201: Evaluate different ways to export a torch model to ONNX

The example evaluates the performance of onnxruntime of a simple torch model after it was converted into ONNX through different processes:

  • TorchScript-based ONNX Exporter, let’s call it script

  • TorchDynamo-based ONNX Exporter, let’s call it dynamo

  • if available, the previous model but optimized, dynopt

  • a custom exporter cus_p0, this exporter supports a very limited set of models, as dynamo, it relies on torch.fx but the design is closer to what tensorflow-onnx does.

  • the same exporter but unused nodes were removed and constants were folded, cus_p2

To run the script:

python _doc/examples/plot_torch_export --help

The script takes around 12 minutes with a larger models.

Some helpers

from experimental_experiment.args import get_parsed_args

script_args = get_parsed_args(
    "plot_torch_export",
    description=__doc__,
    scenarios={
        "small": "small model to test",
        "middle": "55Mb model",
        "large": "1Gb model",
    },
    warmup=5,
    repeat=5,
    maxtime=(
        2,
        "maximum time to run a model to measure the computation time, "
        "it is 0.1 when scenario is small",
    ),
    expose="scenarios,repeat,warmup",
)


import contextlib
import itertools
import os
import platform
import pprint
import multiprocessing
import time
import cProfile
import pstats
import io
import warnings
import logging
from pstats import SortKey

try:
    with warnings.catch_warnings():
        warnings.simplefilter("ignore")
        import onnxruntime

        has_cuda = "CUDAExecutionProvider" in onnxruntime.get_available_providers()
except ImportError:
    print("onnxruntime not available.")
    import sys

    sys.exit(0)

import numpy as np
import matplotlib.pyplot as plt
import pandas
import onnx
from onnx_array_api.profiling import profile2graph
import torch
from torch import nn
import torch.nn.functional as F
import experimental_experiment
from experimental_experiment.torch_interpreter import to_onnx
from experimental_experiment.xbuilder import OptimizationOptions
from experimental_experiment.plotting.memory import memory_peak_plot
from experimental_experiment.ext_test_case import measure_time, get_figure
from experimental_experiment.memory_peak import start_spying_on
from experimental_experiment.ext_test_case import unit_test_going
from experimental_experiment.helpers import pretty_onnx
from tqdm import tqdm

has_cuda = has_cuda and torch.cuda.device_count() > 0
logging.disable(logging.ERROR)


def system_info():
    obs = {}
    obs["processor"] = platform.processor()
    obs["cores"] = multiprocessing.cpu_count()
    try:
        obs["cuda"] = 1 if torch.cuda.device_count() > 0 else 0
        obs["cuda_count"] = torch.cuda.device_count()
        obs["cuda_name"] = torch.cuda.get_device_name()
        obs["cuda_capa"] = torch.cuda.get_device_capability()
    except (RuntimeError, AssertionError):
        # no cuda
        pass
    return obs


pprint.pprint(system_info())
{'cores': 20,
 'cuda': 1,
 'cuda_capa': (8, 9),
 'cuda_count': 1,
 'cuda_name': 'NVIDIA GeForce RTX 4060 Laptop GPU',
 'processor': 'x86_64'}

Scripts arguments

if script_args.scenario in (None, "small"):
    script_args.maxtime = 0.1

if unit_test_going():
    script_args.warmup = 1
    script_args.repeat = 1
    script_args.maxtime = 0.1
    script_args.scenario = "small"

print(f"scenario={script_args.scenario or 'small'}")
print(f"warmup={script_args.warmup}")
print(f"repeat={script_args.repeat}")
print(f"maxtime={script_args.maxtime}")
scenario=small
warmup=5
repeat=5
maxtime=0.1

The model

A simple model to convert.

class MyModelClass(nn.Module):
    def __init__(self, scenario=script_args.scenario):
        super().__init__()
        if scenario == "middle":
            self.large = False
            self.conv1 = nn.Conv2d(1, 128, 5)
            self.conv2 = nn.Conv2d(128, 16, 5)
            self.fc1 = nn.Linear(13456, 1024)
            self.fcs = []
            self.fc2 = nn.Linear(1024, 128)
            self.fc3 = nn.Linear(128, 10)
        elif scenario in (None, "small"):
            self.large = False
            self.conv1 = nn.Conv2d(1, 16, 5)
            self.conv2 = nn.Conv2d(16, 16, 5)
            self.fc1 = nn.Linear(16, 512)
            self.fcs = []
            self.fc2 = nn.Linear(512, 128)
            self.fc3 = nn.Linear(128, 10)
        elif scenario in (None, "large"):
            self.large = True
            self.conv1 = nn.Conv2d(1, 128, 5)
            self.conv2 = nn.Conv2d(128, 16, 5)
            self.fc1 = nn.Linear(13456, 4096)
            # torch script does not support loops.
            self.fca = nn.Linear(4096, 4096)
            self.fcb = nn.Linear(4096, 4096)
            self.fcc = nn.Linear(4096, 4096)
            self.fcd = nn.Linear(4096, 4096)
            self.fce = nn.Linear(4096, 4096)
            self.fcf = nn.Linear(4096, 4096)
            self.fcg = nn.Linear(4096, 4096)
            self.fch = nn.Linear(4096, 4096)
            self.fci = nn.Linear(4096, 4096)
            self.fck = nn.Linear(4096, 4096)
            self.fcl = nn.Linear(4096, 4096)
            self.fcm = nn.Linear(4096, 4096)
            self.fcn = nn.Linear(4096, 4096)
            # end of the unfolded loop.
            self.fc2 = nn.Linear(4096, 128)
            self.fc3 = nn.Linear(128, 10)
        else:
            raise ValueError(f"Unsupported scenario={scenario!r}.")

    def forward(self, x):
        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
        x = F.max_pool2d(F.relu(self.conv2(x)), 2)
        x = torch.flatten(x, 1)
        x = F.relu(self.fc1(x))
        if self.large:
            # loop
            x = F.relu(self.fca(x))
            x = F.relu(self.fcb(x))
            x = F.relu(self.fcc(x))
            x = F.relu(self.fcd(x))
            x = F.relu(self.fce(x))
            x = F.relu(self.fcf(x))
            x = F.relu(self.fcg(x))
            x = F.relu(self.fch(x))
            x = F.relu(self.fci(x))
            x = F.relu(self.fck(x))
            x = F.relu(self.fcl(x))
            x = F.relu(self.fcm(x))
            x = F.relu(self.fcn(x))
            # end of the loop
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x


def create_model_and_input(scenario=script_args.scenario):
    if scenario == "middle":
        shape = [1, 1, 128, 128]
    elif scenario in (None, "small"):
        shape = [1, 1, 16, 16]
    elif scenario == "large":
        shape = [1, 1, 128, 128]
    else:
        raise ValueError(f"Unsupported scenario={scenario!r}.")
    input_tensor = torch.rand(*shape).to(torch.float32)
    model = MyModelClass(scenario=scenario)
    assert model(input_tensor) is not None
    return model, input_tensor


def torch_model_size(model):
    size_model = 0
    for param in model.parameters():
        size = param.numel() * torch.finfo(param.data.dtype).bits / 8
        size_model += size
    return size_model


model, input_tensor = create_model_and_input()
model_size = torch_model_size(model)
print(f"model size={model_size / 2 ** 20} Mb")
model size=0.31467437744140625 Mb

The exporters

def export_script(filename, model, *args):
    with contextlib.redirect_stdout(io.StringIO()):
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            torch.onnx.export(model, *args, filename, input_names=["input"], dynamo=False)


def export_dynamo(filename, model, *args):
    with contextlib.redirect_stdout(io.StringIO()):
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            export_output = torch.onnx.export(model, args, dynamo=True)
            export_output.save(filename)


def export_dynopt(filename, model, *args):
    with contextlib.redirect_stdout(io.StringIO()):
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            export_output = torch.onnx.export(model, args, dynamo=True)
            model_onnx = export_output.model_proto

            from experimental_experiment.convert.convert_helper import (
                optimize_model_proto_oxs,
            )

            optimized_model = optimize_model_proto_oxs(model_onnx)

            with open(filename, "wb") as f:
                f.write(optimized_model.SerializeToString())


def export_cus_p0(filename, model, *args):
    onx = to_onnx(model, tuple(args), input_names=["input"])
    with open(filename, "wb") as f:
        f.write(onx.SerializeToString())


def export_cus_p2(filename, model, *args):
    onx = to_onnx(
        model,
        tuple(args),
        input_names=["input"],
        options=OptimizationOptions(
            remove_unused=True,
            constant_folding=True,
        ),
    )
    with open(filename, "wb") as f:
        f.write(onx.SerializeToString())

Let’s check they are working.

export_functions = [
    export_script,
    export_dynamo,
    export_dynopt,
    export_cus_p0,
    export_cus_p2,
]

exporters = {f.__name__.replace("export_", ""): f for f in export_functions}

supported_exporters = {}
for k, v in exporters.items():
    print(f"run exporter {k}")
    filename = f"plot_torch_export_{k}.onnx"
    try:
        v(filename, model, input_tensor)
    except Exception as e:
        print(f"skipped due to {str(e)[:1000]}")
        continue
    supported_exporters[k] = v
    print(f"done. size={os.stat(filename).st_size / 2 ** 20:1.0f} Mb")
run exporter script
done. size=0 Mb
run exporter dynamo
done. size=0 Mb
run exporter dynopt
done. size=0 Mb
run exporter cus_p0
done. size=0 Mb
run exporter cus_p2
done. size=0 Mb

Exporter memory

def flatten(ps):
    obs = ps["cpu"].to_dict(unit=2**20)
    if "gpus" in ps:
        for i, g in enumerate(ps["gpus"]):
            for k, v in g.to_dict(unit=2**20).items():
                obs[f"gpu{i}_{k}"] = v
    return obs


data = []

for k, v in supported_exporters.items():
    print(f"run exporter for memory {k}")
    filename = f"plot_torch_export_{k}.onnx"
    if has_cuda:
        torch.cuda.set_device(0)
    stat = start_spying_on(cuda=1 if has_cuda else 0)
    v(filename, model, input_tensor)
    obs = flatten(stat.stop())
    print("done.")
    onx = onnx.load(filename)
    obs.update(dict(nodes=len(onx.graph.node), export=k))
    data.append(obs)

stat = start_spying_on(cuda=1 if has_cuda else 0)
exported_mod = torch.export.export(model, (input_tensor,))
obs = flatten(stat.stop())
obs.update(dict(export="torch.fx"))
data.append(obs)
run exporter for memory script
done.
run exporter for memory dynamo
done.
run exporter for memory dynopt
done.
run exporter for memory cus_p0
done.
run exporter for memory cus_p2
done.

The result.

df1 = pandas.DataFrame(data)
df1.to_csv("plot_torch_export_memory.csv", index=False)
df1.to_excel("plot_torch_export_memory.xlsx", index=False)
print(df1)

ax = memory_peak_plot(
    data,
    bars=[model_size * i / 2**20 for i in range(1, 5)],
    suptitle=f"Memory Consumption of the Export\nmodel size={model_size / 2**20:1.0f} Mb",
)
get_figure(ax).savefig("plot_torch_export_memory.png")
Memory Consumption of the Export model size=0 Mb, Memory peak (Mb), Memory peak - memory begin (Mb), Memory average - memory begin (Mb), GPU Memory peak (Mb), GPU Memory peak - memory begin (Mb), GPU Memory average - memory begin (Mb)
          peak         mean    n        begin          end  gpu0_peak  gpu0_mean  gpu0_n  gpu0_begin  gpu0_end  nodes    export
0  1405.429688  1405.429688    9  1405.429688  1405.429688      228.0      228.0       9       228.0     228.0   12.0    script
1  1405.742188  1405.444079  152  1405.429688  1405.742188      228.0      228.0     152       228.0     228.0   12.0    dynamo
2  1406.835938  1405.752506  106  1405.742188  1406.835938      228.0      228.0     106       228.0     228.0   12.0    dynopt
3  1406.835938  1406.835938   21  1406.835938  1406.835938      228.0      228.0      21       228.0     228.0   12.0    cus_p0
4  1406.835938  1391.022705   16  1406.835938  1388.683594      228.0      228.0      16       228.0     228.0   12.0    cus_p2
5  1388.683594  1388.683594   20  1388.683594  1388.683594      228.0      228.0      20       228.0     228.0    NaN  torch.fx

Exporter speed

data = []

for k, v in supported_exporters.items():
    print(f"run exporter {k}")
    filename = f"plot_torch_export_{k}.onnx"
    times = []
    for _ in range(script_args.repeat):
        begin = time.perf_counter()
        v(filename, model, input_tensor)
        duration = time.perf_counter() - begin
        times.append(duration)
    onx = onnx.load(filename)
    print("done.")
    data.append(
        dict(
            export=k,
            time=np.mean(times),
            min=min(times),
            max=max(times),
            first=times[0],
            last=times[-1],
            std=np.std(times),
            nodes=len(onx.graph.node),
        )
    )
run exporter script
done.
run exporter dynamo
done.
run exporter dynopt
done.
run exporter cus_p0
done.
run exporter cus_p2
done.

The last export to measure time torch spends in export the model before any other export can begin the translation except the first one.

times = []
for _ in range(script_args.repeat):
    begin = time.perf_counter()
    exported_mod = torch.export.export(model, (input_tensor,))
    duration = time.perf_counter() - begin
    times.append(duration)
data.append(
    dict(
        export="torch.fx",
        time=np.mean(times),
        min=min(times),
        max=max(times),
        first=times[0],
        last=times[-1],
        std=np.std(times),
        nodes=len(onx.graph.node),
    )
)

The result.

df1 = pandas.DataFrame(data)
df1.to_csv("plot_torch_export_time.csv", index=False)
df1.to_excel("plot_torch_export_time.xlsx", index=False)
print(df1)

fig, ax = plt.subplots(1, 1)
dfi = df1[["export", "time", "std"]].set_index("export")
dfi["time"].plot.bar(ax=ax, title="Export time", yerr=dfi["std"], rot=30)
fig.tight_layout()
fig.savefig("plot_torch_export_time.png")
Export time
     export      time       min       max     first      last       std  nodes
0    script  0.032566  0.026262  0.040888  0.028760  0.029386  0.005626     12
1    dynamo  0.980176  0.817823  1.388478  0.817823  0.841783  0.209161     12
2    dynopt  0.951907  0.858610  1.237015  0.889581  0.868907  0.143475     12
3    cus_p0  0.085859  0.083633  0.089839  0.086819  0.089839  0.002273     12
4    cus_p2  0.091653  0.079742  0.107267  0.079742  0.089370  0.009120     12
5  torch.fx  0.069661  0.051387  0.079872  0.077077  0.074461  0.010329     12

Exporter Profiling

def clean_text(text):
    pathes = [
        os.path.abspath(os.path.normpath(os.path.join(os.path.dirname(torch.__file__), ".."))),
        os.path.abspath(os.path.normpath(os.path.join(os.path.dirname(onnx.__file__), ".."))),
        os.path.abspath(
            os.path.normpath(
                os.path.join(os.path.dirname(experimental_experiment.__file__), "..")
            )
        ),
    ]
    for p in pathes:
        text = text.replace(p, "")
    text = text.replace("experimental_experiment", "experimental_experiment".upper())
    return text


def profile_function(name, export_function, verbose=False):
    print(f"profile {name}: {export_function}")
    pr = cProfile.Profile()
    pr.enable()
    for _ in range(script_args.repeat):
        export_function("dummyc.onnx", model, input_tensor)
    pr.disable()
    s = io.StringIO()
    sortby = SortKey.CUMULATIVE
    ps = pstats.Stats(pr, stream=s).sort_stats(sortby)
    ps.print_stats()

    raw = s.getvalue()
    text = "\n".join(raw.split("\n")[:200])
    if verbose:
        print(text)
    with open(f"plot_torch_export_profile_{name}.txt", "w") as f:
        f.write(raw)

    root, _nodes = profile2graph(ps, clean_text=clean_text)
    text = root.to_text()
    with open(f"plot_torch_export_profile_{name}_h.txt", "w") as f:
        f.write(text)
    print("done.")


profile_function("custom0", export_cus_p0, True)
profile_function("custom2", export_cus_p2)
profile custom0: <function export_cus_p0 at 0x7d112a7b5e40>
         750483 function calls (737424 primitive calls) in 0.893 seconds

   Ordered by: cumulative time

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
    80/20    0.001    0.000    0.487    0.024 ~/vv/this312/lib/python3.12/site-packages/torch/nn/functional.py:1712(relu)
     35/5    0.001    0.000    0.335    0.067 ~/vv/this312/lib/python3.12/site-packages/torch/nn/modules/module.py:1783(_call_impl)
        5    0.000    0.000    0.332    0.066 ~/vv/this312/lib/python3.12/site-packages/torch/export/_trace.py:2096(forward)
        5    0.000    0.000    0.313    0.063 ~/github/experimental-experiment/_doc/examples/plot_torch_export_201.py:190(forward)
        5    0.001    0.000    0.266    0.053 ~/github/experimental-experiment/experimental_experiment/xbuilder/graph_builder.py:5746(to_onnx)
        5    0.001    0.000    0.225    0.045 ~/github/experimental-experiment/experimental_experiment/xbuilder/graph_builder.py:6526(optimize)
       65    0.001    0.000    0.222    0.003 ~/github/experimental-experiment/experimental_experiment/xbuilder/graph_builder.py:6620(optimize_pass)
     1425    0.005    0.000    0.213    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:1643(__torch_function__)
     1425    0.006    0.000    0.203    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:1673(__torch_function__)
     2300    0.007    0.000    0.196    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/_export/non_strict_utils.py:1141(__torch_function__)
        5    0.000    0.000    0.192    0.038 ~/github/experimental-experiment/experimental_experiment/xbuilder/graph_builder.py:6809(optimize_with_patterns)
        5    0.002    0.000    0.191    0.038 ~/github/experimental-experiment/experimental_experiment/xoptim/graph_builder_optim.py:1546(optimize)
       60    0.001    0.000    0.175    0.003 ~/vv/this312/lib/python3.12/site-packages/torch/_ops.py:978(handler)
       60    0.007    0.000    0.171    0.003 ~/vv/this312/lib/python3.12/site-packages/torch/_library/utils.py:307(handle_dispatch_mode)
  365/125    0.001    0.000    0.162    0.001 ~/vv/this312/lib/python3.12/site-packages/torch/utils/_stats.py:24(wrapper)
       60    0.001    0.000    0.161    0.003 ~/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:1771(__torch_dispatch__)
       60    0.002    0.000    0.160    0.003 ~/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:1079(proxy_call)
       25    0.011    0.000    0.154    0.006 ~/github/experimental-experiment/experimental_experiment/xoptim/graph_builder_optim.py:1348(_optimize_matching_step)
    40/10    0.001    0.000    0.140    0.014 ~/vv/this312/lib/python3.12/site-packages/torch/_jit_internal.py:626(fn)
     1910    0.037    0.000    0.138    0.000 ~/github/experimental-experiment/experimental_experiment/xoptim/patterns_api.py:146(enumerate_matches)
      115    0.001    0.000    0.107    0.001 ~/vv/this312/lib/python3.12/site-packages/torch/fx/proxy.py:274(create_proxy)
     20/5    0.000    0.000    0.104    0.021 {built-in method torch.flatten}
  390/130    0.002    0.000    0.100    0.001 ~/vv/this312/lib/python3.12/site-packages/torch/overrides.py:1690(handle_torch_function)
      120    0.001    0.000    0.100    0.001 ~/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:2367(create_node)
      120    0.001    0.000    0.098    0.001 ~/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:1397(create_node)
      120    0.003    0.000    0.095    0.001 ~/vv/this312/lib/python3.12/site-packages/torch/fx/proxy.py:155(create_node)
       65    0.000    0.000    0.076    0.001 ~/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:847(track_tensor_tree)
   120/65    0.001    0.000    0.075    0.001 ~/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:869(wrap_with_proxy)
 1685/265    0.005    0.000    0.074    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/utils/_pytree.py:1278(unflatten)
      120    0.001    0.000    0.072    0.001 ~/vv/this312/lib/python3.12/site-packages/torch/utils/_traceback.py:173(summary)
  340/175    0.000    0.000    0.072    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/_ops.py:864(__call__)
        5    0.000    0.000    0.069    0.014 ~/vv/this312/lib/python3.12/site-packages/torch/export/_trace.py:590(_produce_aten_artifact)
        5    0.001    0.000    0.066    0.013 ~/github/experimental-experiment/experimental_experiment/xbuilder/graph_builder.py:5419(process)
      120    0.003    0.000    0.064    0.001 ~/github/experimental-experiment/experimental_experiment/torch_interpreter/interpreter.py:187(run_node)
       30    0.001    0.000    0.060    0.002 ~/vv/this312/lib/python3.12/site-packages/torch/fx/graph_module.py:865(recompile)
      185    0.001    0.000    0.060    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/utils/_pytree.py:1498(tree_map)
      115    0.001    0.000    0.059    0.001 ~/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:737(set_meta)
       20    0.000    0.000    0.057    0.003 {built-in method torch.relu}
      240    0.001    0.000    0.054    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:1413(__torch_dispatch__)
      240    0.002    0.000    0.053    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:2177(dispatch)
3520/3500    0.004    0.000    0.053    0.000 {built-in method builtins.next}
       95    0.001    0.000    0.050    0.001 ~/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:1505(_cached_dispatch_impl)
       15    0.000    0.000    0.050    0.003 ~/vv/this312/lib/python3.12/site-packages/torch/nn/modules/linear.py:130(forward)
    60/15    0.000    0.000    0.050    0.003 {built-in method torch._C._nn.linear}
        5    0.000    0.000    0.047    0.009 ~/vv/this312/lib/python3.12/site-packages/torch/fx/_symbolic_trace.py:648(create_args_for_root)
      120    0.010    0.000    0.047    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/utils/_traceback.py:252(_extract_symbolized_tb)
      485    0.000    0.000    0.046    0.000 {method 'extend' of 'list' objects}
       60    0.000    0.000    0.046    0.001 ~/vv/this312/lib/python3.12/site-packages/torch/fx/_symbolic_trace.py:714(<genexpr>)
       55    0.000    0.000    0.046    0.001 ~/vv/this312/lib/python3.12/site-packages/torch/fx/_symbolic_trace.py:711(proxy_placeholder)
       30    0.000    0.000    0.045    0.002 ~/vv/this312/lib/python3.12/site-packages/torch/fx/graph.py:1881(python_code)
       55    0.000    0.000    0.045    0.001 ~/vv/this312/lib/python3.12/site-packages/torch/fx/_symbolic_trace.py:924(_proxy_placeholder)
       60    0.002    0.000    0.044    0.001 ~/github/experimental-experiment/experimental_experiment/torch_interpreter/interpreter.py:1544(call_function)
       55    0.000    0.000    0.044    0.001 ~/vv/this312/lib/python3.12/site-packages/torch/fx/_symbolic_trace.py:928(replace_ph)
      720    0.001    0.000    0.042    0.000 ~/github/experimental-experiment/experimental_experiment/xoptim/patterns_api.py:1001(match)
      720    0.001    0.000    0.040    0.000 ~/github/experimental-experiment/experimental_experiment/xoptim/patterns_api.py:390(_get_match_pattern)
      205    0.006    0.000    0.038    0.000 ~/github/experimental-experiment/experimental_experiment/xbuilder/graph_builder.py:4300(make_node)
       10    0.001    0.000    0.038    0.004 ~/github/experimental-experiment/experimental_experiment/xoptim/patterns_api.py:333(_build_pattern)
      185    0.002    0.000    0.037    0.000 ~/github/experimental-experiment/experimental_experiment/xbuilder/graph_builder_opset.py:116(make_node)
     8735    0.005    0.000    0.036    0.000 /usr/lib/python3.12/traceback.py:265(__init__)
      115    0.002    0.000    0.035    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/fx/passes/shape_prop.py:40(_extract_tensor_metadata)
     30/6    0.001    0.000    0.035    0.006 ~/vv/this312/lib/python3.12/site-packages/torch/_subclasses/meta_utils.py:2037(__call__)
       30    0.000    0.000    0.035    0.001 ~/vv/this312/lib/python3.12/site-packages/torch/fx/graph.py:1962(_python_code)
       30    0.004    0.000    0.034    0.001 ~/vv/this312/lib/python3.12/site-packages/torch/fx/graph.py:451(_gen_python_code)
       55    0.001    0.000    0.033    0.001 ~/vv/this312/lib/python3.12/site-packages/torch/_subclasses/meta_utils.py:892(meta_tensor)
1670/1660    0.002    0.000    0.033    0.000 /usr/lib/python3.12/contextlib.py:132(__enter__)
     25/5    0.001    0.000    0.032    0.006 ~/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:3131(from_tensor)
     9075    0.012    0.000    0.032    0.000 /usr/lib/python3.12/traceback.py:318(line)
       10    0.000    0.000    0.031    0.003 ~/vv/this312/lib/python3.12/site-packages/torch/nn/modules/conv.py:552(forward)
       10    0.000    0.000    0.031    0.003 ~/vv/this312/lib/python3.12/site-packages/torch/nn/modules/conv.py:534(_conv_forward)
    40/10    0.000    0.000    0.031    0.003 {built-in method torch.conv2d}
106605/105345    0.025    0.000    0.030    0.000 {built-in method builtins.isinstance}
     25/5    0.001    0.000    0.030    0.006 ~/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:362(from_real_tensor)
       55    0.002    0.000    0.029    0.001 ~/vv/this312/lib/python3.12/site-packages/torch/autograd/grad_mode.py:293(__exit__)
    40/10    0.000    0.000    0.028    0.003 ~/vv/this312/lib/python3.12/site-packages/torch/nn/functional.py:812(_max_pool2d)
       10    0.000    0.000    0.026    0.003 {built-in method torch.max_pool2d}
       95    0.001    0.000    0.025    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:1601(_cache_key)
       10    0.000    0.000    0.025    0.002 ~/vv/this312/lib/python3.12/site-packages/torch/utils/_pytree.py:2175(tree_map_with_path)
        5    0.001    0.000    0.025    0.005 ~/github/experimental-experiment/experimental_experiment/xbuilder/graph_builder.py:4944(_build_initializers)
1670/1660    0.002    0.000    0.024    0.000 /usr/lib/python3.12/contextlib.py:141(__exit__)
      120    0.024    0.000    0.024    0.000 {built-in method torch._C._profiler.symbolize_tracebacks}
  215/175    0.001    0.000    0.024    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/nn/modules/module.py:1972(__setattr__)
        5    0.000    0.000    0.024    0.005 ~/vv/this312/lib/python3.12/site-packages/torch/_export/non_strict_utils.py:391(make_fake_inputs)
       15    0.003    0.000    0.024    0.002 ~/github/experimental-experiment/experimental_experiment/xoptim/patterns/__init__.py:144(get_default_patterns)
        5    0.002    0.000    0.023    0.005 ~/github/experimental-experiment/experimental_experiment/torch_interpreter/onnx_export.py:872(build_source_lines)
       95    0.000    0.000    0.023    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:2100(_output_from_cache_entry)
      115    0.000    0.000    0.023    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/_prims_common/__init__.py:434(is_contiguous_for_memory_format_or_false)
      115    0.000    0.000    0.023    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/_prims_common/__init__.py:397(is_contiguous_for_memory_format)
      105    0.002    0.000    0.023    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:2015(_get_output_tensor_from_cache_entry)
   440/95    0.005    0.000    0.023    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:1726(_prep_args_for_hash)
       10    0.000    0.000    0.023    0.002 ~/vv/this312/lib/python3.12/site-packages/torch/fx/graph_module.py:495(__init__)
       50    0.002    0.000    0.022    0.000 ~/github/onnx-diagnostic/onnx_diagnostic/helpers/mini_onnx_builder.py:12(proto_from_array)
      115    0.000    0.000    0.022    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:635(extract_val)
       10    0.000    0.000    0.021    0.002 ~/vv/this312/lib/python3.12/site-packages/torch/_export/passes/replace_with_hop_pass_util.py:172(_replace_with_hop_pass_helper)
      115    0.001    0.000    0.021    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/_prims_common/__init__.py:300(is_contiguous)
      115    0.000    0.000    0.021    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:609(snapshot_fake)
       20    0.000    0.000    0.021    0.001 ~/vv/this312/lib/python3.12/site-packages/torch/utils/_pytree.py:2207(<genexpr>)
      115    0.003    0.000    0.021    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_impls.py:1660(fast_detach)
       10    0.000    0.000    0.021    0.002 ~/vv/this312/lib/python3.12/site-packages/torch/fx/graph_module.py:620(graph)
     1275    0.006    0.000    0.020    0.000 ~/github/experimental-experiment/experimental_experiment/xoptim/patterns_api.py:124(__init__)
      375    0.001    0.000    0.020    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/utils/_pytree.py:1424(tree_flatten)
      720    0.003    0.000    0.020    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/fx/graph.py:696(emit_node)
 2345/375    0.005    0.000    0.019    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/utils/_pytree.py:1432(helper)
       60    0.001    0.000    0.018    0.000 /usr/lib/python3.12/inspect.py:1251(getsourcelines)
        5    0.000    0.000    0.018    0.004 ~/vv/this312/lib/python3.12/site-packages/torch/_export/utils.py:724(apply_runtime_assertion_pass)
     5795    0.018    0.000    0.018    0.000 {built-in method builtins.setattr}
      275    0.005    0.000    0.018    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:735(__new__)
       15    0.000    0.000    0.018    0.001 ~/github/experimental-experiment/experimental_experiment/xoptim/graph_builder_optim.py:69(__init__)
      115    0.001    0.000    0.017    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/_prims_common/__init__.py:254(check_contiguous_sizes_strides)
     8735    0.008    0.000    0.017    0.000 /usr/lib/python3.12/linecache.py:26(getline)
       55    0.003    0.000    0.016    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/autograd/grad_mode.py:289(__enter__)
       50    0.016    0.000    0.016    0.000 {method 'clone' of 'torch._C.TensorBase' objects}
      135    0.000    0.000    0.015    0.000 /usr/lib/python3.12/inspect.py:3308(signature)
  510/210    0.002    0.000    0.015    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/__init__.py:883(sym_max)
      115    0.002    0.000    0.015    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:765(track_tensor)
      135    0.000    0.000    0.015    0.000 /usr/lib/python3.12/inspect.py:3050(from_callable)
        5    0.000    0.000    0.015    0.003 ~/vv/this312/lib/python3.12/site-packages/torch/export/exported_program.py:1090(__init__)
  265/135    0.002    0.000    0.015    0.000 /usr/lib/python3.12/inspect.py:2470(_signature_from_callable)
       10    0.001    0.000    0.014    0.001 ~/github/experimental-experiment/experimental_experiment/xbuilder/graph_builder.py:6999(constant_folding)
     1350    0.001    0.000    0.014    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/_subclasses/meta_utils.py:199(is_sparse_any)
       60    0.004    0.000    0.014    0.000 /usr/lib/python3.12/inspect.py:1232(getblock)
        5    0.000    0.000    0.014    0.003 ~/vv/this312/lib/python3.12/site-packages/torch/_export/utils.py:1032(placeholder_naming_pass)
       25    0.001    0.000    0.014    0.001 ~/github/experimental-experiment/experimental_experiment/xoptim/graph_builder_optim.py:1451(_optimize_apply_step)
     4345    0.004    0.000    0.013    0.000 <frozen _collections_abc>:804(get)
      240    0.000    0.000    0.013    0.000 ~/github/experimental-experiment/experimental_experiment/xbuilder/graph_builder.py:8087(_make_node_set_type_shape)
      240    0.001    0.000    0.013    0.000 ~/github/experimental-experiment/experimental_experiment/xshape/shape_type_compute.py:1414(set_shape_type_op_any)
       30    0.000    0.000    0.012    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/fx/graph_module.py:109(_forward_from_src)
       30    0.000    0.000    0.012    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/fx/graph_module.py:115(_method_from_src)
       30    0.000    0.000    0.012    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/fx/graph_module.py:104(_exec_with_source)
    50/40    0.000    0.000    0.012    0.000 ~/github/experimental-experiment/experimental_experiment/xbuilder/graph_builder.py:1264(compute_constant)
    50/40    0.002    0.000    0.012    0.000 ~/github/experimental-experiment/experimental_experiment/xshape/_inference_runtime.py:306(compute_constant)
        5    0.000    0.000    0.012    0.002 ~/vv/this312/lib/python3.12/site-packages/torch/fx/_lazy_graph_module.py:57(_make_graph_module)
        5    0.000    0.000    0.012    0.002 ~/vv/this312/lib/python3.12/site-packages/torch/export/_trace.py:550(_replace_unbacked_bindings)
       55    0.003    0.000    0.012    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/_subclasses/meta_utils.py:283(describe_tensor)
      145    0.003    0.000    0.012    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:1084(_flatten_into)
       30    0.011    0.000    0.011    0.000 {built-in method builtins.compile}
        5    0.000    0.000    0.011    0.002 ~/vv/this312/lib/python3.12/site-packages/torch/_export/passes/replace_set_grad_with_hop_pass.py:120(replace_set_grad_with_hop_pass)
     1675    0.004    0.000    0.011    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/fx/node.py:868(__setattr__)
        5    0.000    0.000    0.011    0.002 ~/github/experimental-experiment/experimental_experiment/torch_interpreter/_aten_functions.py:3733(aten_flatten_using_ints)
 1050/115    0.004    0.000    0.011    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/symbolic_shapes.py:1177(_free_unbacked_symbols_with_path)
        5    0.000    0.000    0.011    0.002 ~/vv/this312/lib/python3.12/site-packages/torch/export/exported_program.py:1728(_create_graph_module_for_export)
      420    0.003    0.000    0.011    0.000 ~/github/experimental-experiment/experimental_experiment/xbuilder/graph_builder.py:1986(set_shape)
        5    0.000    0.000    0.010    0.002 ~/vv/this312/lib/python3.12/site-packages/torch/_export/passes/replace_autocast_with_hop_pass.py:201(replace_autocast_with_hop_pass)
      115    0.001    0.000    0.010    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/symbolic_shapes.py:1222(match_tensor)
       30    0.001    0.000    0.010    0.000 ~/github/experimental-experiment/experimental_experiment/xoptim/graph_builder_optim.py:818(apply_match)
        5    0.000    0.000    0.010    0.002 ~/github/experimental-experiment/experimental_experiment/xoptim/patterns/onnx_functions.py:509(match_pattern)
        5    0.000    0.000    0.010    0.002 ~/vv/this312/lib/python3.12/site-packages/torch/_export/non_strict_utils.py:475(<lambda>)
       50    0.005    0.000    0.010    0.000 ~/github/experimental-experiment/experimental_experiment/xbuilder/graph_builder.py:6935(remove_unused)
     4345    0.005    0.000    0.010    0.000 <frozen os>:680(__getitem__)
       60    0.001    0.000    0.010    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/fx/graph.py:1937(override_node_repr)
       15    0.000    0.000    0.010    0.001 ~/github/experimental-experiment/experimental_experiment/xbuilder/optimization_options.py:65(__init__)
        5    0.000    0.000    0.009    0.002 ~/github/experimental-experiment/experimental_experiment/xoptim/__init__.py:101(get_pattern_list)
        5    0.000    0.000    0.009    0.002 ~/github/experimental-experiment/experimental_experiment/xoptim/__init__.py:14(get_pattern)
        5    0.000    0.000    0.009    0.002 ~/vv/this312/lib/python3.12/site-packages/torch/_export/non_strict_utils.py:168(fakify)
       40    0.004    0.000    0.009    0.000 ~/github/experimental-experiment/experimental_experiment/xbuilder/graph_builder.py:7269(remove_identity_nodes)
       55    0.001    0.000    0.009    0.000 ~/github/experimental-experiment/experimental_experiment/torch_interpreter/interpreter.py:594(placeholder)
      135    0.003    0.000    0.009    0.000 /usr/lib/python3.12/inspect.py:2366(_signature_from_function)
       15    0.000    0.000    0.009    0.001 ~/github/experimental-experiment/experimental_experiment/torch_interpreter/_aten_functions.py:6752(aten_linear)
      135    0.001    0.000    0.009    0.000 ~/github/experimental-experiment/experimental_experiment/xoptim/graph_builder_optim.py:1269(_check_graph)
  385/235    0.001    0.000    0.009    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:1360(create_arg)
     2300    0.007    0.000    0.009    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/_export/non_strict_utils.py:1041(_override)
46095/46045    0.009    0.000    0.009    0.000 {built-in method builtins.len}
       10    0.000    0.000    0.009    0.001 ~/vv/this312/lib/python3.12/site-packages/torch/fx/_symbolic_trace.py:1132(patch_method)
     4485    0.005    0.000    0.009    0.000 /usr/lib/python3.12/tokenize.py:569(_generate_tokens_from_c_tokenizer)
       10    0.000    0.000    0.009    0.001 ~/vv/this312/lib/python3.12/site-packages/torch/fx/_symbolic_trace.py:1100(patch)
       90    0.002    0.000    0.008    0.000 ~/github/experimental-experiment/experimental_experiment/xbuilder/graph_builder.py:2954(add_initializer)
     8795    0.006    0.000    0.008    0.000 /usr/lib/python3.12/linecache.py:36(getlines)
       10    0.001    0.000    0.008    0.001 {built-in method torch._ops.aten.}
       85    0.001    0.000    0.008    0.000 ~/github/experimental-experiment/experimental_experiment/xbuilder/graph_builder.py:6404(_check)
      250    0.002    0.000    0.008    0.000 ~/github/experimental-experiment/experimental_experiment/xshape/_inference_runtime.py:86(_make_node_set_type_shape_constant)
1710/1625    0.002    0.000    0.008    0.000 {built-in method builtins.all}
    30040    0.008    0.000    0.008    0.000 {method 'append' of 'list' objects}
      145    0.002    0.000    0.008    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:1106(extract_tensor_metadata)
     3545    0.002    0.000    0.007    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/utils/_pytree.py:1049(_get_node_type)
     1375    0.003    0.000    0.007    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:643(__set__)
     2570    0.002    0.000    0.007    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/utils/_pytree.py:1061(tree_is_leaf)
      105    0.006    0.000    0.007    0.000 ~/github/experimental-experiment/experimental_experiment/xoptim/graph_builder_optim.py:1195(_check_graph_nodes)
       85    0.005    0.000    0.007    0.000 ~/github/experimental-experiment/experimental_experiment/xbuilder/graph_builder.py:6362(_check_nodes)
       60    0.002    0.000    0.007    0.000 ~/github/experimental-experiment/experimental_experiment/torch_interpreter/interpreter.py:1993(_set_shape_and_type)
     1570    0.002    0.000    0.007    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/_subclasses/meta_utils.py:194(is_sparse_compressed)
       50    0.005    0.000    0.007    0.000 ~/github/experimental-experiment/experimental_experiment/xoptim/graph_builder_optim.py:156(_build)
        5    0.002    0.000    0.007    0.001 ~/vv/this312/lib/python3.12/site-packages/torch/fx/passes/runtime_assert.py:54(insert_deferred_runtime_asserts)
  385/235    0.002    0.000    0.007    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/fx/_symbolic_trace.py:367(create_arg)
        5    0.000    0.000    0.007    0.001 ~/github/experimental-experiment/experimental_experiment/xbuilder/graph_builder.py:5707(_update_metadata_props)
      250    0.002    0.000    0.007    0.000 ~/github/onnx/onnx/helper.py:133(make_node)
      100    0.001    0.000    0.007    0.000 ~/github/experimental-experiment/experimental_experiment/xbuilder/graph_builder.py:7158(_refresh_values_cache)
     1380    0.003    0.000    0.007    0.000 ~/github/experimental-experiment/experimental_experiment/xbuilder/graph_builder.py:922(make_key)
       10    0.000    0.000    0.007    0.001 ~/vv/this312/lib/python3.12/site-packages/torch/_functorch/_aot_autograd/frontend_utils.py:219(_detect_attribute_assignment)
    26565    0.007    0.000    0.007    0.000 ~/github/experimental-experiment/experimental_experiment/xoptim/graph_builder_optim.py:217(is_used)
      435    0.001    0.000    0.006    0.000 ~/github/experimental-experiment/experimental_experiment/xbuilder/graph_builder.py:4072(verify_shape)
       55    0.001    0.000    0.006    0.000 ~/github/experimental-experiment/experimental_experiment/xbuilder/graph_builder.py:2805(make_initializer)
  365/295    0.002    0.000    0.006    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/recording.py:258(wrapper)
     1350    0.002    0.000    0.006    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/_subclasses/meta_utils.py:180(is_sparse_coo)
    12325    0.005    0.000    0.006    0.000 {method 'get' of 'dict' objects}
       10    0.000    0.000    0.006    0.001 ~/vv/this312/lib/python3.12/site-packages/torch/fx/_symbolic_trace.py:1185(_new_patcher)
        5    0.000    0.000    0.006    0.001 ~/vv/this312/lib/python3.12/site-packages/torch/fx/_symbolic_trace.py:1153(revert_all_patches)
done.
profile custom2: <function export_cus_p2 at 0x7d112a7b5800>
done.

Same with dynamo-exporter.

profile_function("dynamo", export_dynamo, verbose=True)
if "dynopt" in supported_exporters:
    profile_function("dynopt", export_dynopt)
profile dynamo: <function export_dynamo at 0x7d112a8c0ea0>
         11466006 function calls (11278890 primitive calls) in 9.375 seconds

   Ordered by: cumulative time

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        5    0.017    0.003    4.661    0.932 ~/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/exporter/_registration.py:159(from_torchlib)
     2390    0.026    0.000    3.278    0.001 ~/github/onnxscript/onnxscript/_internal/values.py:481(function_ir)
        5    0.070    0.014    3.129    0.626 ~/github/onnxscript/onnxscript/_framework_apis/torch_2_5.py:111(get_torchlib_ops)
11240/10180    0.010    0.000    1.764    0.000 {built-in method builtins.next}
4975/4450    0.004    0.000    1.682    0.000 /usr/lib/python3.12/contextlib.py:132(__enter__)
     2390    0.015    0.000    1.679    0.001 ~/github/onnxscript/onnxscript/_internal/ast_utils.py:13(get_src_and_ast)
       10    0.155    0.015    1.555    0.155 ~/vv/this312/lib/python3.12/site-packages/torch/export/exported_program.py:191(_override_composite_implicit_decomp)
     2390    0.008    0.000    1.488    0.001 ~/github/onnxscript/onnxscript/_internal/converter.py:1476(translate_function_signature)
       10    0.001    0.000    1.381    0.138 ~/vv/this312/lib/python3.12/site-packages/torch/_export/utils.py:1361(_collect_all_valid_cia_ops)
      330    0.012    0.000    1.379    0.004 ~/vv/this312/lib/python3.12/site-packages/torch/_export/utils.py:1344(_collect_all_valid_cia_ops_for_namespace)
     2390    0.073    0.000    1.307    0.001 ~/github/onnxscript/onnxscript/_internal/converter.py:1400(_translate_function_signature_common)
      330    0.478    0.001    1.264    0.004 ~/vv/this312/lib/python3.12/site-packages/torch/_export/utils.py:1278(_materialize_cpp_cia_ops)
     2715    0.026    0.000    1.231    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/exporter/_registration.py:61(__post_init__)
     2715    0.092    0.000    1.193    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/exporter/_schemas.py:431(from_function)
     2390    0.004    0.000    1.178    0.000 /usr/lib/python3.12/inspect.py:1272(getsource)
     2390    0.109    0.000    1.171    0.000 /usr/lib/python3.12/inspect.py:1251(getsourcelines)
    110/6    0.002    0.000    0.942    0.157 ~/vv/this312/lib/python3.12/site-packages/torch/_subclasses/meta_utils.py:2037(__call__)
     35/5    0.001    0.000    0.940    0.188 ~/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:3131(from_tensor)
    101/5    0.003    0.000    0.940    0.188 ~/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:362(from_real_tensor)
     2390    0.248    0.000    0.884    0.000 /usr/lib/python3.12/inspect.py:1232(getblock)
        5    0.008    0.002    0.778    0.156 ~/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/exporter/_decomp.py:40(create_onnx_friendly_decomposition_table)
94320/17000    0.156    0.000    0.745    0.000 ~/github/onnxscript/onnxscript/_internal/type_annotation.py:112(is_value_type)
        5    0.007    0.001    0.737    0.147 ~/vv/this312/lib/python3.12/site-packages/torch/export/exported_program.py:275(_split_decomp_table_to_cia_and_python_decomp)
    64195    0.660    0.000    0.732    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/_ops.py:121(inner)
        5    0.000    0.000    0.726    0.145 ~/vv/this312/lib/python3.12/site-packages/torch/export/decomp_utils.py:141(items)
        5    0.000    0.000    0.726    0.145 ~/vv/this312/lib/python3.12/site-packages/torch/export/decomp_utils.py:158(_materialize_if_needed)
        5    0.002    0.000    0.726    0.145 ~/vv/this312/lib/python3.12/site-packages/torch/export/decomp_utils.py:145(materialize)
    25105    0.687    0.000    0.687    0.000 {built-in method builtins.compile}
    64195    0.084    0.000    0.614    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/_ops.py:117(py_impl)
   301140    0.323    0.000    0.562    0.000 /usr/lib/python3.12/tokenize.py:569(_generate_tokens_from_c_tokenizer)
   129410    0.195    0.000    0.534    0.000 <frozen _collections_abc>:469(__new__)
1812345/1804405    0.388    0.000    0.509    0.000 {built-in method builtins.isinstance}
     9830    0.008    0.000    0.480    0.000 ~/github/onnxscript/onnxscript/_internal/type_annotation.py:153(is_valid_type)
29620/4535    0.154    0.000    0.468    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/exporter/_schemas.py:265(_get_allowed_types_from_type_annotation)
     7170    0.009    0.000    0.467    0.000 ~/github/onnxscript/onnxscript/_internal/converter.py:496(_get_type_annotation)
  1113020    0.433    0.000    0.439    0.000 {built-in method builtins.getattr}
    80/20    0.001    0.000    0.421    0.021 ~/vv/this312/lib/python3.12/site-packages/torch/nn/functional.py:1712(relu)
     2410    0.020    0.000    0.415    0.000 /usr/lib/python3.12/ast.py:34(parse)
 1170/760    0.006    0.000    0.388    0.001 ~/vv/this312/lib/python3.12/site-packages/torch/utils/_stats.py:24(wrapper)
      110    0.001    0.000    0.379    0.003 ~/vv/this312/lib/python3.12/site-packages/torch/_functorch/_aot_autograd/functional_utils.py:32(to_fun)
     2715    0.048    0.000    0.367    0.000 /usr/lib/python3.12/typing.py:2186(get_type_hints)
     3550    0.009    0.000    0.338    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:1643(__torch_function__)
    94320    0.079    0.000    0.304    0.000 ~/github/onnxscript/onnxscript/_internal/type_annotation.py:104(_is_tensor_type)
     7170    0.004    0.000    0.278    0.000 ~/github/onnxscript/onnxscript/_internal/type_annotation.py:149(is_attr_type)
    45/15    0.000    0.000    0.261    0.017 ~/vv/this312/lib/python3.12/site-packages/torch/nn/modules/module.py:1783(_call_impl)
        5    0.000    0.000    0.258    0.052 ~/vv/this312/lib/python3.12/site-packages/torch/export/_trace.py:2096(forward)
   145/10    0.001    0.000    0.248    0.025 ~/github/ir-py/src/onnx_ir/passes/_pass_infra.py:112(__call__)
    20/10    0.000    0.000    0.248    0.025 ~/github/ir-py/src/onnx_ir/passes/_pass_infra.py:245(call)
        5    0.000    0.000    0.245    0.049 ~/github/experimental-experiment/_doc/examples/plot_torch_export_201.py:190(forward)
   128390    0.130    0.000    0.241    0.000 <frozen _collections_abc>:511(_is_param_expr)
   298750    0.128    0.000    0.239    0.000 /usr/lib/python3.12/collections/__init__.py:447(_make)
      940    0.002    0.000    0.237    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:1413(__torch_dispatch__)
        5    0.000    0.000    0.235    0.047 ~/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/exporter/_onnx_program.py:317(optimize)
        5    0.000    0.000    0.235    0.047 ~/github/onnxscript/onnxscript/_framework_apis/torch_2_8.py:27(optimize)
        5    0.000    0.000    0.235    0.047 ~/github/onnxscript/onnxscript/optimizer/_optimizer.py:17(optimize_ir)
      940    0.008    0.000    0.234    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:2177(dispatch)
      230    0.002    0.000    0.232    0.001 ~/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:1771(__torch_dispatch__)
      230    0.064    0.000    0.227    0.001 ~/vv/this312/lib/python3.12/site-packages/torch/_subclasses/functional_tensor.py:400(__torch_dispatch__)
      430    0.003    0.000    0.222    0.001 ~/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:1505(_cached_dispatch_impl)
        5    0.000    0.000    0.220    0.044 ~/github/ir-py/src/onnx_ir/passes/_pass_infra.py:311(call)
      120    0.005    0.000    0.220    0.002 ~/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:1079(proxy_call)
    97795    0.063    0.000    0.214    0.000 ~/github/onnxscript/onnxscript/_internal/type_annotation.py:71(_remove_annotation)
       95    0.003    0.000    0.209    0.002 ~/vv/this312/lib/python3.12/site-packages/torch/fx/graph_module.py:865(recompile)
    12100    0.025    0.000    0.207    0.000 ~/github/onnxscript/onnxscript/_internal/converter.py:472(_eval_constant_expr)
      330    0.186    0.001    0.186    0.001 {built-in method torch._C._dispatch_get_registrations_for_dispatch_key}
   140455    0.104    0.000    0.185    0.000 /usr/lib/python3.12/typing.py:2310(get_origin)
     2955    0.003    0.000    0.181    0.000 /usr/lib/python3.12/inspect.py:3308(signature)
     2955    0.004    0.000    0.178    0.000 /usr/lib/python3.12/inspect.py:3050(from_callable)
3185/2955    0.027    0.000    0.174    0.000 /usr/lib/python3.12/inspect.py:2470(_signature_from_callable)
     2390    0.013    0.000    0.173    0.000 ~/github/onnxscript/onnxscript/_internal/irbuilder.py:22(__init__)
     1425    0.005    0.000    0.172    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:1673(__torch_function__)
     2300    0.006    0.000    0.168    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/_export/non_strict_utils.py:1141(__torch_function__)
   610040    0.165    0.000    0.165    0.000 {method 'split' of 'str' objects}
     2390    0.026    0.000    0.163    0.000 /usr/lib/python3.12/inspect.py:1063(findsource)
       95    0.001    0.000    0.156    0.002 ~/vv/this312/lib/python3.12/site-packages/torch/fx/graph.py:1881(python_code)
     7675    0.005    0.000    0.155    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/_export/utils.py:1264(_is_preservable_cia_op)
       10    0.000    0.000    0.154    0.015 ~/github/onnxscript/onnxscript/rewriter/__init__.py:82(call)
       10    0.000    0.000    0.154    0.015 ~/github/onnxscript/onnxscript/rewriter/_rewrite_rule.py:779(apply_to_model)
       60    0.001    0.000    0.153    0.003 ~/vv/this312/lib/python3.12/site-packages/torch/_ops.py:978(handler)
53250/53200    0.029    0.000    0.153    0.000 {built-in method builtins.repr}
1132735/1132215    0.151    0.000    0.151    0.000 {built-in method builtins.len}
       60    0.007    0.000    0.150    0.003 ~/vv/this312/lib/python3.12/site-packages/torch/_library/utils.py:307(handle_dispatch_mode)
    41565    0.025    0.000    0.148    0.000 ~/github/ir-py/src/onnx_ir/_core.py:2123(__hash__)
       10    0.004    0.000    0.147    0.015 ~/github/onnxscript/onnxscript/rewriter/_rewrite_rule.py:641(_apply_to_graph_or_function)
     5850    0.006    0.000    0.142    0.000 ~/github/onnxscript/onnxscript/rewriter/_rewrite_rule.py:302(try_rewrite)
23900/10500    0.026    0.000    0.142    0.000 /usr/lib/python3.12/typing.py:406(_eval_type)
     2395    0.023    0.000    0.140    0.000 ~/github/ir-py/src/onnx_ir/_core.py:2867(__init__)
       70    0.001    0.000    0.133    0.002 ~/vv/this312/lib/python3.12/site-packages/torch/_higher_order_ops/utils.py:38(autograd_not_implemented_inner)
    10500    0.016    0.000    0.132    0.000 /usr/lib/python3.12/typing.py:885(__init__)
     5850    0.008    0.000    0.131    0.000 ~/github/onnxscript/onnxscript/rewriter/_rewrite_rule.py:100(match)
    10500    0.026    0.000    0.131    0.000 /usr/lib/python3.12/typing.py:909(_evaluate)
    40/10    0.000    0.000    0.128    0.013 ~/vv/this312/lib/python3.12/site-packages/torch/_jit_internal.py:626(fn)
     7675    0.072    0.000    0.126    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/_export/utils.py:1313(_check_valid_to_preserve)
135515/135500    0.050    0.000    0.121    0.000 {built-in method builtins.any}
     2955    0.044    0.000    0.119    0.000 /usr/lib/python3.12/inspect.py:2366(_signature_from_function)
       95    0.001    0.000    0.119    0.001 ~/vv/this312/lib/python3.12/site-packages/torch/fx/graph.py:1962(_python_code)
       95    0.013    0.000    0.118    0.001 ~/vv/this312/lib/python3.12/site-packages/torch/fx/graph.py:451(_gen_python_code)
      230    0.001    0.000    0.116    0.001 ~/vv/this312/lib/python3.12/site-packages/torch/fx/proxy.py:274(create_proxy)
        5    0.000    0.000    0.113    0.023 ~/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/exporter/_fx_passes.py:22(insert_type_promotion_nodes)
     5850    0.012    0.000    0.113    0.000 ~/github/onnxscript/onnxscript/rewriter/_matcher.py:347(match)
   433360    0.111    0.000    0.111    0.000 {built-in method __new__ of type object at 0xa43b40}
        5    0.000    0.000    0.108    0.022 ~/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/fx/_pass.py:227(run)
        5    0.000    0.000    0.108    0.022 ~/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/fx/passes/type_promotion.py:1660(_run)
      120    0.001    0.000    0.106    0.001 ~/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/fx/passes/type_promotion.py:1580(run_node)
      240    0.001    0.000    0.106    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:2367(create_node)
      240    0.001    0.000    0.104    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:1397(create_node)
       10    0.001    0.000    0.101    0.010 ~/vv/this312/lib/python3.12/site-packages/torch/export/_trace.py:590(_produce_aten_artifact)
    45960    0.045    0.000    0.099    0.000 ~/github/ir-py/src/onnx_ir/_core.py:2131(__repr__)
      240    0.004    0.000    0.099    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/fx/proxy.py:155(create_node)
     20/5    0.000    0.000    0.095    0.019 {built-in method torch.flatten}
     4005    0.015    0.000    0.094    0.000 ~/github/onnxscript/onnxscript/_internal/converter.py:134(make_value)
      130    0.000    0.000    0.092    0.001 ~/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:847(track_tensor_tree)
      430    0.004    0.000    0.090    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:1601(_cache_key)
  240/130    0.001    0.000    0.090    0.001 ~/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:869(wrap_with_proxy)
   116860    0.041    0.000    0.089    0.000 <frozen abc>:117(__instancecheck__)
17055/540    0.032    0.000    0.089    0.000 /usr/lib/python3.12/copy.py:118(deepcopy)
        5    0.000    0.000    0.088    0.018 ~/vv/this312/lib/python3.12/site-packages/torch/export/exported_program.py:1432(module)
        5    0.001    0.000    0.088    0.018 ~/vv/this312/lib/python3.12/site-packages/torch/export/_unlift.py:754(_unlift_exported_program_lifted_states)
      665    0.004    0.000    0.087    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/fx/traceback.py:97(__init__)
      980    0.002    0.000    0.087    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/fx/interpreter.py:269(_set_current_node)
      170    0.003    0.000    0.087    0.001 ~/vv/this312/lib/python3.12/site-packages/torch/_subclasses/meta_utils.py:892(meta_tensor)
    91295    0.038    0.000    0.086    0.000 {built-in method builtins.issubclass}
  510/250    0.002    0.000    0.086    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/overrides.py:1690(handle_torch_function)
      980    0.002    0.000    0.083    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/fx/traceback.py:433(set_current_meta)
     5720    0.006    0.000    0.082    0.000 ~/github/onnxscript/onnxscript/rewriter/_matcher.py:288(_match_single_output_node)
       30    0.001    0.000    0.081    0.003 ~/vv/this312/lib/python3.12/site-packages/torch/fx/graph_module.py:495(__init__)
 1925/535    0.003    0.000    0.081    0.000 /usr/lib/python3.12/copy.py:191(_deepcopy_list)
 1700/430    0.017    0.000    0.081    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:1726(_prep_args_for_hash)
4975/4450    0.005    0.000    0.081    0.000 /usr/lib/python3.12/contextlib.py:141(__exit__)
   165685    0.049    0.000    0.076    0.000 /usr/lib/python3.12/inspect.py:295(isclass)
  835/705    0.004    0.000    0.076    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/nn/modules/module.py:1972(__setattr__)
 1565/735    0.014    0.000    0.075    0.000 /usr/lib/python3.12/copy.py:247(_reconstruct)
   226326    0.059    0.000    0.075    0.000 {built-in method builtins.hasattr}
      365    0.001    0.000    0.075    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:2100(_output_from_cache_entry)
   298750    0.074    0.000    0.074    0.000 /usr/lib/python3.12/inspect.py:1189(tokeneater)
      385    0.008    0.000    0.073    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:2015(_get_output_tensor_from_cache_entry)
    22625    0.052    0.000    0.071    0.000 {built-in method builtins.eval}
      510    0.002    0.000    0.070    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/utils/_pytree.py:1708(tree_map_only)
      230    0.001    0.000    0.069    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:737(set_meta)
      180    0.001    0.000    0.069    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/utils/_traceback.py:173(summary)
5850/5720    0.012    0.000    0.069    0.000 ~/github/onnxscript/onnxscript/rewriter/_matcher.py:134(_match_node)
       30    0.000    0.000    0.068    0.002 ~/vv/this312/lib/python3.12/site-packages/torch/fx/graph_module.py:620(graph)
     2295    0.009    0.000    0.067    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/fx/graph.py:696(emit_node)
        5    0.001    0.000    0.067    0.013 ~/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/exporter/_core.py:1040(_exported_program_to_onnx_program)
     7190    0.014    0.000    0.067    0.000 ~/github/onnxscript/onnxscript/_internal/irbuilder.py:68(append_parameter)
     2390    0.013    0.000    0.065    0.000 /usr/lib/python3.12/textwrap.py:419(dedent)
      170    0.004    0.000    0.064    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/autograd/grad_mode.py:293(__exit__)
        5    0.000    0.000    0.061    0.012 ~/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/exporter/_core.py:762(_translate_fx_graph)
     1975    0.001    0.000    0.059    0.000 {method 'extend' of 'list' objects}
       10    0.000    0.000    0.058    0.006 ~/github/onnxscript/onnxscript/optimizer/_constant_folding.py:1388(call)
   119070    0.036    0.000    0.058    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/_lazy_import.py:19(__getattr__)
       10    0.000    0.000    0.058    0.006 ~/github/onnxscript/onnxscript/optimizer/_constant_folding.py:1364(visit_graph)
       60    0.001    0.000    0.058    0.001 ~/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/exporter/_core.py:511(_handle_call_function_node_with_lowering)
      135    0.001    0.000    0.058    0.000 ~/github/onnxscript/onnxscript/optimizer/_constant_folding.py:1353(visit_node)
 1370/560    0.007    0.000    0.057    0.000 /usr/lib/python3.12/copy.py:217(_deepcopy_dict)
       10    0.000    0.000    0.057    0.006 ~/vv/this312/lib/python3.12/site-packages/torch/fx/_symbolic_trace.py:648(create_args_for_root)
     4790    0.020    0.000    0.055    0.000 ~/github/ir-py/src/onnx_ir/_graph_containers.py:30(__init__)
      120    0.000    0.000    0.054    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/fx/_symbolic_trace.py:714(<genexpr>)
     2390    0.012    0.000    0.054    0.000 /usr/lib/python3.12/inspect.py:944(getsourcefile)
      110    0.000    0.000    0.054    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/fx/_symbolic_trace.py:711(proxy_placeholder)
      110    0.000    0.000    0.054    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/fx/_symbolic_trace.py:924(_proxy_placeholder)
      110    0.001    0.000    0.053    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/_subclasses/functional_tensor.py:232(to_functional)
      135    0.002    0.000    0.053    0.000 ~/github/onnxscript/onnxscript/optimizer/_constant_folding.py:1143(process_node)
       65    0.000    0.000    0.052    0.001 ~/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:2399(_dispatch_impl)
      110    0.000    0.000    0.052    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/fx/_symbolic_trace.py:928(replace_ph)
   128390    0.052    0.000    0.052    0.000 <frozen _collections_abc>:521(<genexpr>)
    10530    0.029    0.000    0.051    0.000 /usr/lib/python3.12/typing.py:175(_type_check)
4685/1920    0.005    0.000    0.050    0.000 ~/github/ir-py/src/onnx_ir/serde.py:97(wrapper)
       20    0.000    0.000    0.049    0.002 {built-in method torch.relu}
    78255    0.025    0.000    0.048    0.000 <frozen abc>:121(__subclasscheck__)
   116860    0.048    0.000    0.048    0.000 {built-in method _abc._abc_instancecheck}
    45960    0.020    0.000    0.048    0.000 ~/github/ir-py/src/onnx_ir/_enums.py:375(__repr__)
    92240    0.029    0.000    0.048    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/_ops.py:874(__hash__)
     1295    0.002    0.000    0.047    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/utils/_pytree.py:1424(tree_flatten)
      180    0.010    0.000    0.045    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/utils/_traceback.py:252(_extract_symbolized_tb)
5850/1295    0.012    0.000    0.045    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/utils/_pytree.py:1432(helper)
     3985    0.016    0.000    0.044    0.000 ~/github/onnxscript/onnxscript/_internal/converter.py:122(set_type_info)
       15    0.000    0.000    0.044    0.003 ~/vv/this312/lib/python3.12/site-packages/torch/nn/modules/linear.py:130(forward)
    60/15    0.001    0.000    0.044    0.003 {built-in method torch._C._nn.linear}
       60    0.000    0.000    0.044    0.001 ~/github/onnxscript/onnxscript/_internal/values.py:475(__call__)
       95    0.000    0.000    0.043    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/fx/graph_module.py:109(_forward_from_src)
       95    0.000    0.000    0.043    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/fx/graph_module.py:115(_method_from_src)
       95    0.000    0.000    0.043    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/fx/graph_module.py:104(_exec_with_source)
      565    0.011    0.000    0.042    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:1084(_flatten_into)
     2480    0.006    0.000    0.041    0.000 /usr/lib/python3.12/linecache.py:52(checkcache)
      110    0.001    0.000    0.041    0.000 {built-in method torch._to_functional_tensor}
      125    0.004    0.000    0.041    0.000 ~/github/onnxscript/onnxscript/optimizer/_constant_folding.py:1005(_do_inference)
     2390    0.030    0.000    0.041    0.000 /usr/lib/python3.12/inspect.py:1599(getclosurevars)
       80    0.001    0.000    0.041    0.001 ~/github/onnxscript/onnxscript/_internal/values.py:209(__call__)
       80    0.000    0.000    0.040    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/exporter/_building.py:608(eval)
163910/162280    0.037    0.000    0.039    0.000 {built-in method builtins.hash}
       10    0.001    0.000    0.039    0.004 ~/vv/this312/lib/python3.12/site-packages/torch/_export/utils.py:724(apply_runtime_assertion_pass)
      785    0.011    0.000    0.038    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:735(__new__)
      170    0.007    0.000    0.037    0.000 ~/vv/this312/lib/python3.12/site-packages/torch/autograd/grad_mode.py:289(__enter__)
    21050    0.022    0.000    0.037    0.000 /usr/lib/python3.12/typing.py:2340(get_args)
done.
profile dynopt: <function export_dynopt at 0x7d112a7b6660>
done.

Benchmark exported models with ORT

def benchmark(shape):
    from onnxruntime import InferenceSession, SessionOptions, GraphOptimizationLevel

    providers = [["CPUExecutionProvider"]]
    if has_cuda:
        providers.append(["CUDAExecutionProvider", "CPUExecutionProvider"])

    data = []
    data1 = []
    data_mem_load = []
    data_mem_first_run = []
    data_mem_run = []
    confs = list(
        itertools.product(
            [_ for _ in os.listdir(".") if ".onnx" in _ and _.startswith("plot_torch")],
            providers,
            ["0", "1"],
        )
    )
    loop = tqdm(confs)
    print(f"number of experiments: {len(loop)}")
    for name, ps, aot in loop:
        root = os.path.split(name)[-1]
        _, ext = os.path.splitext(root)
        if ext != ".onnx":
            continue

        obs = {}  # system_info()
        obs["name"] = name
        obs["providers"] = ",".join(ps)
        p = "CUDA" if "CUDA" in obs["providers"] else "CPU"
        obs["compute"] = p
        obs["aot"] = 1 if aot == "0" else 0
        obs["export"] = name.replace("plot_torch_export_", "").replace(".onnx", "")

        if not has_cuda and p == "CUDA":
            continue

        onx = onnx.load(name)
        obs["n_nodes"] = len(onx.graph.node)
        obs["n_function"] = len(onx.functions or [])
        obs["n_sub"] = len([n for n in onx.graph.node if n.op_type == "Sub"])
        obs1 = obs.copy()
        short_obs = dict(
            name=obs["name"],
            aot=obs["aot"],
            providers=obs["providers"],
            export=obs["export"],
            compute=obs["compute"],
        )

        opts = SessionOptions()
        opts.add_session_config_entry("session.disable_aot_function_inlining", aot)
        opts.graph_optimization_level = GraphOptimizationLevel.ORT_ENABLE_ALL
        opts.optimized_model_filepath = (
            f"ort-{name.replace('.onnx', '')}-{p.lower()}-aot{1 if aot == '0' else 0}.onnx"
        )

        try:
            InferenceSession(name, opts, providers=ps)
        except Exception as e:
            loop.set_description(f"ERROR-load: {name} {e}")
            obs.update({"error": e, "step": "run"})
            data.append(obs)
            continue

        opts = SessionOptions()
        opts.add_session_config_entry("session.disable_aot_function_inlining", aot)
        opts.graph_optimization_level = GraphOptimizationLevel.ORT_ENABLE_ALL
        stat = start_spying_on(cuda=1 if has_cuda else 0)
        sess = InferenceSession(name, opts, providers=ps)
        memobs = flatten(stat.stop())
        memobs.update(short_obs)
        data_mem_load.append(memobs)

        input_name = sess.get_inputs()[0].name
        feeds = {input_name: np.random.rand(*shape).astype(np.float32)}

        stat = start_spying_on(cuda=1 if has_cuda else 0)
        try:
            sess.run(None, feeds)
        except Exception as e:
            loop.set_description(f"ERROR-run: {name} {e}")
            obs.update({"error": e, "step": "load"})
            data.append(obs)
            stat.stop()
            continue
        memobs = flatten(stat.stop())
        memobs.update(short_obs)
        data_mem_first_run.append(memobs)

        # memory consumption
        stat = start_spying_on(cuda=1 if has_cuda else 0)
        for _ in range(0, script_args.warmup):
            sess.run(None, feeds)
        memobs = flatten(stat.stop())
        memobs.update(short_obs)
        data_mem_run.append(memobs)

        obs.update(
            measure_time(
                lambda sess=sess, feeds=feeds: sess.run(None, feeds),
                max_time=script_args.maxtime,
                repeat=script_args.repeat,
                number=1,
            )
        )

        loop.set_description(f"{obs['average']} {name} {ps}")
        data.append(obs)

        # check first run
        obs1.update(
            measure_time(
                lambda name=name, opts=opts, ps=ps, feeds=feeds: InferenceSession(
                    name, opts, providers=ps
                ).run(None, feeds),
                max_time=script_args.maxtime,
                repeat=max(1, script_args.repeat // 2),
                number=1,
            )
        )
        data1.append(obs1)

    df = pandas.DataFrame(data)
    df.to_csv("plot_torch_export_ort_time.csv", index=False)
    df.to_excel("plot_torch_export_ort_time.xlsx", index=False)
    df1 = pandas.DataFrame(data1)
    df1.to_csv("plot_torch_export_ort_time1_init.csv", index=False)
    df1.to_excel("plot_torch_export_ort_time1_init.xlsx", index=False)
    dfmem = pandas.DataFrame(data_mem_load)
    dfmem.to_csv("plot_torch_export_ort_load_mem.csv", index=False)
    dfmem.to_excel("plot_torch_export_ort_load_mem.xlsx", index=False)
    dfmemr = pandas.DataFrame(data_mem_run)
    dfmemr.to_csv("plot_torch_export_ort_run_mem.csv", index=False)
    dfmemr.to_excel("plot_torch_export_ort_run_mem.xlsx", index=False)
    dfmemfr = pandas.DataFrame(data_mem_first_run)
    dfmemfr.to_csv("plot_torch_export_ort_first_run_mem.csv", index=False)
    dfmemfr.to_excel("plot_torch_export_ort_first_run_mem.xlsx", index=False)
    return df, df1, dfmem, dfmemfr, dfmemr


df, df_init, dfmem, dfmemfr, dfmemr = benchmark(list(input_tensor.shape))
print(df)
  0%|          | 0/20 [00:00<?, ?it/s]number of experiments: 20

5.0092069520672037e-05 plot_torch_export_dynamo.onnx ['CPUExecutionProvider']:   0%|          | 0/20 [00:01<?, ?it/s]
5.0092069520672037e-05 plot_torch_export_dynamo.onnx ['CPUExecutionProvider']:   5%|▌         | 1/20 [00:01<00:26,  1.38s/it]
5.1417073741877004e-05 plot_torch_export_dynamo.onnx ['CPUExecutionProvider']:   5%|▌         | 1/20 [00:01<00:26,  1.38s/it]
5.1417073741877004e-05 plot_torch_export_dynamo.onnx ['CPUExecutionProvider']:  10%|█         | 2/20 [00:01<00:15,  1.15it/s]
0.001014962801980571 plot_torch_export_dynamo.onnx ['CUDAExecutionProvider', 'CPUExecutionProvider']:  10%|█         | 2/20 [00:03<00:15,  1.15it/s]
0.001014962801980571 plot_torch_export_dynamo.onnx ['CUDAExecutionProvider', 'CPUExecutionProvider']:  15%|█▌        | 3/20 [00:03<00:22,  1.30s/it]
0.0007420202699384312 plot_torch_export_dynamo.onnx ['CUDAExecutionProvider', 'CPUExecutionProvider']:  15%|█▌        | 3/20 [00:04<00:22,  1.30s/it]
0.0007420202699384312 plot_torch_export_dynamo.onnx ['CUDAExecutionProvider', 'CPUExecutionProvider']:  20%|██        | 4/20 [00:04<00:17,  1.09s/it]
4.881580321841608e-05 plot_torch_export_cus_p0.onnx ['CPUExecutionProvider']:  20%|██        | 4/20 [00:05<00:17,  1.09s/it]
4.881580321841608e-05 plot_torch_export_cus_p0.onnx ['CPUExecutionProvider']:  25%|██▌       | 5/20 [00:05<00:13,  1.08it/s]
5.104027940553502e-05 plot_torch_export_cus_p0.onnx ['CPUExecutionProvider']:  25%|██▌       | 5/20 [00:05<00:13,  1.08it/s]
5.104027940553502e-05 plot_torch_export_cus_p0.onnx ['CPUExecutionProvider']:  30%|███       | 6/20 [00:05<00:11,  1.23it/s]
0.0008519057874015894 plot_torch_export_cus_p0.onnx ['CUDAExecutionProvider', 'CPUExecutionProvider']:  30%|███       | 6/20 [00:06<00:11,  1.23it/s]
0.0008519057874015894 plot_torch_export_cus_p0.onnx ['CUDAExecutionProvider', 'CPUExecutionProvider']:  35%|███▌      | 7/20 [00:06<00:09,  1.35it/s]
0.0007198010440253665 plot_torch_export_cus_p0.onnx ['CUDAExecutionProvider', 'CPUExecutionProvider']:  35%|███▌      | 7/20 [00:06<00:09,  1.35it/s]
0.0007198010440253665 plot_torch_export_cus_p0.onnx ['CUDAExecutionProvider', 'CPUExecutionProvider']:  40%|████      | 8/20 [00:07<00:09,  1.33it/s]
5.828729985228534e-05 plot_torch_export_script.onnx ['CPUExecutionProvider']:  40%|████      | 8/20 [00:07<00:09,  1.33it/s]
5.828729985228534e-05 plot_torch_export_script.onnx ['CPUExecutionProvider']:  45%|████▌     | 9/20 [00:07<00:08,  1.33it/s]
5.310907198745307e-05 plot_torch_export_script.onnx ['CPUExecutionProvider']:  45%|████▌     | 9/20 [00:08<00:08,  1.33it/s]
5.310907198745307e-05 plot_torch_export_script.onnx ['CPUExecutionProvider']:  50%|█████     | 10/20 [00:08<00:06,  1.44it/s]
0.0011240978541670426 plot_torch_export_script.onnx ['CUDAExecutionProvider', 'CPUExecutionProvider']:  50%|█████     | 10/20 [00:08<00:06,  1.44it/s]
0.0011240978541670426 plot_torch_export_script.onnx ['CUDAExecutionProvider', 'CPUExecutionProvider']:  55%|█████▌    | 11/20 [00:09<00:06,  1.46it/s]
0.0007316347769782094 plot_torch_export_script.onnx ['CUDAExecutionProvider', 'CPUExecutionProvider']:  55%|█████▌    | 11/20 [00:09<00:06,  1.46it/s]
0.0007316347769782094 plot_torch_export_script.onnx ['CUDAExecutionProvider', 'CPUExecutionProvider']:  60%|██████    | 12/20 [00:09<00:05,  1.41it/s]
5.503687559596545e-05 plot_torch_export_dynopt.onnx ['CPUExecutionProvider']:  60%|██████    | 12/20 [00:10<00:05,  1.41it/s]
5.503687559596545e-05 plot_torch_export_dynopt.onnx ['CPUExecutionProvider']:  65%|██████▌   | 13/20 [00:10<00:05,  1.40it/s]
5.495243492232407e-05 plot_torch_export_dynopt.onnx ['CPUExecutionProvider']:  65%|██████▌   | 13/20 [00:11<00:05,  1.40it/s]
5.495243492232407e-05 plot_torch_export_dynopt.onnx ['CPUExecutionProvider']:  70%|███████   | 14/20 [00:11<00:04,  1.45it/s]
0.0008146814421760313 plot_torch_export_dynopt.onnx ['CUDAExecutionProvider', 'CPUExecutionProvider']:  70%|███████   | 14/20 [00:11<00:04,  1.45it/s]
0.0008146814421760313 plot_torch_export_dynopt.onnx ['CUDAExecutionProvider', 'CPUExecutionProvider']:  75%|███████▌  | 15/20 [00:11<00:03,  1.42it/s]
0.0008266037588656856 plot_torch_export_dynopt.onnx ['CUDAExecutionProvider', 'CPUExecutionProvider']:  75%|███████▌  | 15/20 [00:12<00:03,  1.42it/s]
0.0008266037588656856 plot_torch_export_dynopt.onnx ['CUDAExecutionProvider', 'CPUExecutionProvider']:  80%|████████  | 16/20 [00:12<00:02,  1.37it/s]
5.666463106323066e-05 plot_torch_export_cus_p2.onnx ['CPUExecutionProvider']:  80%|████████  | 16/20 [00:13<00:02,  1.37it/s]
5.666463106323066e-05 plot_torch_export_cus_p2.onnx ['CPUExecutionProvider']:  85%|████████▌ | 17/20 [00:13<00:02,  1.38it/s]
5.775790598289033e-05 plot_torch_export_cus_p2.onnx ['CPUExecutionProvider']:  85%|████████▌ | 17/20 [00:13<00:02,  1.38it/s]
5.775790598289033e-05 plot_torch_export_cus_p2.onnx ['CPUExecutionProvider']:  90%|█████████ | 18/20 [00:13<00:01,  1.47it/s]
0.000850487333332609 plot_torch_export_cus_p2.onnx ['CUDAExecutionProvider', 'CPUExecutionProvider']:  90%|█████████ | 18/20 [00:14<00:01,  1.47it/s]
0.000850487333332609 plot_torch_export_cus_p2.onnx ['CUDAExecutionProvider', 'CPUExecutionProvider']:  95%|█████████▌| 19/20 [00:14<00:00,  1.43it/s]
0.0007459562587406616 plot_torch_export_cus_p2.onnx ['CUDAExecutionProvider', 'CPUExecutionProvider']:  95%|█████████▌| 19/20 [00:15<00:00,  1.43it/s]
0.0007459562587406616 plot_torch_export_cus_p2.onnx ['CUDAExecutionProvider', 'CPUExecutionProvider']: 100%|██████████| 20/20 [00:15<00:00,  1.41it/s]
0.0007459562587406616 plot_torch_export_cus_p2.onnx ['CUDAExecutionProvider', 'CPUExecutionProvider']: 100%|██████████| 20/20 [00:15<00:00,  1.29it/s]
                             name                                   providers compute  aot  export  n_nodes  ...  max_exec  repeat  number     ttime  context_size  warmup_time
0   plot_torch_export_dynamo.onnx                        CPUExecutionProvider     CPU    1  dynamo       12  ...  0.000100       1  2733.0  0.136902            64     0.000246
1   plot_torch_export_dynamo.onnx                        CPUExecutionProvider     CPU    0  dynamo       12  ...  0.000081       1  2007.0  0.103194            64     0.000241
2   plot_torch_export_dynamo.onnx  CUDAExecutionProvider,CPUExecutionProvider    CUDA    1  dynamo       12  ...  0.002653       1   101.0  0.102511            64     0.002994
3   plot_torch_export_dynamo.onnx  CUDAExecutionProvider,CPUExecutionProvider    CUDA    0  dynamo       12  ...  0.000839       1   163.0  0.120949            64     0.001805
4   plot_torch_export_cus_p0.onnx                        CPUExecutionProvider     CPU    1  cus_p0       12  ...  0.000095       1  2175.0  0.106174            64     0.000237
5   plot_torch_export_cus_p0.onnx                        CPUExecutionProvider     CPU    0  cus_p0       12  ...  0.000112       1  2355.0  0.120200            64     0.000473
6   plot_torch_export_cus_p0.onnx  CUDAExecutionProvider,CPUExecutionProvider    CUDA    1  cus_p0       12  ...  0.001043       1   127.0  0.108192            64     0.001841
7   plot_torch_export_cus_p0.onnx  CUDAExecutionProvider,CPUExecutionProvider    CUDA    0  cus_p0       12  ...  0.000964       1   159.0  0.114448            64     0.001839
8   plot_torch_export_script.onnx                        CPUExecutionProvider     CPU    1  script       12  ...  0.000083       1  2031.0  0.118382            64     0.000288
9   plot_torch_export_script.onnx                        CPUExecutionProvider     CPU    0  script       12  ...  0.000245       1  1917.0  0.101810            64     0.000586
10  plot_torch_export_script.onnx  CUDAExecutionProvider,CPUExecutionProvider    CUDA    1  script       12  ...  0.001171       1    96.0  0.107913            64     0.001798
11  plot_torch_export_script.onnx  CUDAExecutionProvider,CPUExecutionProvider    CUDA    0  script       12  ...  0.001142       1   139.0  0.101697            64     0.001904
12  plot_torch_export_dynopt.onnx                        CPUExecutionProvider     CPU    1  dynopt       12  ...  0.000122       1  2307.0  0.126970            64     0.000330
13  plot_torch_export_dynopt.onnx                        CPUExecutionProvider     CPU    0  dynopt       12  ...  0.000113       1  1867.0  0.102596            64     0.000263
14  plot_torch_export_dynopt.onnx  CUDAExecutionProvider,CPUExecutionProvider    CUDA    1  dynopt       12  ...  0.001072       1   147.0  0.119758            64     0.001849
15  plot_torch_export_dynopt.onnx  CUDAExecutionProvider,CPUExecutionProvider    CUDA    0  dynopt       12  ...  0.000864       1   141.0  0.116551            64     0.001512
16  plot_torch_export_cus_p2.onnx                        CPUExecutionProvider     CPU    1  cus_p2       12  ...  0.000177       1  2041.0  0.115653            64     0.000403
17  plot_torch_export_cus_p2.onnx                        CPUExecutionProvider     CPU    0  cus_p2       12  ...  0.000231       1  1755.0  0.101365            64     0.000602
18  plot_torch_export_cus_p2.onnx  CUDAExecutionProvider,CPUExecutionProvider    CUDA    1  cus_p2       12  ...  0.001150       1   123.0  0.104610            64     0.001878
19  plot_torch_export_cus_p2.onnx  CUDAExecutionProvider,CPUExecutionProvider    CUDA    0  cus_p2       12  ...  0.000972       1   143.0  0.106672            64     0.001882

[20 rows x 17 columns]

Other view

def view_time(df, title, suffix="time"):
    piv = pandas.pivot_table(df, index="export", columns=["compute", "aot"], values="average")
    print(piv)
    piv.to_csv(f"plot_torch_export_ort_{suffix}_compute.csv")
    piv.to_excel(f"plot_torch_export_ort_{suffix}_compute.xlsx")

    piv_cpu = pandas.pivot_table(
        df[df.compute == "CPU"],
        index="export",
        columns=["compute", "aot"],
        values="average",
    )

    fig, ax = plt.subplots(1, 2, figsize=(12, 4))
    fig.suptitle(title)
    piv_cpu.plot.barh(ax=ax[0], title="CPU")

    if has_cuda:
        piv_gpu = pandas.pivot_table(
            df[df.compute == "CUDA"],
            index="export",
            columns=["compute", "aot"],
            values="average",
        )
        piv_gpu.plot.barh(ax=ax[1], title="CUDA")

    fig.tight_layout()
    fig.savefig(f"plot_torch_export_ort_{suffix}.png")
    return ax


view_time(df, "Compares onnxruntime time on exported models")
Compares onnxruntime time on exported models, CPU, CUDA
compute       CPU                CUDA
aot             0         1         0         1
export
cus_p0   0.000051  0.000049  0.000720  0.000852
cus_p2   0.000058  0.000057  0.000746  0.000850
dynamo   0.000051  0.000050  0.000742  0.001015
dynopt   0.000055  0.000055  0.000827  0.000815
script   0.000053  0.000058  0.000732  0.001124

array([<Axes: title={'center': 'CPU'}, ylabel='export'>,
       <Axes: title={'center': 'CUDA'}, ylabel='export'>], dtype=object)

New graph without the very long times.

piv_cpu = pandas.pivot_table(
    df[
        (df.compute == "CPU")
        & ((df.aot == 1) | ((df.export != "dynamo") & (df.export != "dynopt")))
    ],
    index="export",
    columns=["compute", "aot"],
    values="average",
)

fig, ax = plt.subplots(1, 2, figsize=(12, 4))
fig.suptitle("Compares onnxruntime time on exported models\nHide dynamo without AOT")
piv_cpu.plot.barh(ax=ax[0], title="CPU")

if has_cuda:
    piv_gpu = pandas.pivot_table(
        df[df.compute == "CUDA"],
        index="export",
        columns=["compute", "aot"],
        values="average",
    )
    piv_gpu.plot.barh(ax=ax[1], title="CUDA")

fig.tight_layout()
fig.savefig("plot_torch_export_ort_time_2.png")
Compares onnxruntime time on exported models Hide dynamo without AOT, CPU, CUDA

Let’s do the same with the loading time + the first run.

view_time(
    df_init,
    "Compares onnxruntime loading time and first run on exported models",
    suffix="time1_init",
)
Compares onnxruntime loading time and first run on exported models, CPU, CUDA
compute       CPU                CUDA
aot             0         1         0         1
export
cus_p0   0.004669  0.004816  0.023575  0.017273
cus_p2   0.006817  0.005846  0.029468  0.030134
dynamo   0.004096  0.004409  0.023332  0.025963
dynopt   0.005152  0.006295  0.031589  0.026357
script   0.004361  0.004865  0.024062  0.030875

array([<Axes: title={'center': 'CPU'}, ylabel='export'>,
       <Axes: title={'center': 'CUDA'}, ylabel='export'>], dtype=object)

Memory Loading Time (ORT)

for compute in ["CPU", "CUDA"]:
    if not has_cuda and compute == "CUDA":
        continue
    ax = memory_peak_plot(
        dfmem[dfmem.compute == compute],
        ("export", "aot"),
        suptitle=f"Memory Consumption of onnxruntime loading time\nrunning on {compute}",
        bars=[model_size * i / 2**20 for i in range(1, 3)],
        figsize=(18, 6),
    )
    get_figure(ax).savefig(f"plot_torch_export_ort_load_mem_{compute}.png")
  • Memory Consumption of onnxruntime loading time running on CPU, Memory peak (Mb), Memory peak - memory begin (Mb), Memory average - memory begin (Mb), GPU Memory peak (Mb), GPU Memory peak - memory begin (Mb), GPU Memory average - memory begin (Mb)
  • Memory Consumption of onnxruntime loading time running on CUDA, Memory peak (Mb), Memory peak - memory begin (Mb), Memory average - memory begin (Mb), GPU Memory peak (Mb), GPU Memory peak - memory begin (Mb), GPU Memory average - memory begin (Mb)

Memory First Running Time (ORT)

for compute in ["CPU", "CUDA"]:
    if not has_cuda and compute == "CUDA":
        continue
    ax = memory_peak_plot(
        dfmemfr[dfmemfr.compute == compute],
        ("export", "aot"),
        suptitle=f"Memory Consumption of onnxruntime first running time"
        f"\nrunning on {compute}",
        bars=[model_size * i / 2**20 for i in range(1, 3)],
        figsize=(18, 6),
    )
    get_figure(ax).savefig(f"plot_torch_export_ort_first_run_mem_{compute}.png")
  • Memory Consumption of onnxruntime first running time running on CPU, Memory peak (Mb), Memory peak - memory begin (Mb), Memory average - memory begin (Mb), GPU Memory peak (Mb), GPU Memory peak - memory begin (Mb), GPU Memory average - memory begin (Mb)
  • Memory Consumption of onnxruntime first running time running on CUDA, Memory peak (Mb), Memory peak - memory begin (Mb), Memory average - memory begin (Mb), GPU Memory peak (Mb), GPU Memory peak - memory begin (Mb), GPU Memory average - memory begin (Mb)

Memory Running Time (ORT)

for compute in ["CPU", "CUDA"]:
    if not has_cuda and compute == "CUDA":
        continue
    ax = memory_peak_plot(
        dfmemr[dfmemr.compute == compute],
        ("export", "aot"),
        suptitle=f"Memory Consumption of onnxruntime running time\nrunning on {compute}",
        bars=[model_size * i / 2**20 for i in range(1, 3)],
        figsize=(18, 6),
    )
    get_figure(ax).savefig(f"plot_torch_export_ort_run_mem_{compute}.png")
  • Memory Consumption of onnxruntime running time running on CPU, Memory peak (Mb), Memory peak - memory begin (Mb), Memory average - memory begin (Mb), GPU Memory peak (Mb), GPU Memory peak - memory begin (Mb), GPU Memory average - memory begin (Mb)
  • Memory Consumption of onnxruntime running time running on CUDA, Memory peak (Mb), Memory peak - memory begin (Mb), Memory average - memory begin (Mb), GPU Memory peak (Mb), GPU Memory peak - memory begin (Mb), GPU Memory average - memory begin (Mb)

Show the interesting models for CPU

script

model = "ort-plot_torch_export_cus_p2-cpu-aot0.onnx"
if os.path.exists(model):
    print(pretty_onnx(onnx.load(model)))
opset: domain='' version=18
opset: domain='ai.onnx.ml' version=5
opset: domain='ai.onnx.training' version=1
opset: domain='ai.onnx.preview.training' version=1
opset: domain='com.microsoft' version=1
opset: domain='com.microsoft.experimental' version=1
opset: domain='com.microsoft.nchwc' version=1
opset: domain='org.pytorch.aten' version=1
input: name='input' type=dtype('float32') shape=[1, 1, 16, 16]
init: name='_onx_concat_max_pool2d_1::Shape:1' type=int64 shape=(2,) -- array([ 1, -1])-- GraphBuilder.constant_folding.from/fold(init7_s1_-1,max_pool2d_1::Shape:1)##max_pool2d_1::Shape:1/##init7_s1_-1/Opset.make_node.1/Shape
init: name='GemmTransposePattern--p_fc1_weight::T10' type=float32 shape=(512, 16)
init: name='GemmTransposePattern--p_fc2_weight::T10' type=float32 shape=(128, 512)
init: name='GemmTransposePattern--p_fc3_weight::T10' type=float32 shape=(10, 128)
init: name='reorder' type=float32 shape=(16, 1, 5, 5)
init: name='conv1.bias' type=float32 shape=(16,)                      -- DynamoInterpret.placeholder.1/P(conv1.bias)
init: name='reorder_token_2' type=float32 shape=(16, 16, 5, 5)
init: name='conv2.bias' type=float32 shape=(16,)                      -- DynamoInterpret.placeholder.1/P(conv2.bias)
init: name='fc1.bias' type=float32 shape=(512,)
init: name='fc2.bias' type=float32 shape=(128,)
init: name='fc3.bias' type=float32 shape=(10,)                        -- DynamoInterpret.placeholder.1/P(fc3.bias)
Conv[com.microsoft.nchwc](input, reorder, conv1.bias, activation=b'Relu', dilations=[1,1], group=1, strides=[1,1], pads=[0,0,0,0], auto_pad=b'NOTSET') -> reorder_token_0
  MaxPool[com.microsoft.nchwc](reorder_token_0, auto_pad=b'NOTSET', storage_order=0, ceil_mode=0, dilations=[1,1], kernel_shape=[2,2], pads=[0,0,0,0], strides=[2,2]) -> reorder_token_1
    Conv[com.microsoft.nchwc](reorder_token_1, reorder_token_2, conv2.bias, activation=b'Relu', dilations=[1,1], group=1, strides=[1,1], pads=[0,0,0,0], auto_pad=b'NOTSET') -> reorder_token_3
      MaxPool[com.microsoft.nchwc](reorder_token_3, auto_pad=b'NOTSET', storage_order=0, ceil_mode=0, dilations=[1,1], kernel_shape=[2,2], pads=[0,0,0,0], strides=[2,2]) -> reorder_token_4
        ReorderOutput[com.microsoft.nchwc](reorder_token_4, channels_last=0, channels=16) -> max_pool2d_1
          Reshape(max_pool2d_1, _onx_concat_max_pool2d_1::Shape:1, allowzero=0) -> flatten
            FusedGemm[com.microsoft](flatten, GemmTransposePattern--p_fc1_weight::T10, fc1.bias, transA=0, alpha=1.00, activation=b'Relu', transB=1, beta=1.00) -> relu_2
              FusedGemm[com.microsoft](relu_2, GemmTransposePattern--p_fc2_weight::T10, fc2.bias, transA=0, alpha=1.00, activation=b'Relu', transB=1, beta=1.00) -> relu_3
                Gemm(relu_3, GemmTransposePattern--p_fc3_weight::T10, fc3.bias, transA=0, alpha=1.00, transB=1, beta=1.00) -> output_0
output: name='output_0' type=dtype('float32') shape=[1, 10]

cus_p2

model = "ort-plot_torch_export_cus_p2-cpu-aot0.onnx"
if os.path.exists(model):
    print(pretty_onnx(onnx.load(model)))
opset: domain='' version=18
opset: domain='ai.onnx.ml' version=5
opset: domain='ai.onnx.training' version=1
opset: domain='ai.onnx.preview.training' version=1
opset: domain='com.microsoft' version=1
opset: domain='com.microsoft.experimental' version=1
opset: domain='com.microsoft.nchwc' version=1
opset: domain='org.pytorch.aten' version=1
input: name='input' type=dtype('float32') shape=[1, 1, 16, 16]
init: name='_onx_concat_max_pool2d_1::Shape:1' type=int64 shape=(2,) -- array([ 1, -1])-- GraphBuilder.constant_folding.from/fold(init7_s1_-1,max_pool2d_1::Shape:1)##max_pool2d_1::Shape:1/##init7_s1_-1/Opset.make_node.1/Shape
init: name='GemmTransposePattern--p_fc1_weight::T10' type=float32 shape=(512, 16)
init: name='GemmTransposePattern--p_fc2_weight::T10' type=float32 shape=(128, 512)
init: name='GemmTransposePattern--p_fc3_weight::T10' type=float32 shape=(10, 128)
init: name='reorder' type=float32 shape=(16, 1, 5, 5)
init: name='conv1.bias' type=float32 shape=(16,)                      -- DynamoInterpret.placeholder.1/P(conv1.bias)
init: name='reorder_token_2' type=float32 shape=(16, 16, 5, 5)
init: name='conv2.bias' type=float32 shape=(16,)                      -- DynamoInterpret.placeholder.1/P(conv2.bias)
init: name='fc1.bias' type=float32 shape=(512,)
init: name='fc2.bias' type=float32 shape=(128,)
init: name='fc3.bias' type=float32 shape=(10,)                        -- DynamoInterpret.placeholder.1/P(fc3.bias)
Conv[com.microsoft.nchwc](input, reorder, conv1.bias, activation=b'Relu', dilations=[1,1], group=1, strides=[1,1], pads=[0,0,0,0], auto_pad=b'NOTSET') -> reorder_token_0
  MaxPool[com.microsoft.nchwc](reorder_token_0, auto_pad=b'NOTSET', storage_order=0, ceil_mode=0, dilations=[1,1], kernel_shape=[2,2], pads=[0,0,0,0], strides=[2,2]) -> reorder_token_1
    Conv[com.microsoft.nchwc](reorder_token_1, reorder_token_2, conv2.bias, activation=b'Relu', dilations=[1,1], group=1, strides=[1,1], pads=[0,0,0,0], auto_pad=b'NOTSET') -> reorder_token_3
      MaxPool[com.microsoft.nchwc](reorder_token_3, auto_pad=b'NOTSET', storage_order=0, ceil_mode=0, dilations=[1,1], kernel_shape=[2,2], pads=[0,0,0,0], strides=[2,2]) -> reorder_token_4
        ReorderOutput[com.microsoft.nchwc](reorder_token_4, channels_last=0, channels=16) -> max_pool2d_1
          Reshape(max_pool2d_1, _onx_concat_max_pool2d_1::Shape:1, allowzero=0) -> flatten
            FusedGemm[com.microsoft](flatten, GemmTransposePattern--p_fc1_weight::T10, fc1.bias, transA=0, alpha=1.00, activation=b'Relu', transB=1, beta=1.00) -> relu_2
              FusedGemm[com.microsoft](relu_2, GemmTransposePattern--p_fc2_weight::T10, fc2.bias, transA=0, alpha=1.00, activation=b'Relu', transB=1, beta=1.00) -> relu_3
                Gemm(relu_3, GemmTransposePattern--p_fc3_weight::T10, fc3.bias, transA=0, alpha=1.00, transB=1, beta=1.00) -> output_0
output: name='output_0' type=dtype('float32') shape=[1, 10]

dynopt

model = "ort-plot_torch_export_dynopt-cpu-aot1.onnx"
if os.path.exists(model):
    print(pretty_onnx(onnx.load(model)))
opset: domain='' version=20
opset: domain='ai.onnx.ml' version=5
opset: domain='ai.onnx.training' version=1
opset: domain='ai.onnx.preview.training' version=1
opset: domain='com.microsoft' version=1
opset: domain='com.microsoft.experimental' version=1
opset: domain='com.microsoft.nchwc' version=1
opset: domain='org.pytorch.aten' version=1
input: name='x' type=dtype('float32') shape=[1, 1, 16, 16]
init: name='reorder' type=float32 shape=(16, 1, 5, 5)
init: name='conv1.bias' type=float32 shape=(16,)
init: name='reorder_token_2' type=float32 shape=(16, 16, 5, 5)
init: name='conv2.bias' type=float32 shape=(16,)
init: name='fc1.weight' type=float32 shape=(512, 16)
init: name='fc1.bias' type=float32 shape=(512,)
init: name='fc2.weight' type=float32 shape=(128, 512)
init: name='fc2.bias' type=float32 shape=(128,)
init: name='fc3.weight' type=float32 shape=(10, 128)
init: name='fc3.bias' type=float32 shape=(10,)
init: name='val_5' type=int64 shape=(2,) -- array([ 1, 16])
Conv[com.microsoft.nchwc](x, reorder, conv1.bias, activation=b'Relu', group=1, strides=[1,1], pads=[0,0,0,0], auto_pad=b'NOTSET', dilations=[1,1]) -> reorder_token_0
  MaxPool[com.microsoft.nchwc](reorder_token_0, pads=[0,0,0,0], kernel_shape=[2,2], ceil_mode=0, auto_pad=b'NOTSET', dilations=[1,1], strides=[2,2], storage_order=0) -> reorder_token_1
    Conv[com.microsoft.nchwc](reorder_token_1, reorder_token_2, conv2.bias, activation=b'Relu', group=1, strides=[1,1], pads=[0,0,0,0], auto_pad=b'NOTSET', dilations=[1,1]) -> reorder_token_3
      MaxPool[com.microsoft.nchwc](reorder_token_3, pads=[0,0,0,0], kernel_shape=[2,2], ceil_mode=0, auto_pad=b'NOTSET', dilations=[1,1], strides=[2,2], storage_order=0) -> reorder_token_4
        ReorderOutput[com.microsoft.nchwc](reorder_token_4, channels_last=0, channels=16) -> max_pool2d_1
          Reshape(max_pool2d_1, val_5, allowzero=1) -> view
            FusedGemm[com.microsoft](view, fc1.weight, fc1.bias, transA=0, alpha=1.00, activation=b'Relu', transB=1, beta=1.00) -> relu_2
              FusedGemm[com.microsoft](relu_2, fc2.weight, fc2.bias, transA=0, alpha=1.00, activation=b'Relu', transB=1, beta=1.00) -> relu_3
                Gemm(relu_3, fc3.weight, fc3.bias, transA=0, alpha=1.00, transB=1, beta=1.00) -> linear_2
output: name='linear_2' type=dtype('float32') shape=[1, 10]

dynamo

model = "ort-plot_torch_export_dynamo-cpu-aot1.onnx"
if os.path.exists(model):
    print(pretty_onnx(onnx.load(model)))
opset: domain='' version=20
opset: domain='ai.onnx.ml' version=5
opset: domain='ai.onnx.training' version=1
opset: domain='ai.onnx.preview.training' version=1
opset: domain='com.microsoft' version=1
opset: domain='com.microsoft.experimental' version=1
opset: domain='com.microsoft.nchwc' version=1
opset: domain='org.pytorch.aten' version=1
input: name='x' type=dtype('float32') shape=[1, 1, 16, 16]
init: name='reorder' type=float32 shape=(16, 1, 5, 5)
init: name='conv1.bias' type=float32 shape=(16,)
init: name='reorder_token_2' type=float32 shape=(16, 16, 5, 5)
init: name='conv2.bias' type=float32 shape=(16,)
init: name='fc1.weight' type=float32 shape=(512, 16)
init: name='fc1.bias' type=float32 shape=(512,)
init: name='fc2.weight' type=float32 shape=(128, 512)
init: name='fc2.bias' type=float32 shape=(128,)
init: name='fc3.weight' type=float32 shape=(10, 128)
init: name='fc3.bias' type=float32 shape=(10,)
init: name='val_5' type=int64 shape=(2,) -- array([ 1, 16])
Conv[com.microsoft.nchwc](x, reorder, conv1.bias, activation=b'Relu', group=1, strides=[1,1], pads=[0,0,0,0], auto_pad=b'NOTSET', dilations=[1,1]) -> reorder_token_0
  MaxPool[com.microsoft.nchwc](reorder_token_0, pads=[0,0,0,0], kernel_shape=[2,2], ceil_mode=0, auto_pad=b'NOTSET', dilations=[1,1], strides=[2,2], storage_order=0) -> reorder_token_1
    Conv[com.microsoft.nchwc](reorder_token_1, reorder_token_2, conv2.bias, activation=b'Relu', group=1, strides=[1,1], pads=[0,0,0,0], auto_pad=b'NOTSET', dilations=[1,1]) -> reorder_token_3
      MaxPool[com.microsoft.nchwc](reorder_token_3, pads=[0,0,0,0], kernel_shape=[2,2], ceil_mode=0, auto_pad=b'NOTSET', dilations=[1,1], strides=[2,2], storage_order=0) -> reorder_token_4
        ReorderOutput[com.microsoft.nchwc](reorder_token_4, channels_last=0, channels=16) -> max_pool2d_1
          Reshape(max_pool2d_1, val_5, allowzero=1) -> view
            FusedGemm[com.microsoft](view, fc1.weight, fc1.bias, transA=0, alpha=1.00, activation=b'Relu', transB=1, beta=1.00) -> relu_2
              FusedGemm[com.microsoft](relu_2, fc2.weight, fc2.bias, transA=0, alpha=1.00, activation=b'Relu', transB=1, beta=1.00) -> relu_3
                Gemm(relu_3, fc3.weight, fc3.bias, transA=0, alpha=1.00, transB=1, beta=1.00) -> linear_2
output: name='linear_2' type=dtype('float32') shape=[1, 10]

Show the interesting models for CUDA

script

model = "ort-plot_torch_export_cus_p2-cuda-aot0.onnx"
if os.path.exists(model):
    print(pretty_onnx(onnx.load(model)))
opset: domain='' version=18
opset: domain='ai.onnx.ml' version=5
opset: domain='ai.onnx.training' version=1
opset: domain='ai.onnx.preview.training' version=1
opset: domain='com.microsoft' version=1
opset: domain='com.microsoft.experimental' version=1
opset: domain='com.microsoft.nchwc' version=1
opset: domain='org.pytorch.aten' version=1
input: name='input' type=dtype('float32') shape=[1, 1, 16, 16]
init: name='_onx_concat_max_pool2d_1::Shape:1' type=int64 shape=(2,) -- array([ 1, -1])-- GraphBuilder.constant_folding.from/fold(init7_s1_-1,max_pool2d_1::Shape:1)##max_pool2d_1::Shape:1/##init7_s1_-1/Opset.make_node.1/Shape
init: name='GemmTransposePattern--p_fc1_weight::T10' type=float32 shape=(512, 16)
init: name='GemmTransposePattern--p_fc2_weight::T10' type=float32 shape=(128, 512)
init: name='GemmTransposePattern--p_fc3_weight::T10' type=float32 shape=(10, 128)
init: name='conv1.weight' type=float32 shape=(16, 1, 5, 5)
init: name='conv1.bias' type=float32 shape=(16,)                      -- DynamoInterpret.placeholder.1/P(conv1.bias)
init: name='conv2.weight' type=float32 shape=(16, 16, 5, 5)
init: name='conv2.bias' type=float32 shape=(16,)                      -- DynamoInterpret.placeholder.1/P(conv2.bias)
init: name='fc1.bias' type=float32 shape=(512,)
init: name='fc2.bias' type=float32 shape=(128,)
init: name='fc3.bias' type=float32 shape=(10,)                        -- DynamoInterpret.placeholder.1/P(fc3.bias)
Conv(input, conv1.weight, conv1.bias, dilations=[1,1], group=1, pads=[0,0,0,0], strides=[1,1]) -> conv2d
  Relu(conv2d) -> relu
    MaxPool(relu, ceil_mode=0, dilations=[1,1], kernel_shape=[2,2], pads=[0,0,0,0], strides=[2,2]) -> max_pool2d
      Conv(max_pool2d, conv2.weight, conv2.bias, dilations=[1,1], group=1, pads=[0,0,0,0], strides=[1,1]) -> conv2d_1
        Relu(conv2d_1) -> relu_1
          MaxPool(relu_1, ceil_mode=0, dilations=[1,1], kernel_shape=[2,2], pads=[0,0,0,0], strides=[2,2]) -> max_pool2d_1
            Reshape(max_pool2d_1, _onx_concat_max_pool2d_1::Shape:1) -> flatten
              Gemm(flatten, GemmTransposePattern--p_fc1_weight::T10, fc1.bias, transB=1) -> linear
                Relu(linear) -> relu_2
                  Gemm(relu_2, GemmTransposePattern--p_fc2_weight::T10, fc2.bias, transB=1) -> linear_1
                    Relu(linear_1) -> relu_3
                      Gemm(relu_3, GemmTransposePattern--p_fc3_weight::T10, fc3.bias, transB=1) -> output_0
output: name='output_0' type=dtype('float32') shape=[1, 10]

cus_p2

model = "ort-plot_torch_export_cus_p2-cuda-aot0.onnx"
if os.path.exists(model):
    print(pretty_onnx(onnx.load(model)))
opset: domain='' version=18
opset: domain='ai.onnx.ml' version=5
opset: domain='ai.onnx.training' version=1
opset: domain='ai.onnx.preview.training' version=1
opset: domain='com.microsoft' version=1
opset: domain='com.microsoft.experimental' version=1
opset: domain='com.microsoft.nchwc' version=1
opset: domain='org.pytorch.aten' version=1
input: name='input' type=dtype('float32') shape=[1, 1, 16, 16]
init: name='_onx_concat_max_pool2d_1::Shape:1' type=int64 shape=(2,) -- array([ 1, -1])-- GraphBuilder.constant_folding.from/fold(init7_s1_-1,max_pool2d_1::Shape:1)##max_pool2d_1::Shape:1/##init7_s1_-1/Opset.make_node.1/Shape
init: name='GemmTransposePattern--p_fc1_weight::T10' type=float32 shape=(512, 16)
init: name='GemmTransposePattern--p_fc2_weight::T10' type=float32 shape=(128, 512)
init: name='GemmTransposePattern--p_fc3_weight::T10' type=float32 shape=(10, 128)
init: name='conv1.weight' type=float32 shape=(16, 1, 5, 5)
init: name='conv1.bias' type=float32 shape=(16,)                      -- DynamoInterpret.placeholder.1/P(conv1.bias)
init: name='conv2.weight' type=float32 shape=(16, 16, 5, 5)
init: name='conv2.bias' type=float32 shape=(16,)                      -- DynamoInterpret.placeholder.1/P(conv2.bias)
init: name='fc1.bias' type=float32 shape=(512,)
init: name='fc2.bias' type=float32 shape=(128,)
init: name='fc3.bias' type=float32 shape=(10,)                        -- DynamoInterpret.placeholder.1/P(fc3.bias)
Conv(input, conv1.weight, conv1.bias, dilations=[1,1], group=1, pads=[0,0,0,0], strides=[1,1]) -> conv2d
  Relu(conv2d) -> relu
    MaxPool(relu, ceil_mode=0, dilations=[1,1], kernel_shape=[2,2], pads=[0,0,0,0], strides=[2,2]) -> max_pool2d
      Conv(max_pool2d, conv2.weight, conv2.bias, dilations=[1,1], group=1, pads=[0,0,0,0], strides=[1,1]) -> conv2d_1
        Relu(conv2d_1) -> relu_1
          MaxPool(relu_1, ceil_mode=0, dilations=[1,1], kernel_shape=[2,2], pads=[0,0,0,0], strides=[2,2]) -> max_pool2d_1
            Reshape(max_pool2d_1, _onx_concat_max_pool2d_1::Shape:1) -> flatten
              Gemm(flatten, GemmTransposePattern--p_fc1_weight::T10, fc1.bias, transB=1) -> linear
                Relu(linear) -> relu_2
                  Gemm(relu_2, GemmTransposePattern--p_fc2_weight::T10, fc2.bias, transB=1) -> linear_1
                    Relu(linear_1) -> relu_3
                      Gemm(relu_3, GemmTransposePattern--p_fc3_weight::T10, fc3.bias, transB=1) -> output_0
output: name='output_0' type=dtype('float32') shape=[1, 10]

dynopt

model = "ort-plot_torch_export_dynopt-cuda-aot1.onnx"
if os.path.exists(model):
    print(pretty_onnx(onnx.load(model)))
opset: domain='' version=20
opset: domain='ai.onnx.ml' version=5
opset: domain='ai.onnx.training' version=1
opset: domain='ai.onnx.preview.training' version=1
opset: domain='com.microsoft' version=1
opset: domain='com.microsoft.experimental' version=1
opset: domain='com.microsoft.nchwc' version=1
opset: domain='org.pytorch.aten' version=1
input: name='x' type=dtype('float32') shape=[1, 1, 16, 16]
init: name='conv1.weight' type=float32 shape=(16, 1, 5, 5)
init: name='conv1.bias' type=float32 shape=(16,)
init: name='conv2.weight' type=float32 shape=(16, 16, 5, 5)
init: name='conv2.bias' type=float32 shape=(16,)
init: name='fc1.weight' type=float32 shape=(512, 16)
init: name='fc1.bias' type=float32 shape=(512,)
init: name='fc2.weight' type=float32 shape=(128, 512)
init: name='fc2.bias' type=float32 shape=(128,)
init: name='fc3.weight' type=float32 shape=(10, 128)
init: name='fc3.bias' type=float32 shape=(10,)
init: name='val_5' type=int64 shape=(2,) -- array([ 1, 16])
Conv(x, conv1.weight, conv1.bias, group=1, pads=[0,0,0,0], auto_pad=b'NOTSET', strides=[1,1], dilations=[1,1]) -> conv2d
  Relu(conv2d) -> relu
    MaxPool(relu, storage_order=0, dilations=[1,1], ceil_mode=0, pads=[0,0,0,0], auto_pad=b'NOTSET', strides=[2,2], kernel_shape=[2,2]) -> max_pool2d
      Conv(max_pool2d, conv2.weight, conv2.bias, group=1, pads=[0,0,0,0], auto_pad=b'NOTSET', strides=[1,1], dilations=[1,1]) -> conv2d_1
        Relu(conv2d_1) -> relu_1
          MaxPool(relu_1, storage_order=0, dilations=[1,1], ceil_mode=0, pads=[0,0,0,0], auto_pad=b'NOTSET', strides=[2,2], kernel_shape=[2,2]) -> max_pool2d_1
            Reshape(max_pool2d_1, val_5, allowzero=1) -> view
              Gemm(view, fc1.weight, fc1.bias, beta=1.00, transB=1, alpha=1.00, transA=0) -> linear
                Relu(linear) -> relu_2
                  Gemm(relu_2, fc2.weight, fc2.bias, beta=1.00, transB=1, alpha=1.00, transA=0) -> linear_1
                    Relu(linear_1) -> relu_3
                      Gemm(relu_3, fc3.weight, fc3.bias, beta=1.00, transB=1, alpha=1.00, transA=0) -> linear_2
output: name='linear_2' type=dtype('float32') shape=[1, 10]

dynamo

model = "ort-plot_torch_export_dynamo-cuda-aot1.onnx"
if os.path.exists(model):
    print(pretty_onnx(onnx.load(model)))
opset: domain='' version=20
opset: domain='ai.onnx.ml' version=5
opset: domain='ai.onnx.training' version=1
opset: domain='ai.onnx.preview.training' version=1
opset: domain='com.microsoft' version=1
opset: domain='com.microsoft.experimental' version=1
opset: domain='com.microsoft.nchwc' version=1
opset: domain='org.pytorch.aten' version=1
input: name='x' type=dtype('float32') shape=[1, 1, 16, 16]
init: name='conv1.weight' type=float32 shape=(16, 1, 5, 5)
init: name='conv1.bias' type=float32 shape=(16,)
init: name='conv2.weight' type=float32 shape=(16, 16, 5, 5)
init: name='conv2.bias' type=float32 shape=(16,)
init: name='fc1.weight' type=float32 shape=(512, 16)
init: name='fc1.bias' type=float32 shape=(512,)
init: name='fc2.weight' type=float32 shape=(128, 512)
init: name='fc2.bias' type=float32 shape=(128,)
init: name='fc3.weight' type=float32 shape=(10, 128)
init: name='fc3.bias' type=float32 shape=(10,)
init: name='val_5' type=int64 shape=(2,) -- array([ 1, 16])
Conv(x, conv1.weight, conv1.bias, group=1, pads=[0,0,0,0], auto_pad=b'NOTSET', strides=[1,1], dilations=[1,1]) -> conv2d
  Relu(conv2d) -> relu
    MaxPool(relu, storage_order=0, dilations=[1,1], ceil_mode=0, pads=[0,0,0,0], auto_pad=b'NOTSET', strides=[2,2], kernel_shape=[2,2]) -> max_pool2d
      Conv(max_pool2d, conv2.weight, conv2.bias, group=1, pads=[0,0,0,0], auto_pad=b'NOTSET', strides=[1,1], dilations=[1,1]) -> conv2d_1
        Relu(conv2d_1) -> relu_1
          MaxPool(relu_1, storage_order=0, dilations=[1,1], ceil_mode=0, pads=[0,0,0,0], auto_pad=b'NOTSET', strides=[2,2], kernel_shape=[2,2]) -> max_pool2d_1
            Reshape(max_pool2d_1, val_5, allowzero=1) -> view
              Gemm(view, fc1.weight, fc1.bias, beta=1.00, transB=1, alpha=1.00, transA=0) -> linear
                Relu(linear) -> relu_2
                  Gemm(relu_2, fc2.weight, fc2.bias, beta=1.00, transB=1, alpha=1.00, transA=0) -> linear_1
                    Relu(linear_1) -> relu_3
                      Gemm(relu_3, fc3.weight, fc3.bias, beta=1.00, transB=1, alpha=1.00, transA=0) -> linear_2
output: name='linear_2' type=dtype('float32') shape=[1, 10]

Total running time of the script: (1 minutes 4.818 seconds)

Related examples

101: Profile an existing model with onnxruntime

101: Profile an existing model with onnxruntime

101: Onnx Model Optimization based on Pattern Rewriting

101: Onnx Model Optimization based on Pattern Rewriting

201: Use torch to export a scikit-learn model into ONNX

201: Use torch to export a scikit-learn model into ONNX

101: Some dummy examples with torch.export.export

101: Some dummy examples with torch.export.export

101: A custom backend for torch

101: A custom backend for torch

Gallery generated by Sphinx-Gallery