Source code for experimental_experiment.xoptim.patterns_ort.fused_conv

import inspect
from typing import List, Optional
from onnx import NodeProto, TensorProto
from ..patterns_api import MatchResult, PatternOptimization


[docs] class FusedConvPattern(PatternOptimization): """ Replaces the Conv + Relu into FusedConv. Model with nodes to be fused: .. gdot:: :script: DOT-SECTION :process: from experimental_experiment.doc import to_dot import numpy as np import ml_dtypes import onnx import onnx.helper as oh import onnx.numpy_helper as onh opset_imports = [ oh.make_opsetid("", 18), oh.make_opsetid("com.microsoft", 1), ] inputs = [] outputs = [] nodes = [] initializers = [] sparse_initializers = [] functions = [] inputs.append( oh.make_tensor_value_info("W", onnx.TensorProto.FLOAT, shape=(8, 8, 3, 3)) ) inputs.append( oh.make_tensor_value_info("X", onnx.TensorProto.FLOAT, shape=(1, 8, 6, 6)) ) inputs.append(oh.make_tensor_value_info("B", onnx.TensorProto.FLOAT, shape=(8,))) nodes.append( oh.make_node( "Conv", ["X", "W", "B"], ["c"], dilations=[1, 1], group=1, pads=[1, 1, 1, 1], strides=[1, 1], ) ) nodes.append(oh.make_node("Relu", ["c"], ["Y"])) outputs.append( oh.make_tensor_value_info("Y", onnx.TensorProto.FLOAT, shape=(1, 8, 6, 6)) ) graph = oh.make_graph( nodes, "pattern", inputs, outputs, initializers, sparse_initializer=sparse_initializers, ) model = oh.make_model(graph, functions=functions, opset_imports=opset_imports) print("DOT-SECTION", to_dot(model)) Outcome of the fusion: .. gdot:: :script: DOT-SECTION :process: from experimental_experiment.doc import to_dot import numpy as np import ml_dtypes import onnx import onnx.helper as oh import onnx.numpy_helper as onh opset_imports = [ oh.make_opsetid("", 18), oh.make_opsetid("com.microsoft", 1), ] inputs = [] outputs = [] nodes = [] initializers = [] sparse_initializers = [] functions = [] inputs.append( oh.make_tensor_value_info("W", onnx.TensorProto.FLOAT, shape=(8, 8, 3, 3)) ) inputs.append( oh.make_tensor_value_info("X", onnx.TensorProto.FLOAT, shape=(1, 8, 6, 6)) ) inputs.append(oh.make_tensor_value_info("B", onnx.TensorProto.FLOAT, shape=(8,))) nodes.append( oh.make_node( "FusedConv", ["X", "W", "B"], ["Y"], domain="com.microsoft", activation="Relu", dilations=[1, 1], group=1, pads=[1, 1, 1, 1], strides=[1, 1], ) ) outputs.append( oh.make_tensor_value_info("Y", onnx.TensorProto.FLOAT, shape=(1, 8, 6, 6)) ) graph = oh.make_graph( nodes, "pattern", inputs, outputs, initializers, sparse_initializer=sparse_initializers, ) model = oh.make_model(graph, functions=functions, opset_imports=opset_imports) print("DOT-SECTION", to_dot(model)) """ def __init__(self, verbose: int = 0, priority: int = 2): super().__init__(verbose, priority)
[docs] def match( self, g: "GraphBuilderPatternOptimization", # noqa: F821 node: NodeProto, matched: List[MatchResult], ) -> Optional[MatchResult]: if node.op_type != "Conv" or node.domain != "": return self.none() next_nodes = g.next_nodes(node.output[0]) if len(next_nodes) != 1: return self.none(node, inspect.currentframe().f_lineno) op_type = next_nodes[0].op_type if op_type != "Relu": return self.none(node, inspect.currentframe().f_lineno) # FusedConv only exists for float32. dtypes = [(g.get_type(i) if g.has_type(i) else None) for i in node.input] if TensorProto.FLOAT not in dtypes: return self.none(node, inspect.currentframe().f_lineno) return MatchResult(self, [node, next_nodes[0]], self.apply, insert_at=next_nodes[0])
[docs] def apply( self, g: "GraphBuilder", # noqa: F821 node: NodeProto, node_act: NodeProto, ) -> List[NodeProto]: fc = g.make_node( "FusedConv", node.input, node_act.output, domain="com.microsoft", activation=node_act.op_type, name=f"{self.__class__.__name__}--{node.name}", ) fc.attribute.extend(node.attribute) return [fc]