101: Some dummy examples with torch.export.export

torch.export.export() behaviour in various situations.

Easy Case

A simple model.

import torch


class Neuron(torch.nn.Module):
    def __init__(self, n_dims: int = 5, n_targets: int = 3):
        super().__init__()
        self.linear = torch.nn.Linear(n_dims, n_targets)

    def forward(self, x):
        z = self.linear(x)
        return torch.sigmoid(z)


exported_program = torch.export.export(Neuron(), (torch.randn(1, 5),))
print(exported_program.graph)
graph():
    %p_linear_weight : [num_users=1] = placeholder[target=p_linear_weight]
    %p_linear_bias : [num_users=1] = placeholder[target=p_linear_bias]
    %x : [num_users=1] = placeholder[target=x]
    %linear : [num_users=1] = call_function[target=torch.ops.aten.linear.default](args = (%x, %p_linear_weight, %p_linear_bias), kwargs = {})
    %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%linear,), kwargs = {})
    return (sigmoid,)

With an integer as input

As torch.export.export documentation, integer do not show up on the graph. An exporter based on torch.export.export() cannot consider the integer as an input.

class NeuronIInt(torch.nn.Module):
    def __init__(self, n_dims: int = 5, n_targets: int = 3):
        super().__init__()
        self.linear = torch.nn.Linear(n_dims, n_targets)

    def forward(self, x: torch.Tensor, i_input: int):
        z = self.linear(x)
        return torch.sigmoid(z)[:, i_input]


exported_program = torch.export.export(NeuronIInt(), (torch.randn(1, 5), 2))
print(exported_program.graph)
graph():
    %p_linear_weight : [num_users=1] = placeholder[target=p_linear_weight]
    %p_linear_bias : [num_users=1] = placeholder[target=p_linear_bias]
    %x : [num_users=1] = placeholder[target=x]
    %i_input : [num_users=0] = placeholder[target=i_input]
    %linear : [num_users=1] = call_function[target=torch.ops.aten.linear.default](args = (%x, %p_linear_weight, %p_linear_bias), kwargs = {})
    %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%linear,), kwargs = {})
    %slice_1 : [num_users=1] = call_function[target=torch.ops.aten.slice.Tensor](args = (%sigmoid, 0, 0, 9223372036854775807), kwargs = {})
    %select : [num_users=1] = call_function[target=torch.ops.aten.select.int](args = (%slice_1, 1, 2), kwargs = {})
    return (select,)

With an integer as input

But if the integer is wrapped into a Tensor, it works.

class NeuronIInt(torch.nn.Module):
    def __init__(self, n_dims: int = 5, n_targets: int = 3):
        super().__init__()
        self.linear = torch.nn.Linear(n_dims, n_targets)

    def forward(self, x: torch.Tensor, i_input):
        z = self.linear(x)
        return torch.sigmoid(z)[:, i_input]


exported_program = torch.export.export(
    NeuronIInt(), (torch.randn(1, 5), torch.Tensor([2]).to(torch.int32))
)
print(exported_program.graph)
graph():
    %p_linear_weight : [num_users=1] = placeholder[target=p_linear_weight]
    %p_linear_bias : [num_users=1] = placeholder[target=p_linear_bias]
    %x : [num_users=1] = placeholder[target=x]
    %i_input : [num_users=1] = placeholder[target=i_input]
    %linear : [num_users=1] = call_function[target=torch.ops.aten.linear.default](args = (%x, %p_linear_weight, %p_linear_bias), kwargs = {})
    %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%linear,), kwargs = {})
    %slice_1 : [num_users=1] = call_function[target=torch.ops.aten.slice.Tensor](args = (%sigmoid, 0, 0, 9223372036854775807), kwargs = {})
    %index : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%slice_1, [None, %i_input]), kwargs = {})
    return (index,)

Wrapped

Wrapped, it continues to work.

class WrappedNeuronIInt(torch.nn.Module):
    def __init__(self, model):
        super().__init__()
        self.model = model

    def forward(self, *args, **kwargs):
        return self.model.forward(*args, **kwargs)


exported_program = torch.export.export(
    WrappedNeuronIInt(NeuronIInt()), (torch.randn(1, 5), torch.Tensor([2]).to(torch.int32))
)
print(exported_program.graph)
graph():
    %p_model_linear_weight : [num_users=1] = placeholder[target=p_model_linear_weight]
    %p_model_linear_bias : [num_users=1] = placeholder[target=p_model_linear_bias]
    %args_0 : [num_users=1] = placeholder[target=args_0]
    %args_1 : [num_users=1] = placeholder[target=args_1]
    %linear : [num_users=1] = call_function[target=torch.ops.aten.linear.default](args = (%args_0, %p_model_linear_weight, %p_model_linear_bias), kwargs = {})
    %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%linear,), kwargs = {})
    %slice_1 : [num_users=1] = call_function[target=torch.ops.aten.slice.Tensor](args = (%sigmoid, 0, 0, 9223372036854775807), kwargs = {})
    %index : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%slice_1, [None, %args_1]), kwargs = {})
    return (index,)

List

The last one does not export. An exporter based on torch.export.export() cannot work.

class NeuronNoneListInt(torch.nn.Module):
    def __init__(self, n_dims: int = 5, n_targets: int = 3):
        super().__init__()
        self.linear = torch.nn.Linear(n_dims, n_targets)

    def forward(self, x, yz, i_input):
        z = self.linear(x + yz[0] * yz[3])
        return torch.sigmoid(z)[:i_input]


try:
    exported_program = torch.export.export(
        NeuronNoneListInt(),
        (
            torch.randn(1, 5),
            [torch.randn(1, 5), None, None, torch.randn(1, 5)],
            torch.Tensor([2]).to(torch.int32),
        ),
    )
    print(exported_program.graph)
except torch._dynamo.exc.Unsupported as e:
    print("-- an error occured:")
    print(e)
-- an error occured:
Dynamic slicing on data-dependent value is not supported

from user code:
   File "/home/xadupre/github/experimental-experiment/_doc/examples/plot_torch_export_101.py", line 115, in forward
    return torch.sigmoid(z)[:i_input]

Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information

Loops

Loops are not captured.

class NeuronLoop(torch.nn.Module):
    def __init__(self, n_dims: int = 5, n_targets: int = 3):
        super().__init__()
        self.linear = torch.nn.Linear(n_dims, n_targets)

    def forward(self, x, xs):
        z = self.linear(x)
        for i in range(len(xs)):
            x += xs[i] * (i + 1)
        return z


exported_program = torch.export.export(
    NeuronLoop(),
    (
        torch.randn(1, 5),
        [torch.randn(1, 5), torch.randn(1, 5)],
    ),
)
print(exported_program.graph)
graph():
    %p_linear_weight : [num_users=1] = placeholder[target=p_linear_weight]
    %p_linear_bias : [num_users=1] = placeholder[target=p_linear_bias]
    %x : [num_users=2] = placeholder[target=x]
    %xs_0 : [num_users=1] = placeholder[target=xs_0]
    %xs_1 : [num_users=1] = placeholder[target=xs_1]
    %linear : [num_users=1] = call_function[target=torch.ops.aten.linear.default](args = (%x, %p_linear_weight, %p_linear_bias), kwargs = {})
    %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%xs_0, 1), kwargs = {})
    %add_ : [num_users=1] = call_function[target=torch.ops.aten.add_.Tensor](args = (%x, %mul), kwargs = {})
    %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%xs_1, 2), kwargs = {})
    %add__1 : [num_users=0] = call_function[target=torch.ops.aten.add_.Tensor](args = (%add_, %mul_1), kwargs = {})
    return (linear,)

Export for training

In that case, the weights are exported as inputs.

class Neuron(torch.nn.Module):
    def __init__(self, n_dims: int = 5, n_targets: int = 3):
        super().__init__()
        self.linear = torch.nn.Linear(n_dims, n_targets)

    def forward(self, x):
        z = self.linear(x)
        return torch.sigmoid(z)


print("-- training")
mod = Neuron()
mod.train()
exported_program = torch.export.export_for_training(mod, (torch.randn(1, 5),))
print(exported_program.graph)
-- training
graph():
    %p_linear_weight : [num_users=1] = placeholder[target=p_linear_weight]
    %p_linear_bias : [num_users=1] = placeholder[target=p_linear_bias]
    %x : [num_users=1] = placeholder[target=x]
    %linear : [num_users=1] = call_function[target=torch.ops.aten.linear.default](args = (%x, %p_linear_weight, %p_linear_bias), kwargs = {})
    %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%linear,), kwargs = {})
    return (sigmoid,)

Preserve Modules

class Neuron(torch.nn.Module):
    def __init__(self, n_dims: int = 5, n_targets: int = 3):
        super().__init__()
        self.linear = torch.nn.Linear(n_dims, n_targets)

    def forward(self, x):
        z = self.linear(x)
        return torch.sigmoid(z)


class NeuronNeuron(torch.nn.Module):
    def __init__(self, n_dims: int = 5, n_targets: int = 3):
        super().__init__()
        self.my_neuron = Neuron(n_dims, n_targets)

    def forward(self, x):
        z = self.my_neuron(x)
        return -z

The list of the modules.

mod = NeuronNeuron()
for item in mod.named_modules():
    print(item)
('', NeuronNeuron(
  (my_neuron): Neuron(
    (linear): Linear(in_features=5, out_features=3, bias=True)
  )
))
('my_neuron', Neuron(
  (linear): Linear(in_features=5, out_features=3, bias=True)
))
('my_neuron.linear', Linear(in_features=5, out_features=3, bias=True))

The exported module did not change.

print("-- preserved?")
exported_program = torch.export.export(
    mod, (torch.randn(1, 5),), preserve_module_call_signature=("my_neuron",)
)
print(exported_program.graph)
-- preserved?
graph():
    %p_my_neuron_linear_weight : [num_users=1] = placeholder[target=p_my_neuron_linear_weight]
    %p_my_neuron_linear_bias : [num_users=1] = placeholder[target=p_my_neuron_linear_bias]
    %x : [num_users=1] = placeholder[target=x]
    %linear : [num_users=1] = call_function[target=torch.ops.aten.linear.default](args = (%x, %p_my_neuron_linear_weight, %p_my_neuron_linear_bias), kwargs = {})
    %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%linear,), kwargs = {})
    %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sigmoid,), kwargs = {})
    return (neg,)

And now?

import torch.export._swap

swapped_gm = torch.export._swap._swap_modules(exported_program, {"my_neuron": Neuron()})

print("-- preserved?")
print(swapped_gm.graph)
/home/xadupre/vv/this312/lib/python3.12/site-packages/torch/export/unflatten.py:833: UserWarning: Attempted to insert a get_attr Node with no underlying reference in the owning GraphModule! Call GraphModule.add_submodule to add the necessary submodule, GraphModule.add_parameter to add the necessary Parameter, or nn.Module.register_buffer to add the necessary buffer
  spec_node = gm.graph.get_attr(name)
/home/xadupre/vv/this312/lib/python3.12/site-packages/torch/export/unflatten.py:825: UserWarning: Attempted to insert a get_attr Node with no underlying reference in the owning GraphModule! Call GraphModule.add_submodule to add the necessary submodule, GraphModule.add_parameter to add the necessary Parameter, or nn.Module.register_buffer to add the necessary buffer
  spec_node = gm.graph.get_attr(name)
/home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph.py:1801: UserWarning: Node _spec_0 target _spec_0 _spec_0 of  does not reference an nn.Module, nn.Parameter, or buffer, which is what 'get_attr' Nodes typically target
  warnings.warn(
/home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph.py:1801: UserWarning: Node _spec_1 target _spec_1 _spec_1 of  does not reference an nn.Module, nn.Parameter, or buffer, which is what 'get_attr' Nodes typically target
  warnings.warn(
/home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph.py:1801: UserWarning: Node _spec_2 target _spec_2 _spec_2 of  does not reference an nn.Module, nn.Parameter, or buffer, which is what 'get_attr' Nodes typically target
  warnings.warn(
-- preserved?
graph():
    %x_1 : [num_users=1] = placeholder[target=x]
    %_spec_0 : [num_users=1] = get_attr[target=_spec_0]
    %_spec_1 : [num_users=1] = get_attr[target=_spec_1]
    %_spec_2 : [num_users=1] = get_attr[target=_spec_2]
    %tree_flatten : [num_users=1] = call_function[target=torch.utils._pytree.tree_flatten](args = ((%x_1,),), kwargs = {})
    %getitem : [num_users=1] = call_function[target=operator.getitem](args = (%tree_flatten, 0), kwargs = {})
    %x : [num_users=1] = call_function[target=operator.getitem](args = (%getitem, 0), kwargs = {})
    %tree_unflatten_1 : [num_users=1] = call_function[target=torch.utils._pytree.tree_unflatten](args = ([%x], %_spec_1), kwargs = {})
    %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%tree_unflatten_1, 0), kwargs = {})
    %getitem_2 : [num_users=1] = call_function[target=operator.getitem](args = (%getitem_1, 0), kwargs = {})
    %my_neuron : [num_users=1] = call_module[target=my_neuron](args = (%getitem_2,), kwargs = {})
    %tree_flatten_spec : [num_users=1] = call_function[target=torch.fx._pytree.tree_flatten_spec](args = (%my_neuron, %_spec_2), kwargs = {})
    %getitem_4 : [num_users=1] = call_function[target=operator.getitem](args = (%tree_flatten_spec, 0), kwargs = {})
    %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_4,), kwargs = {})
    %tree_unflatten : [num_users=1] = call_function[target=torch.utils._pytree.tree_unflatten](args = ((%neg,), %_spec_0), kwargs = {})
    return tree_unflatten

Unfortunately this approach does not work well on big models and it is a provite API.

Total running time of the script: (0 minutes 0.581 seconds)

Related examples

102: Tweak onnx export

102: Tweak onnx export

101: A custom backend for torch

101: A custom backend for torch

101: Linear Regression and export to ONNX

101: Linear Regression and export to ONNX

Gallery generated by Sphinx-Gallery