Source code for experimental_experiment.xoptim.patterns_ort.activation_grad

import inspect
from typing import List, Optional
from onnx import NodeProto
from ..patterns_api import MatchResult, PatternOptimization


[docs] class SoftmaxGradPattern(PatternOptimization): """ Replaces the sequence Mul, ReduceSum, Mul, Sub by SoftmaxGrad """
[docs] def match( self, g: "GraphBuilderPatternOptimization", # noqa: F821 node: NodeProto, matched: List[MatchResult], ) -> Optional[MatchResult]: if node.op_type != "ReduceSum" or node.domain != "": return self.none() axis = g.get_constant_or_attribute(node, "axes", input_index=1, cvt=tuple) assert isinstance(axis, tuple), f"unexpected type {type(axis)} for axis" if len(axis) != 1: return self.none(node, inspect.currentframe().f_lineno) mul_node = g.node_before(node.input[0]) if mul_node.op_type != "Mul" or mul_node.domain != "": return self.none(node, inspect.currentframe().f_lineno) next_mul_node = g.next_node(node.output[0]) if next_mul_node.op_type != "Mul" or next_mul_node.domain != "": return self.none(node, inspect.currentframe().f_lineno) sub_node = g.next_node(next_mul_node.output[0]) if sub_node.op_type != "Sub" or sub_node.domain != "": return self.none(node, inspect.currentframe().f_lineno) next_nodes = g.next_nodes(mul_node.output[0]) if len(next_nodes) != 2: return self.none(node, inspect.currentframe().f_lineno) if {id(next_nodes[0]), id(next_nodes[1])} != {id(sub_node), id(node)}: return self.none(node, inspect.currentframe().f_lineno) if g.is_used_more_than_once(next_mul_node.output[0]) or g.is_used_more_than_once( node.output[0] ): return self.none(node, inspect.currentframe().f_lineno) nodes = [mul_node, node, next_mul_node, sub_node] return MatchResult(self, nodes, self.apply, insert_at=node)
[docs] def apply( self, g: "GraphBuilder", # noqa: F821 mul_node: NodeProto, reduce_node: NodeProto, next_mul_node: NodeProto, sub_node: NodeProto, ) -> List[NodeProto]: axis = g.get_constant_or_attribute(reduce_node, "axes", input_index=1, cvt=tuple) grad = g.make_node( "SoftmaxGrad", mul_node.input, sub_node.output, axis=int(axis[0]), name=f"{self.__class__.__name__}", doc_string=sub_node.doc_string, domain="com.microsoft", ) return [grad]