.torch_interpreter.oxs_dispatcher

class experimental_experiment.torch_interpreter.oxs_dispatcher.OxsDebugDispatcher(verbose: int = 0, raise_exc: bool = True)[source]

Tries the fallback even if is not necessary to check it is working.

Parameters:
  • verbose – verbosity

  • raise_exc – fail or raise an exception

The class can be used the following way.

<<<

import torch
from experimental_experiment.ext_test_case import get_llama_model
from experimental_experiment.xbuilder import OptimizationOptions
from experimental_experiment.torch_interpreter import to_onnx
from experimental_experiment.torch_interpreter.oxs_dispatcher import (
    OxsDebugDispatcher,
)

with torch.no_grad():
    model, input_tensors = get_llama_model()
    input_tensors = input_tensors[0]

    to_onnx(
        model,
        input_tensors,
        input_names=[f"input{i}" for i in range(len(input_tensors))],
        options=OptimizationOptions(patterns=None),
        verbose=0,
        dispatcher=OxsDebugDispatcher(verbose=2, raise_exc=False),
    )

>>>

    
    [runpythonerror]
    Traceback (most recent call last):
      File "<stdin>", line 19, in <module>
      File "~/github/experimental-experiment/experimental_experiment/torch_interpreter/onnx_export.py", line 996, in to_onnx
        graph_module, builder, interpreter, mask_outputs = _make_builder_interpreter(
                                                           ^^^^^^^^^^^^^^^^^^^^^^^^^^
      File "~/github/experimental-experiment/experimental_experiment/torch_interpreter/onnx_export.py", line 604, in _make_builder_interpreter
        exported_program = export_options.export(
                           ^^^^^^^^^^^^^^^^^^^^^^
      File "~/github/experimental-experiment/experimental_experiment/torch_interpreter/export_options.py", line 600, in export
        exported_program = self._export(
                           ^^^^^^^^^^^^^
      File "~/github/experimental-experiment/experimental_experiment/torch_interpreter/export_options.py", line 321, in _export
        return torch_export(
               ^^^^^^^^^^^^^
      File "~/github/experimental-experiment/experimental_experiment/export_helpers.py", line 72, in torch_export
        return torch_export(
               ^^^^^^^^^^^^^
      File "~/github/experimental-experiment/experimental_experiment/export_helpers.py", line 158, in torch_export
        return torch.export.export(
               ^^^^^^^^^^^^^^^^^^^^
      File "~/vv/this312/lib/python3.12/site-packages/torch/export/__init__.py", line 311, in export
        raise e
      File "~/vv/this312/lib/python3.12/site-packages/torch/export/__init__.py", line 277, in export
        return _export(
               ^^^^^^^^
      File "~/vv/this312/lib/python3.12/site-packages/torch/export/_trace.py", line 1229, in wrapper
        raise e
      File "~/vv/this312/lib/python3.12/site-packages/torch/export/_trace.py", line 1195, in wrapper
        ep = fn(*args, **kwargs)
             ^^^^^^^^^^^^^^^^^^^
      File "~/vv/this312/lib/python3.12/site-packages/torch/export/exported_program.py", line 124, in wrapper
        return fn(*args, **kwargs)
               ^^^^^^^^^^^^^^^^^^^
      File "~/vv/this312/lib/python3.12/site-packages/torch/export/_trace.py", line 2334, in _export
        ep = _export_for_training(
             ^^^^^^^^^^^^^^^^^^^^^
      File "~/vv/this312/lib/python3.12/site-packages/torch/export/_trace.py", line 1229, in wrapper
        raise e
      File "~/vv/this312/lib/python3.12/site-packages/torch/export/_trace.py", line 1195, in wrapper
        ep = fn(*args, **kwargs)
             ^^^^^^^^^^^^^^^^^^^
      File "~/vv/this312/lib/python3.12/site-packages/torch/export/exported_program.py", line 124, in wrapper
        return fn(*args, **kwargs)
               ^^^^^^^^^^^^^^^^^^^
      File "~/vv/this312/lib/python3.12/site-packages/torch/export/_trace.py", line 2142, in _export_for_training
        export_artifact = export_func(
                          ^^^^^^^^^^^^
      File "~/vv/this312/lib/python3.12/site-packages/torch/export/_trace.py", line 2073, in _non_strict_export
        aten_export_artifact = _to_aten_func(
                               ^^^^^^^^^^^^^^
      File "~/vv/this312/lib/python3.12/site-packages/torch/export/_trace.py", line 1861, in _export_to_aten_ir_make_fx
        gm, graph_signature = transform(_make_fx_helper)(
                              ^^^^^^^^^^^^^^^^^^^^^^^^^^^
      File "~/vv/this312/lib/python3.12/site-packages/torch/export/_trace.py", line 1991, in _aot_export_non_strict
        gm, sig = aot_export(stack, wrapped_mod, args, kwargs=kwargs, **flags)
                  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
      File "~/vv/this312/lib/python3.12/site-packages/torch/export/_trace.py", line 1773, in _make_fx_helper
        gm = make_fx(
             ^^^^^^^^
      File "~/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py", line 2596, in wrapped
        return make_fx_tracer.trace(f, *args)
               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
      File "~/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py", line 2521, in trace
        return self._trace_inner(f, *args)
               ^^^^^^^^^^^^^^^^^^^^^^^^^^^
      File "~/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py", line 2483, in _trace_inner
        t = dispatch_trace(
            ^^^^^^^^^^^^^^^
      File "~/vv/this312/lib/python3.12/site-packages/torch/_compile.py", line 54, in inner
        return disable_fn(*args, **kwargs)
               ^^^^^^^^^^^^^^^^^^^^^^^^^^^
      File "~/vv/this312/lib/python3.12/site-packages/torch/_dynamo/eval_frame.py", line 1136, in _fn
        return fn(*args, **kwargs)
               ^^^^^^^^^^^^^^^^^^^
      File "~/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py", line 1444, in dispatch_trace
        graph = tracer.trace(root, concrete_args)  # type: ignore[arg-type]
                ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
      File "~/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py", line 2072, in trace
        res = super().trace(root, concrete_args)
              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
      File "~/vv/this312/lib/python3.12/site-packages/torch/fx/_symbolic_trace.py", line 869, in trace
        (self.create_arg(fn(*args)),),
                         ^^^^^^^^^
      File "~/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py", line 1510, in wrapped
        out = f(*tensors)  # type:ignore[call-arg]
              ^^^^^^^^^^^
      File "<string>", line 1, in <lambda>
      File "~/vv/this312/lib/python3.12/site-packages/torch/export/_trace.py", line 1660, in wrapped_fn
        return tuple(flat_fn(*args))
                     ^^^^^^^^^^^^^^
      File "~/vv/this312/lib/python3.12/site-packages/torch/_functorch/_aot_autograd/utils.py", line 201, in flat_fn
        raise RuntimeError(
    RuntimeError: Found <class 'transformers.cache_utils.DynamicCache'> in output, which is not a known type. If this type holds tensors, you need to register a pytree for it. See https://github.com/pytorch/functorch/issues/475 for a brief explanation why. If you don't need to register a pytree, please leave a comment explaining your use case and we'll make this more ergonomic to deal with
fallback(name: Any, fct: Callable | None, args: List[Any], kwargs: Dict[str, Any], builder: GraphBuilder) Callable | None[source]

The function is called after the function converting an aten function into ONNX. fct is this function. It can be changed and just set when mapping was found.

Parameters:
  • name – object or str

  • fct – function found so far

  • args – known arguments coming from the graph module

  • kwargs – known named arguments coming from the graph module

  • builder – GraphBuilder

Returns:

callable

class experimental_experiment.torch_interpreter.oxs_dispatcher.OxsDispatcher(verbose: int = 0)[source]

If DynamoInterpreter cannot find any converting function for a specific function, it tries to find an existing one in onnxscript. The converting function from onnxscript is run in trace only mode. The variable and functions op, Rank, IsScalar are replaced by op = OwsOpset(), op.Rank, op.Scalar. onnxscript may have multiple overloaded functions. Right now, it takes the first one.

Parameters:

verbose – verbose

fallback(name: Any, fct: Callable | None, args: List[Any], kwargs: Dict[str, Any], builder: GraphBuilder) Callable | None[source]

The function is called after the function converting an aten function into ONNX. fct is this function. It can be changed and just set when mapping was found.

Parameters:
  • name – object or str

  • fct – function found so far

  • args – known arguments coming from the graph module

  • kwargs – known named arguments coming from the graph module

  • builder – GraphBuilder

Returns:

callable

property submodules: Dict[str, Callable]

Returns the submodules implementing torch functions.