555.617188  1555.617188     torch_dort  cuda

dort first iteration speed

data = []

for k in supported_exporters:
    print(f"run dort cpu {k}: {script_args.repeat1}")
    times = []
    for _ in range(int(script_args.repeat1)):
        model, input_tensors = create_model_and_input()
        torch._dynamo.reset()
        begin = time.perf_counter()
        run(model, *input_tensors)
        duration = time.perf_counter() - begin
        times.append(duration)
        del model
        gc.collect()
        time.sleep(1)

    print(f"done: {times[-1]}")
    data.append(
        dict(
            export=k,
            time=np.mean(times),
            min=min(times),
            max=max(times),
            first=times[0],
            last=times[-1],
            std=np.std(times),
            p="cpu",
        )
    )

    if not has_cuda:
        continue

    print(f"run dort cuda {k}: {script_args.repeat1}")
    times = []
    for i in range(int(script_args.repeat1)):
        model, input_tensors = create_model_and_input()
        model = model.cuda()
        input_tensors = [i.cuda() for i in input_tensors]
        torch._dynamo.reset()
        begin = time.perf_counter()
        run(model, *input_tensors)
        duration = time.perf_counter() - begin
        times.append(duration)
        del model
        gc.collect()
        time.sleep(1)

    print(f"done: {times[-1]}")
    data.append(
        dict(
            export=k,
            time=np.mean(times),
            min=min(times),
            max=max(times),
            first=times[0],
            last=times[-1],
            std=np.std(times),
            p="cuda",
        )
    )
run dort cpu torch_eager: 1
done: 0.013733271000091918
run dort cuda torch_eager: 1
done: 0.003229819005355239
run dort cpu torch_default: 1
done: 0.006443742000556085
run dort cuda torch_default: 1
done: 0.0037006040001870133
run dort cpu torch_dort: 1
done: 0.009630859000026248
run dort cuda torch_dort: 1
done: 0.0032553259952692315

The result.

df1 = pandas.DataFrame(data)
df1.to_csv("plot_torch_aot_1_time.csv", index=False)
df1.to_excel("plot_torch_aot_1_time.xlsx", index=False)
print(df1)

fig, ax = plt.subplots(1, 1)
dfi = df1[["export", "p", "time", "std"]].set_index(["export", "p"])
dfi["time"].plot.bar(ax=ax, title="Compilation time", yerr=dfi["std"], rot=30)
fig.tight_layout()
fig.savefig("plot_torch_aot_1_time.png")
Compilation time
          export      time       min       max     first      last  std     p
0    torch_eager  0.013733  0.013733  0.013733  0.013733  0.013733  0.0   cpu
1    torch_eager  0.003230  0.003230  0.003230  0.003230  0.003230  0.0  cuda
2  torch_default  0.006444  0.006444  0.006444  0.006444  0.006444  0.0   cpu
3  torch_default  0.003701  0.003701  0.003701  0.003701  0.003701  0.0  cuda
4     torch_dort  0.009631  0.009631  0.009631  0.009631  0.009631  0.0   cpu
5     torch_dort  0.003255  0.003255  0.003255  0.003255  0.003255  0.0  cuda

Compilation Profiling

def clean_text(text):
    pathes = [
        os.path.abspath(os.path.normpath(os.path.join(os.path.dirname(torch.__file__), ".."))),
        os.path.abspath(os.path.normpath(os.path.join(os.path.dirname(onnx.__file__), ".."))),
        os.path.abspath(
            os.path.normpath(
                os.path.join(os.path.dirname(experimental_experiment.__file__), "..")
            )
        ),
    ]
    for p in pathes:
        text = text.replace(p, "")
    text = text.replace("experimental_experiment", "experimental_experiment".upper())
    return text


def profile_function(name, export_function, with_args=True, verbose=False, suffix="export"):
    if verbose:
        print(f"profile {name}: {export_function}")
    if with_args:
        model, input_tensors = create_model_and_input()
        export_function(model, input_tensors)
        pr = cProfile.Profile()
        pr.enable()
        for _ in range(int(script_args.repeat1)):
            export_function(model, input_tensors)
        pr.disable()
    else:
        pr = cProfile.Profile()
        pr.enable()
        for _ in range(int(script_args.repeat1)):
            export_function()
        pr.disable()
    s = io.StringIO()
    sortby = SortKey.CUMULATIVE
    ps = pstats.Stats(pr, stream=s).sort_stats(sortby)
    ps.print_stats()
    # with open(f"plot_torch_aot_profile_{name}_{suffix}.pickle", "wb") as f:
    #     pickle.dump(ps, f)

    raw = s.getvalue()
    text = "\n".join(raw.split("\n")[:200])
    if verbose:
        print(text)
    with open(f"plot_torch_aot_profile_{name}_{suffix}.txt", "w") as f:
        f.write(raw)

    root, nodes = profile2graph(ps, clean_text=clean_text)
    text = root.to_text()
    with open(f"plot_torch_aot_profile_{name}_{suffix}_h.txt", "w") as f:
        f.write(text)
    if verbose:
        print("done.")


model, input_tensors = create_model_and_input()


def function_to_profile(model=model, input_tensors=input_tensors):
    return get_torch_dort(model, *input_tensors)


profile_function("dort", function_to_profile, verbose=True, suffix="1")
profile dort: <function function_to_profile at 0x7f62dc3d9b20>
         1646076 function calls (1606424 primitive calls) in 1.458 seconds

   Ordered by: cumulative time

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
     13/8    0.000    0.000    0.566    0.071 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py:878(call_function)
     16/5    0.000    0.000    0.557    0.111 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/lazy.py:166(realize_and_forward)
        1    0.000    0.000    0.438    0.438 /home/xadupre/github/experimental-experiment/experimental_experiment/torch_models/training_helper.py:7(make_aot_ort)
        1    0.000    0.000    0.438    0.438 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/onnxruntime.py:763(__init__)
        1    0.000    0.000    0.390    0.390 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/_exporter_legacy.py:297(__init__)
        1    0.000    0.000    0.263    0.263 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/_exporter_legacy.py:90(__init__)
        1    0.001    0.001    0.263    0.263 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/_exporter_legacy.py:114(_initiate_registry_from_torchlib)
        1    0.005    0.005    0.260    0.260 /home/xadupre/github/onnxscript/onnxscript/_framework_apis/torch_2_5.py:99(get_torchlib_ops)
      184    0.001    0.000    0.253    0.001 /home/xadupre/github/onnxscript/onnxscript/values.py:640(function_ir)
      128    0.053    0.000    0.241    0.002 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/functional_tensor.py:352(__torch_dispatch__)
  593/496    0.001    0.000    0.139    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_ops.py:721(__call__)
        1    0.001    0.001    0.127    0.127 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/fx/decomposition_table.py:73(create_onnx_friendly_decomposition_table)
       82    0.000    0.000    0.115    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/interpreter.py:290(call_function)
      184    0.001    0.000    0.099    0.001 /home/xadupre/github/onnxscript/onnxscript/_internal/ast_utils.py:16(get_src_and_ast)
  591/586    0.006    0.000    0.098    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:1788(dispatch)
  297/276    0.002    0.000    0.097    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:1329(__torch_dispatch__)
        2    0.019    0.009    0.096    0.048 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/fx/decomposition_table.py:14(_create_onnx_supports_op_overload_table)
      212    0.002    0.000    0.090    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:1348(_cached_dispatch_impl)
  420/380    0.002    0.000    0.088    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:1231(__torch_function__)
    69/54    0.003    0.000    0.081    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:762(proxy_call)
   103/35    0.001    0.000    0.079    0.002 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py:935(step)
      184    0.000    0.000    0.079    0.000 /home/xadupre/github/onnxscript/onnxscript/converter.py:1463(translate_function_signature)
      184    0.005    0.000    0.078    0.000 /home/xadupre/github/onnxscript/onnxscript/converter.py:1378(_translate_function_signature_common)
187730/182143    0.036    0.000    0.077    0.000 {built-in method builtins.isinstance}
       13    0.000    0.000    0.074    0.006 {built-in method torch._to_functional_tensor}
        1    0.000    0.000    0.073    0.073 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/export/decomp_utils.py:125(items)
        1    0.000    0.000    0.073    0.073 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/export/decomp_utils.py:142(_materialize_if_needed)
        1    0.000    0.000    0.073    0.073 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/export/decomp_utils.py:129(materialize)
        1    0.000    0.000    0.073    0.073 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_export/utils.py:1088(_collect_all_valid_cia_ops)
       23    0.001    0.000    0.072    0.003 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_export/utils.py:1071(_collect_all_valid_cia_ops_for_namespace)
     12/6    0.000    0.000    0.072    0.012 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py:653(wrapper)
      184    0.005    0.000    0.071    0.000 /usr/lib/python3.12/inspect.py:1606(getclosurevars)
     12/6    0.000    0.000    0.071    0.012 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py:2341(CALL)
     12/6    0.000    0.000    0.070    0.012 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py:2300(_call)
      185    0.000    0.000    0.070    0.000 /usr/lib/python3.12/inspect.py:1279(getsource)
      185    0.006    0.000    0.069    0.000 /usr/lib/python3.12/inspect.py:1258(getsourcelines)
       23    0.025    0.001    0.065    0.003 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_export/utils.py:1006(_materialize_cpp_cia_ops)
     8459    0.025    0.000    0.064    0.000 /usr/lib/python3.12/dis.py:434(_get_instructions_bytes)
        1    0.000    0.000    0.063    0.063 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_functorch/partitioners.py:1702(min_cut_rematerialization_partition)
       14    0.000    0.000    0.057    0.004 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:2594(from_tensor)
      314    0.005    0.000    0.057    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/utils/_pytree.py:1152(tree_map_only)
       28    0.000    0.000    0.056    0.002 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py:1799(LOAD_ATTR)
        4    0.000    0.000    0.054    0.014 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/nn_module.py:851(call_function)
      184    0.015    0.000    0.054    0.000 /usr/lib/python3.12/inspect.py:1239(getblock)
    27/14    0.001    0.000    0.054    0.004 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:331(from_real_tensor)
        2    0.000    0.000    0.053    0.027 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/onnxruntime.py:1099(compile)
       28    0.000    0.000    0.053    0.002 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py:1792(_load_attr)
        2    0.000    0.000    0.053    0.026 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/passes/infra/partitioner.py:384(partition_and_fuse)
      5/4    0.000    0.000    0.053    0.013 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/functions.py:293(call_function)
      5/4    0.000    0.000    0.053    0.013 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/functions.py:112(call_function)
      5/4    0.000    0.000    0.049    0.012 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py:900(inline_user_function_return)
      5/4    0.000    0.000    0.049    0.012 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py:3071(inline_call)
        2    0.000    0.000    0.049    0.025 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/passes/infra/partitioner.py:297(fuse_partitions)
        2    0.000    0.000    0.049    0.025 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/passes/utils/fuser_utils.py:250(fuse_by_partitions)
      5/4    0.000    0.000    0.049    0.012 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py:3108(inline_call_)
30179/29739    0.010    0.000    0.048    0.000 {built-in method builtins.next}
       12    0.000    0.000    0.048    0.004 /home/xadupre/github/onnxscript/onnxscript/rewriter/__init__.py:28(rewrite)
7569/1816    0.010    0.000    0.048    0.000 /home/xadupre/github/onnxscript/onnxscript/type_annotation.py:131(is_value_type)
        8    0.000    0.000    0.046    0.006 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/fx/_pass.py:240(run)
      590    0.003    0.000    0.045    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph.py:1111(create_node)
    16630    0.006    0.000    0.045    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/_exporter_legacy.py:199(is_registered_op)
        4    0.000    0.000    0.045    0.011 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/fx/passes/type_promotion.py:1696(_run)
       12    0.000    0.000    0.043    0.004 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph.py:1569(python_code)
      198    0.001    0.000    0.043    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:1722(_output_from_cache_entry)
        1    0.000    0.000    0.042    0.042 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/backends/common.py:52(_wrapped_bw_compiler)
      202    0.004    0.000    0.042    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:1656(_get_output_tensor_from_cache_entry)
    16689    0.009    0.000    0.040    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/_exporter_legacy.py:177(get_op_functions)
       86    0.000    0.000    0.039    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/fx/passes/type_promotion.py:1601(run_node)
      397    0.001    0.000    0.039    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph.py:1500(node_copy)
  5895/50    0.003    0.000    0.038    0.001 /home/xadupre/github/onnxscript/onnxscript/ir/serde.py:94(wrapper)
     12/9    0.000    0.000    0.037    0.004 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/nn/functional.py:1693(relu)
     1569    0.037    0.000    0.037    0.000 {built-in method builtins.compile}
        9    0.000    0.000    0.036    0.004 {built-in method torch.relu}
       12    0.000    0.000    0.035    0.003 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph.py:1646(_python_code)
     6246    0.009    0.000    0.035    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/node.py:869(__setattr__)
       12    0.003    0.000    0.035    0.003 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph.py:408(_gen_python_code)
        4    0.000    0.000    0.035    0.009 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/overrides.py:1669(handle_torch_function)
    26790    0.018    0.000    0.034    0.000 /usr/lib/python3.12/tokenize.py:569(_generate_tokens_from_c_tokenizer)
      212    0.001    0.000    0.033    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:1391(_cache_key)
    31/29    0.000    0.000    0.032    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/builtin.py:987(call_function)
        8    0.000    0.000    0.032    0.004 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph_module.py:792(recompile)
       75    0.000    0.000    0.032    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/base.py:445(build)
      141    0.000    0.000    0.031    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/lazy.py:61(realize)
      6/2    0.000    0.000    0.031    0.016 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/fx/fx_onnx_interpreter.py:393(run_node)
      3/2    0.000    0.000    0.031    0.016 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/fx/fx_onnx_interpreter.py:556(placeholder)
      3/2    0.000    0.000    0.031    0.016 /home/xadupre/github/onnxscript/onnxscript/function_libs/torch_lib/graph_building/_graph_building_torch.py:613(add_input)
1308/1164    0.001    0.000    0.031    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/base.py:184(__instancecheck__)
       29    0.000    0.000    0.031    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/builtin.py:850(builtin_dispatch)
  133/104    0.001    0.000    0.031    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/nn/modules/module.py:1932(__setattr__)
       28    0.000    0.000    0.031    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/builtin.py:770(call_self_handler)
     1022    0.001    0.000    0.031    0.000 /home/xadupre/github/onnxscript/onnxscript/type_annotation.py:172(is_valid_type)
       28    0.000    0.000    0.031    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/builtin.py:1632(call_getattr)
       75    0.000    0.000    0.031    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/builder.py:369(__call__)
        4    0.000    0.000    0.030    0.008 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/passes/utils/fuser_utils.py:95(fuse_as_graphmodule)
       13    0.000    0.000    0.030    0.002 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph_module.py:548(graph)
2929/2710    0.002    0.000    0.030    0.000 /usr/lib/python3.12/contextlib.py:132(__enter__)
  804/219    0.004    0.000    0.030    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:1467(_prep_args_for_hash)
     67/2    0.000    0.000    0.030    0.015 /home/xadupre/github/onnxscript/onnxscript/function_libs/torch_lib/graph_building/_graph_building_torch.py:270(_wrap_torch_value_to_tensor)
      4/2    0.115    0.029    0.030    0.015 /home/xadupre/github/onnxscript/onnxscript/function_libs/torch_lib/graph_building/_graph_building_torch.py:199(dtype)
      4/2    0.115    0.029    0.030    0.015 /home/xadupre/github/onnxscript/onnxscript/function_libs/torch_lib/graph_building/_graph_building_torch.py:170(shape)
    51/35    0.000    0.000    0.030    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/nn_module.py:1015(var_getattr)
    99282    0.028    0.000    0.030    0.000 {built-in method builtins.getattr}
       31    0.000    0.000    0.030    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/meta_utils.py:1794(__call__)
       40    0.001    0.000    0.029    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/builder.py:528(_wrap)
     12/9    0.001    0.000    0.029    0.003 {built-in method torch._C._nn.linear}
11595/5368    0.015    0.000    0.029    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/node.py:899(map_aggregate)
    35/19    0.000    0.000    0.029    0.002 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/user_defined.py:1019(var_getattr)
       31    0.001    0.000    0.028    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/meta_utils.py:836(meta_tensor)
      167    0.002    0.000    0.028    0.000 /home/xadupre/github/onnxscript/onnxscript/optimizer/_legacy/constant_folding.py:165(process_node)
       36    0.000    0.000    0.028    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/lazy.py:20(realize)
       10    0.000    0.000    0.027    0.003 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph_module.py:437(__init__)
        4    0.001    0.000    0.027    0.007 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_functorch/partitioners.py:157(_extract_graph_with_inputs_outputs)
        4    0.000    0.000    0.027    0.007 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_functorch/aot_autograd.py:500(convert)
       18    0.000    0.000    0.025    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/utils.py:2072(wrap_fake_exception)
      614    0.003    0.000    0.025    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/node.py:380(prepend)
     3735    0.003    0.000    0.024    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/node.py:890(map_arg)
      112    0.001    0.000    0.024    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/proxy.py:209(create_proxy)
       20    0.000    0.000    0.024    0.001 /home/xadupre/github/onnxscript/onnxscript/ir/serde.py:461(deserialize_model)
      184    0.000    0.000    0.023    0.000 /usr/lib/python3.12/ast.py:34(parse)
       31    0.001    0.000    0.023    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/autograd/grad_mode.py:273(__exit__)
      632    0.001    0.000    0.023    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/utils/_pytree.py:874(tree_flatten)
    42011    0.014    0.000    0.023    0.000 {method 'get' of 'dict' objects}
        9    0.000    0.000    0.023    0.003 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/builder.py:1533(wrap_tensor)
        1    0.000    0.000    0.022    0.022 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_functorch/partitioners.py:289(_extract_fwd_bwd_modules)
       61    0.000    0.000    0.022    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:594(track_tensor_tree)
       20    0.001    0.000    0.021    0.001 /home/xadupre/github/onnxscript/onnxscript/ir/serde.py:551(_deserialize_graph)
    76/61    0.000    0.000    0.021    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:616(wrap_with_proxy)
       12    0.000    0.000    0.021    0.002 /home/xadupre/github/onnxscript/onnxscript/rewriter/pattern.py:1500(apply_to_model)
 1973/632    0.006    0.000    0.021    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/utils/_pytree.py:882(helper)
       12    0.001    0.000    0.020    0.002 /home/xadupre/github/onnxscript/onnxscript/rewriter/pattern.py:1467(_apply_to_graph_or_function)
        9    0.000    0.000    0.020    0.002 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/torch.py:876(call_function)
     9993    0.009    0.000    0.020    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/fx/registration.py:55(from_qualified_name)
  358/272    0.010    0.000    0.020    0.000 {built-in method torch._ops.prim.}
     7569    0.005    0.000    0.020    0.000 /home/xadupre/github/onnxscript/onnxscript/type_annotation.py:123(_is_tensor_type)
       20    0.000    0.000    0.019    0.001 /home/xadupre/github/onnxscript/onnxscript/optimizer/_remove_unused_function.py:64(remove_unused_functions)
      389    0.003    0.000    0.019    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph.py:634(emit_node)
      794    0.000    0.000    0.018    0.000 /home/xadupre/github/onnxscript/onnxscript/type_annotation.py:168(is_attr_type)
     2553    0.001    0.000    0.018    0.000 /home/xadupre/github/onnxscript/onnxscript/rewriter/pattern.py:1309(try_rewrite)
      114    0.001    0.000    0.016    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/proxy.py:143(create_node)
       24    0.000    0.000    0.016    0.001 /home/xadupre/github/onnxscript/onnxscript/optimizer/_legacy/_simple_function_folding.py:30(visit_model)
        4    0.000    0.000    0.016    0.004 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph_module.py:908(print_readable)
        4    0.000    0.000    0.016    0.004 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph_module.py:297(_print_readable)
    26607    0.009    0.000    0.016    0.000 /usr/lib/python3.12/collections/__init__.py:447(_make)
        9    0.000    0.000    0.016    0.002 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/builder.py:2833(wrap_to_fake_tensor_and_record)
        4    0.000    0.000    0.015    0.004 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/passes/utils/common.py:27(lift_subgraph_as_module)
      448    0.001    0.000    0.015    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/utils/_pytree.py:1101(wrapped)
     1377    0.002    0.000    0.015    0.000 /home/xadupre/github/onnxscript/onnxscript/converter.py:451(_eval_constant_expr)
       20    0.000    0.000    0.015    0.001 /home/xadupre/github/onnxscript/onnxscript/ir/serde.py:988(serialize_model)
       20    0.000    0.000    0.015    0.001 /home/xadupre/github/onnxscript/onnxscript/ir/serde.py:992(serialize_model_into)
   120/13    0.001    0.000    0.015    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/interpreter.py:212(run_node)
2929/2710    0.002    0.000    0.015    0.000 /usr/lib/python3.12/contextlib.py:141(__exit__)
        9    0.000    0.000    0.015    0.002 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/builder.py:2870(<lambda>)
       20    0.001    0.000    0.015    0.001 /home/xadupre/github/onnxscript/onnxscript/ir/serde.py:1153(serialize_graph_into)
    65543    0.015    0.000    0.015    0.000 {method 'split' of 'str' objects}
    16689    0.006    0.000    0.015    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/fx/registration.py:45(from_name_parts)
       18    0.000    0.000    0.015    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/builder.py:2151(wrap_fx_proxy)
    17035    0.012    0.000    0.015    0.000 /usr/lib/python3.12/dis.py:623(_unpack_opargs)
       18    0.000    0.000    0.015    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/builder.py:2224(wrap_fx_proxy_cls)
     6903    0.011    0.000    0.014    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph.py:914(__contains__)
        4    0.000    0.000    0.014    0.004 /home/xadupre/github/onnxscript/onnxscript/rewriter/onnxruntime/__init__.py:28(rewrite)
      566    0.001    0.000    0.014    0.000 /home/xadupre/github/onnxscript/onnxscript/_legacy_ir/visitor.py:557(process_node)
      317    0.005    0.000    0.014    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:678(__new__)
     8045    0.004    0.000    0.014    0.000 /home/xadupre/github/onnxscript/onnxscript/type_annotation.py:70(_remove_annotation)
      4/3    0.000    0.000    0.014    0.005 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_jit_internal.py:614(fn)
      4/3    0.000    0.000    0.014    0.005 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/nn/functional.py:807(_max_pool2d)
     2074    0.001    0.000    0.014    0.000 /home/xadupre/github/onnxscript/onnxscript/rewriter/pattern.py:1194(match)
        1    0.000    0.000    0.014    0.014 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_functorch/partitioners.py:545(reordering_to_mimic_autograd_engine)
      331    0.003    0.000    0.014    0.000 /home/xadupre/github/onnxscript/onnxscript/ir/serde.py:883(_deserialize_node)
      261    0.004    0.000    0.014    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:954(_flatten_into)
        2    0.000    0.000    0.014    0.007 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/metrics_context.py:37(__exit__)
        2    0.000    0.000    0.014    0.007 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/utils.py:1010(record_compilation_metrics)
        3    0.000    0.000    0.014    0.005 {built-in method torch.max_pool2d}
   887/42    0.002    0.000    0.013    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/utils/_stats.py:15(wrapper)
  813/669    0.004    0.000    0.013    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/recording.py:238(wrapper)
       31    0.002    0.000    0.013    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/autograd/grad_mode.py:269(__enter__)
        2    0.001    0.000    0.013    0.006 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/utils.py:969(_scrubbed_inductor_config_for_logging)
        9    0.000    0.000    0.013    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/builder.py:2308(_wrap_fx_proxy)
   587/42    0.001    0.000    0.013    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:1263(__torch_dispatch__)
       16    0.000    0.000    0.013    0.001 /home/xadupre/github/onnxscript/onnxscript/optimizer/_legacy/_simple_function_folding.py:204(inline_simple_functions)
       74    0.001    0.000    0.012    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:487(set_meta)
       59    0.000    0.000    0.012    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/fx/onnxfunction_dispatcher.py:96(dispatch)
      191    0.004    0.000    0.012    0.000 /usr/lib/python3.12/dis.py:647(findlabels)
     6279    0.012    0.000    0.012    0.000 {built-in method builtins.setattr}
      261    0.003    0.000    0.012    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:974(extract_tensor_metadata)
111484/111371    0.011    0.000    0.011    0.000 {built-in method builtins.len}
       14    0.000    0.000    0.011    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:1974(_dispatch_impl)
    216/2    0.003    0.000    0.011    0.006 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/diagnostics/infra/decorator.py:66(wrapper)
      836    0.002    0.000    0.011    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/node.py:576(__update_args_kwargs)
      4/3    0.000    0.000    0.011    0.004 {built-in method torch.conv2d}
      604    0.003    0.000    0.011    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/node.py:243(__init__)
        9    0.000    0.000    0.011    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/utils.py:2468(get_fake_value)
       15    0.003    0.000    0.011    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph.py:1706(lint)
    48/40    0.001    0.000    0.011    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_logging/_internal.py:1156(trace_structured)
        7    0.000    0.000    0.011    0.002 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph.py:1815(eliminate_dead_code)
        1    0.000    0.000    0.011    0.011 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_functorch/partitioners.py:1465(choose_saved_values_set)
done.

Benchmark exported models with ORT

def benchmark(shape):
    data = []
    data_mem_first_run = []
    data_mem_run = []
    confs = list(
        itertools.product(
            export_functions,
            ["CPU", "CUDA"],
        )
    )
    loop = tqdm(confs)
    print(f"number of experiments: {len(loop)}")
    for export_fct, p in loop:
        name = export_fct.__name__.replace("get_torch_", "")
        obs = {}  # system_info()
        obs["name"] = name
        obs["compute"] = p
        obs["export"] = name

        model, input_tensors = create_model_and_input()
        if p == "CUDA":
            if not has_cuda:
                continue
            model = model.cuda()
            input_tensors = [i.cuda() for i in input_tensors]
        try:
            exported_model = export_fct(model, *input_tensors)
        except Exception as e:
            obs["error"] = str(e)
            data.append(obs)
            continue

        def call_model(
            export_fct=export_fct,
            exported_model=exported_model,
            input_tensors=input_tensors,
        ):
            res = run(exported_model, *input_tensors)
            return res

        stat = start_spying_on(cuda=1 if has_cuda else 0)
        try:
            call_model()
        except Exception as e:
            loop.set_description(f"ERROR-run: {name} {e}")
            obs.update({"error": e, "step": "load"})
            data.append(obs)
            stat.stop()
            continue
        memobs = flatten(stat.stop())
        memobs.update(obs)
        data_mem_first_run.append(memobs)

        # memory consumption
        stat = start_spying_on(cuda=1 if has_cuda else 0)
        for _ in range(0, script_args.warmup):
            call_model()
        memobs = flatten(stat.stop())
        memobs.update(obs)
        data_mem_run.append(memobs)

        obs.update(
            measure_time(
                call_model,
                max_time=script_args.maxtime,
                repeat=script_args.repeat,
                number=1,
            )
        )

        profile_function(name, call_model, with_args=False, suffix=f"run_{p}")

        loop.set_description(f"{obs['average']} {name} {p}")
        data.append(obs)
        del model
        del exported_model
        gc.collect()
        time.sleep(1)

    df = pandas.DataFrame(data)
    df.to_csv("plot_torch_aot_ort_time.csv", index=False)
    df.to_excel("plot_torch_aot_ort_time.xlsx", index=False)
    dfmemr = pandas.DataFrame(data_mem_run)
    dfmemr.to_csv("plot_torch_aot_ort_run_mem.csv", index=False)
    dfmemr.to_excel("plot_torch_aot_ort_run_mem.xlsx", index=False)
    dfmemfr = pandas.DataFrame(data_mem_first_run)
    dfmemfr.to_csv("plot_torch_aot_ort_first_run_mem.csv", index=False)
    dfmemfr.to_excel("plot_torch_aot_ort_first_run_mem.xlsx", index=False)
    return df, dfmemfr, dfmemr


df, dfmemfr, dfmemr = benchmark(list(input_tensors[0].shape))
print(df)
  0%|          | 0/6 [00:00<?, ?it/s]number of experiments: 6

0.00794258526681612 eager CPU:   0%|          | 0/6 [00:00<?, ?it/s]
0.00794258526681612 eager CPU:  17%|█▋        | 1/6 [00:02<00:10,  2.09s/it]
0.0016601794712438151 eager CUDA:  17%|█▋        | 1/6 [00:02<00:10,  2.09s/it]
0.0016601794712438151 eager CUDA:  33%|███▎      | 2/6 [00:03<00:07,  1.95s/it]
0.003066049212065991 default CPU:  33%|███▎      | 2/6 [00:10<00:07,  1.95s/it]
0.003066049212065991 default CPU:  50%|█████     | 3/6 [00:11<00:13,  4.48s/it]
0.0009188867391734992 default CUDA:  50%|█████     | 3/6 [00:14<00:13,  4.48s/it]
0.0009188867391734992 default CUDA:  67%|██████▋   | 4/6 [00:15<00:08,  4.49s/it]/home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_functorch/_aot_autograd/utils.py:130: UserWarning: Your compiler for AOTAutograd is returning a function that doesn't take boxed arguments. Please wrap it with functorch.compile.make_boxed_func or handle the boxed arguments yourself. See https://github.com/pytorch/pytorch/pull/83137#issuecomment-1211320670 for rationale.
  warnings.warn(

0.007436426933660793 dort CPU:  67%|██████▋   | 4/6 [00:17<00:08,  4.49s/it]
0.007436426933660793 dort CPU:  83%|████████▎ | 5/6 [00:18<00:03,  3.87s/it]/home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_functorch/_aot_autograd/utils.py:130: UserWarning: Your compiler for AOTAutograd is returning a function that doesn't take boxed arguments. Please wrap it with functorch.compile.make_boxed_func or handle the boxed arguments yourself. See https://github.com/pytorch/pytorch/pull/83137#issuecomment-1211320670 for rationale.
  warnings.warn(

0.0022984157872765246 dort CUDA:  83%|████████▎ | 5/6 [00:19<00:03,  3.87s/it]
0.0022984157872765246 dort CUDA: 100%|██████████| 6/6 [00:21<00:00,  3.44s/it]
0.0022984157872765246 dort CUDA: 100%|██████████| 6/6 [00:21<00:00,  3.55s/it]
      name compute   export   average  deviation  min_exec  max_exec  repeat  number     ttime  context_size  warmup_time
0    eager     CPU    eager  0.007943   0.000809  0.005892  0.008800       1    15.0  0.119139            64     0.004668
1    eager    CUDA    eager  0.001660   0.000099  0.001617  0.002248       1    87.0  0.144436            64     0.002504
2  default     CPU  default  0.003066   0.000195  0.002558  0.003893       1    33.0  0.101180            64     0.016288
3  default    CUDA  default  0.000919   0.000089  0.000791  0.001173       1   115.0  0.105672            64     0.002153
4     dort     CPU     dort  0.007436   0.000757  0.005811  0.008106       1    15.0  0.111546            64     0.002948
5     dort    CUDA     dort  0.002298   0.000105  0.002260  0.002949       1    47.0  0.108026            64     0.004351

Other view

def view_time(df, title, suffix="time"):
    piv = pandas.pivot_table(df, index="export", columns=["compute"], values="average")
    print(piv)
    piv.to_csv(f"plot_torch_aot_{suffix}_compute.csv")
    piv.to_excel(f"plot_torch_aot_{suffix}_compute.xlsx")

    piv_cpu = pandas.pivot_table(
        df[df.compute == "CPU"],
        index="export",
        columns=["compute"],
        values="average",
    )

    fig, ax = plt.subplots(1, 2, figsize=(12, 4))
    fig.suptitle(title)
    piv_cpu.plot.barh(ax=ax[0], title="CPU", logx=True)

    if has_cuda:
        piv_gpu = pandas.pivot_table(
            df[df.compute == "CUDA"],
            index="export",
            columns=["compute"],
            values="average",
        )
        piv_gpu.plot.barh(ax=ax[1], title="CUDA", logx=True)

    fig.tight_layout()
    fig.savefig(f"plot_torch_aot_{suffix}.png")
    return ax


view_time(df, "Compares processing time on backends")
Compares processing time on backends, CPU, CUDA
compute       CPU      CUDA
export
default  0.003066  0.000919
dort     0.007436  0.002298
eager    0.007943  0.001660

array([<Axes: title={'center': 'CPU'}, ylabel='export'>,
       <Axes: title={'center': 'CUDA'}, ylabel='export'>], dtype=object)

Memory First Running Time (ORT)

for compute in ["CPU", "CUDA"]:
    if not has_cuda and compute == "CUDA":
        continue
    ax = memory_peak_plot(
        dfmemfr[dfmemfr.compute == compute],
        ("export",),
        suptitle=f"Memory Consumption of backend, first running time"
        f"\nrunning on {compute}",
        bars=[model_size * i / 2**20 for i in range(1, 3)],
        figsize=(18, 6),
    )
    get_figure(ax).savefig(f"plot_torch_aot_first_run_mem_{compute}.png")
  • Memory Consumption of backend, first running time running on CPU, Memory peak (Mb), Memory peak - memory begin (Mb), Memory average - memory begin (Mb), GPU Memory peak (Mb), GPU Memory peak - memory begin (Mb), GPU Memory average - memory begin (Mb)
  • Memory Consumption of backend, first running time running on CUDA, Memory peak (Mb), Memory peak - memory begin (Mb), Memory average - memory begin (Mb), GPU Memory peak (Mb), GPU Memory peak - memory begin (Mb), GPU Memory average - memory begin (Mb)

Memory Running Time (ORT)

for compute in ["CPU", "CUDA"]:
    if not has_cuda and compute == "CUDA":
        continue
    ax = memory_peak_plot(
        dfmemr[dfmemr.compute == compute],
        ("export",),
        suptitle=f"Memory Consumption of backens, running time\nrunning on {compute}",
        bars=[model_size * i / 2**20 for i in range(1, 3)],
        figsize=(18, 6),
    )
    get_figure(ax).savefig(f"plot_torch_aot_run_mem_{compute}.png")
  • Memory Consumption of backens, running time running on CPU, Memory peak (Mb), Memory peak - memory begin (Mb), Memory average - memory begin (Mb), GPU Memory peak (Mb), GPU Memory peak - memory begin (Mb), GPU Memory average - memory begin (Mb)
  • Memory Consumption of backens, running time running on CUDA, Memory peak (Mb), Memory peak - memory begin (Mb), Memory average - memory begin (Mb), GPU Memory peak (Mb), GPU Memory peak - memory begin (Mb), GPU Memory average - memory begin (Mb)

Total running time of the script: (0 minutes 48.478 seconds)

Related examples

201: Evaluate DORT

201: Evaluate DORT

201: Evaluate different ways to export a torch model to ONNX

201: Evaluate different ways to export a torch model to ONNX

101: Profile an existing model with onnxruntime

101: Profile an existing model with onnxruntime

Gallery generated by Sphinx-Gallery