.convert.convert_helper¶
- experimental_experiment.convert.convert_helper.inline_model_proto(model_proto: ModelProto) ModelProto [source]¶
Inlines a model.
- Parameters:
model_proto – ModelProto
- Returns:
inlined model
- experimental_experiment.convert.convert_helper.optimize_model_proto_oxs(model_proto: ModelProto, verbose: int = 0, onnx_shape_inference: bool = False, inplace: bool = True, stats: Dict[str, Any] | None = None) ModelProto [source]¶
Optimizes a model proto to optimize onnxruntime.
- Parameters:
model_proto – ModelProto
verbose – verbosity
onnx_shape_inference – enable shape inference
inplace – the function modifies the proto inplace as well
stats – if not empty, stores information
- Returns:
optimized model
You should run that before calling this function
onnx_model = exported.to_model_proto( opset_version=self._resolved_onnx_exporter_options.onnx_registry.opset_version ) from experimental_experiment.convert.convert_helper import optimize_model_proto_oxs onnx_model = optimize_model_proto_oxs(onnx_model)
- experimental_experiment.convert.convert_helper.ort_optimize(onnx_model: str | ModelProto, output: str, providers: str | List[str] = 'cpu', disable_aot: bool = False)[source]¶
Optimizes the model with onnxruntime.
- Parameters:
onnx_model – ModelProto or file path
output – path for the output
providers – providers, cpu, cuda or a list of providers
disable_aot – disable AOT