Note
Go to the end to download the full example code.
Export Phi-3.5-mini-instruct with report_exportability¶
Tries torch._export.tools.report_exportability()
.
Model¶
import pprint
from typing import Any, Dict
import torch
import torch._export.tools
import transformers
from experimental_experiment.helpers import string_type
from experimental_experiment.torch_interpreter.onnx_export_errors import (
register_additional_serialization_functions,
)
def get_phi35_untrained(batch_size: int = 2, **kwargs) -> Dict[str, Any]:
"""
Gets a non initialized model with two sets of inputs and different shapes.
:param batch_size: batch size
:param kwargs: to overwrite the configuration, example ``num_hidden_layers=1``
:return: dictionary
See `Phi-3.5-mini-instruct/config.json
<https://huggingface.co/microsoft/Phi-3.5-mini-instruct/blob/main/config.json>`_.
"""
config = {
"_name_or_path": "Phi-3.5-mini-instruct",
"architectures": ["Phi3ForCausalLM"],
"attention_dropout": 0.0,
"auto_map": {
"AutoConfig": "configuration_phi3.Phi3Config",
"AutoModelForCausalLM": "modeling_phi3.Phi3ForCausalLM",
},
"bos_token_id": 1,
"embd_pdrop": 0.0,
"eos_token_id": 32000,
"hidden_act": "silu",
"hidden_size": 3072,
"initializer_range": 0.02,
"intermediate_size": 8192,
"max_position_embeddings": 131072,
"model_type": "phi3",
"num_attention_heads": 32,
"num_hidden_layers": 32,
"num_key_value_heads": 32,
"original_max_position_embeddings": 4096,
"pad_token_id": 32000,
"resid_pdrop": 0.0,
"rms_norm_eps": 1e-05,
"rope_scaling": {
"long_factor": [
1.0800000429153442,
1.1100000143051147,
1.1399999856948853,
1.340000033378601,
1.5899999141693115,
1.600000023841858,
1.6200000047683716,
2.620000123977661,
3.2300000190734863,
3.2300000190734863,
4.789999961853027,
7.400000095367432,
7.700000286102295,
9.09000015258789,
12.199999809265137,
17.670000076293945,
24.46000099182129,
28.57000160217285,
30.420001983642578,
30.840002059936523,
32.590003967285156,
32.93000411987305,
42.320003509521484,
44.96000289916992,
50.340003967285156,
50.45000457763672,
57.55000305175781,
57.93000411987305,
58.21000289916992,
60.1400032043457,
62.61000442504883,
62.62000274658203,
62.71000289916992,
63.1400032043457,
63.1400032043457,
63.77000427246094,
63.93000411987305,
63.96000289916992,
63.970001220703125,
64.02999877929688,
64.06999969482422,
64.08000183105469,
64.12000274658203,
64.41000366210938,
64.4800033569336,
64.51000213623047,
64.52999877929688,
64.83999633789062,
],
"short_factor": [
1.0,
1.0199999809265137,
1.0299999713897705,
1.0299999713897705,
1.0499999523162842,
1.0499999523162842,
1.0499999523162842,
1.0499999523162842,
1.0499999523162842,
1.0699999332427979,
1.0999999046325684,
1.1099998950958252,
1.1599998474121094,
1.1599998474121094,
1.1699998378753662,
1.2899998426437378,
1.339999794960022,
1.679999828338623,
1.7899998426437378,
1.8199998140335083,
1.8499997854232788,
1.8799997568130493,
1.9099997282028198,
1.9399996995925903,
1.9899996519088745,
2.0199997425079346,
2.0199997425079346,
2.0199997425079346,
2.0199997425079346,
2.0199997425079346,
2.0199997425079346,
2.0299997329711914,
2.0299997329711914,
2.0299997329711914,
2.0299997329711914,
2.0299997329711914,
2.0299997329711914,
2.0299997329711914,
2.0299997329711914,
2.0299997329711914,
2.0799996852874756,
2.0899996757507324,
2.189999580383301,
2.2199995517730713,
2.5899994373321533,
2.729999542236328,
2.749999523162842,
2.8399994373321533,
],
"type": "longrope",
},
"rope_theta": 10000.0,
"sliding_window": 262144,
"tie_word_embeddings": False,
"torch_dtype": "bfloat16",
"use_cache": True,
"attention_bias": False,
"vocab_size": 32064,
}
config.update(**kwargs)
conf = transformers.Phi3Config(**config)
model = transformers.Phi3ForCausalLM(conf)
model.eval()
cache = transformers.cache_utils.DynamicCache(config["num_hidden_layers"])
for i in range(config["num_hidden_layers"]):
cache.update(
torch.randn(batch_size, 32, 30, 96), torch.randn(batch_size, 32, 30, 96), i
)
cache2 = transformers.cache_utils.DynamicCache(config["num_hidden_layers"])
for i in range(config["num_hidden_layers"]):
cache2.update(
torch.randn(batch_size + 1, 32, 31, 96),
torch.randn(batch_size + 1, 32, 31, 96),
i,
)
inputs = dict(
input_ids=torch.randint(0, 32064, (batch_size, 3)).to(torch.int64),
attention_mask=torch.ones((batch_size, 33)).to(torch.int64),
past_key_values=cache,
)
inputs2 = dict(
input_ids=torch.randint(0, 32064, (batch_size + 1, 4)).to(torch.int64),
attention_mask=torch.ones((batch_size + 1, 35)).to(torch.int64),
past_key_values=cache2,
)
return dict(inputs=inputs, model=model, inputs2=inputs2)
data = get_phi35_untrained(num_hidden_layers=2)
model, inputs, inputs2 = data["model"], data["inputs"], data["inputs2"]
print(string_type(inputs, with_shape=True))
dict(input_ids:T7s2x3,attention_mask:T7s2x33,past_key_values:DynamicCache(key_cache=#2[T1s2x32x30x96,T1s2x32x30x96], value_cache=#2[T1s2x32x30x96,T1s2x32x30x96]))
Exportability¶
The function we want to try.
with register_additional_serialization_functions():
report = torch._export.tools.report_exportability(
model, tuple(), kwargs=inputs, strict=False
)
Let’s print the report.
{'': GuardOnDataDependentSymNode('Could not guard on data-dependent expression Eq(u0, 1) (unhinted: Eq(u0, 1)). (Size-like symbols: none)\n\nCaused by: (_subclasses/functional_tensor.py:294 in __bool__)\nFor more information, run with TORCH_LOGS="dynamic"\nFor extended logs when we create symbols, also add TORCHDYNAMO_EXTENDED_DEBUG_CREATE_SYMBOL="u0"\nIf you suspect the guard was triggered from C++, add TORCHDYNAMO_EXTENDED_DEBUG_CPP=1\nFor more debugging help, see https://docs.google.com/document/d/1HSuTTVvYH1pTew89Rtpeu84Ht3nQEFTYhAX3Ypa_xJs/edit?usp=sharing\n\nFor C++ stack trace, run with TORCHDYNAMO_EXTENDED_DEBUG_CPP=1'),
'model': GuardOnDataDependentSymNode('Could not guard on data-dependent expression Eq(u0, 1) (unhinted: Eq(u0, 1)). (Size-like symbols: none)\n\nCaused by: (_subclasses/functional_tensor.py:294 in __bool__)\nFor more information, run with TORCH_LOGS="dynamic"\nFor extended logs when we create symbols, also add TORCHDYNAMO_EXTENDED_DEBUG_CREATE_SYMBOL="u0"\nIf you suspect the guard was triggered from C++, add TORCHDYNAMO_EXTENDED_DEBUG_CPP=1\nFor more debugging help, see https://docs.google.com/document/d/1HSuTTVvYH1pTew89Rtpeu84Ht3nQEFTYhAX3Ypa_xJs/edit?usp=sharing\n\nFor C++ stack trace, run with TORCHDYNAMO_EXTENDED_DEBUG_CPP=1'),
'model.embed_tokens': None,
'model.layers.0': RuntimeError('Attempting to broadcast a dimension of length 33 at -1! Mismatching argument at index 1 had torch.Size([2, 1, 3, 33]); but expected shape should be broadcastable to [2, 32, 3, 36]'),
'model.layers.0.input_layernorm': None,
'model.layers.0.mlp': None,
'model.layers.0.resid_attn_dropout': None,
'model.layers.0.self_attn': RuntimeError('Attempting to broadcast a dimension of length 33 at -1! Mismatching argument at index 1 had torch.Size([2, 1, 3, 33]); but expected shape should be broadcastable to [2, 32, 3, 36]'),
'model.layers.0.self_attn.o_proj': None,
'model.rotary_emb': GuardOnDataDependentSymNode('Could not guard on data-dependent expression Eq(u0, 1) (unhinted: Eq(u0, 1)). (Size-like symbols: none)\n\nCaused by: (_subclasses/functional_tensor.py:294 in __bool__)\nFor more information, run with TORCH_LOGS="dynamic"\nFor extended logs when we create symbols, also add TORCHDYNAMO_EXTENDED_DEBUG_CREATE_SYMBOL="u0"\nIf you suspect the guard was triggered from C++, add TORCHDYNAMO_EXTENDED_DEBUG_CPP=1\nFor more debugging help, see https://docs.google.com/document/d/1HSuTTVvYH1pTew89Rtpeu84Ht3nQEFTYhAX3Ypa_xJs/edit?usp=sharing\n\nFor C++ stack trace, run with TORCHDYNAMO_EXTENDED_DEBUG_CPP=1')}
Total running time of the script: (0 minutes 4.628 seconds)
Related examples
Export Phi-3.5-mini-instruct with draft_export
Export Phi-3.5-mini-instruct with draft_export
Export Phi-3.5-mini-instruct piece by piece
Export Phi-3.5-mini-instruct piece by piece
torch.onnx.export and Phi-2