import os
import pprint
import time
from typing import Any, Callable, Dict, Iterator, List, Optional, Tuple, Union
import numpy as np
from onnx import AttributeProto, NodeProto, TensorProto
from onnx.shape_inference import infer_shapes
import onnx.helper as oh
import onnx.numpy_helper as onh
from ..xbuilder._onnx_helper import enumerate_subgraphs
from ..xbuilder.type_inference import infer_types
from .patterns_api import MatchResult, PatternOptimization
from .patterns import get_default_patterns
def _count(matches):
stats = {}
for n in matches:
cl = n[0].__class__.__name__
if cl in stats:
stats[cl] += 1
else:
stats[cl] = 1
return ", ".join([f"{v}*{k}" for k, v in stats.items()])
[docs]
class GraphBuilderPatternOptimization:
"""
Implements optimization after the conversion is done.
The differences between the two models can be display with a
command line such as:
::
python -m onnx_array_api compare -m1 <model.onnx> -m2 <optimized.onnx> -m nodes -c 80
This class assumes a pattern cannot reuse an existing name.
:param builder: GraphBuilder
:param patterns: list of patterns to apply
:param recursive: goes through subgraphs
:param verifies: verifies the model but it takes time
:param verbose: verbosity
:param dump_applied_patterns: dump applied patterns in a folder,
the users can check every pattern dumped as a :epkg:`FunctionProto`
:param processor: optimization should be made for this processor
or this list of processors (comma separated value)
"""
def __init__(
self,
builder: "GraphBuilder", # noqa: F821
patterns: Optional[List[PatternOptimization]] = None,
recursive: bool = False,
verifies: bool = False,
verbose: int = 0,
dump_applied_patterns: Optional[str] = None,
processor: str = "CPU",
):
assert processor in {
"CUDA",
"CPU",
"CPU,CUDA",
}, (
f"Unknown processor {processor!r}, "
f"if should be string with comma separated value"
)
self.builder = builder
self.verbose = max(verbose, int(os.environ.get("LOG_PATTERN_OPTIMIZE", "0")))
self.patterns = patterns or get_default_patterns(self.verbose)
self.recursive = recursive
self.verifies = verifies
self.dump_applied_patterns = dump_applied_patterns
self.processor = processor
self._build()
# This assume a name is given once and
# no constant can replace an existing one.
# _build method should not change it.
self._cache_computed_constant = {}
[docs]
def has_processor(self, processor: str) -> bool:
"""
Checks the process is on the list of used processors.
"""
return processor in self.processor
@property
def nodes(self) -> List[NodeProto]:
"property"
return self.builder.nodes
@property
def input_names(self) -> List[str]:
"property"
return self.builder.input_names
@property
def inputs(self) -> List[Any]:
"property"
return self.builder.inputs
@property
def output_names(self) -> List[str]:
"property"
return self.builder.output_names
@property
def outputs(self) -> List[Any]:
"property"
return self.builder.outputs
@property
def opsets(self):
"property"
return self.builder.opsets
[docs]
def iter_nodes(self) -> Iterator:
"iterator"
yield from self.builder.nodes
def _build(self):
"""
Builds successor and predecessor.
"""
self.positions_ = {}
self.nodes_ = {}
self.outputs_ = {o.name for o in self.builder.outputs}
for i, node in enumerate(self.builder.nodes):
key = id(node)
self.nodes_[key] = node
self.positions_[key] = i
self.set_output_names_ = set(self.builder.output_names)
self.predecessors_ = {}
self.successors_ = {}
successors_id = {}
self.used_ = set()
for k, v in self.nodes_.items():
assert isinstance(v, NodeProto), f"Unexpected type {type(v)} for node {k}"
for o in v.output:
self.predecessors_[o] = k
for i in v.input:
if i not in self.successors_:
self.successors_[i] = []
successors_id[i] = set()
if id(k) not in successors_id[i]:
# This test avoids the same successor to appear twice if one node
# consumes twice the same node.
self.successors_[i].append(k)
successors_id[i].add(id(k))
for sub in enumerate_subgraphs(v):
g = sub[-1]
sub_knowns = set()
for n in g.input:
sub_knowns.add(n.name)
for n in g.initializer:
sub_knowns.add(n.name)
for n in g.sparse_initializer:
sub_knowns.add(n.name)
for n in g.node:
for i in n.input:
if i not in sub_knowns:
# an input coming from the parent
self.used_.add(i)
for i in n.output:
sub_knowns.add(i)
def get_position(self, node: NodeProto) -> int:
return self.positions_[id(node)]
[docs]
def is_used_by_subgraph(self, name: str) -> bool:
"""
Tells if a result is used by a subgraphs.
"""
return name in self.used_
[docs]
def is_output(self, name: str) -> bool:
"""
Tells if a result is an output.
"""
return name in self.outputs_
[docs]
def is_used(self, name: str) -> bool:
"""
Tells if a result is used or not,
including as an output of the graph.
"""
if name in self.used_:
return True
if name in self.successors_:
return True
if name in self.set_output_names_:
return True
return False
[docs]
def is_used_more_than_once(self, name: str) -> bool:
"""
Tells if a result is used more than once in the current graph or in a subgraph
or if it is an output.
"""
if self.is_used_by_subgraph(name):
return True
if self.is_output(name):
return True
suc = self.successors_[name]
return len(suc) > 1
[docs]
def is_used_only_by(self, name, *nodes: List[NodeProto]) -> bool:
"""
Tells if a result is only used by a specific set of nodes.
"""
next_nodes = self.next_nodes(name)
allowed = set(id(n) for n in nodes)
return all(id(n) in allowed for n in next_nodes)
[docs]
def is_constant(self, name: str) -> bool:
"""
Tells if a result is a constant.
"""
return self.builder.is_constant(name)
[docs]
def is_constant_scalar(
self, name: str, value: Optional[Any] = None, broadcast: bool = False
) -> bool:
"""
Tells if a constant is a scalar
:param name: name
:param broadcast: if True, consider 1, [1], [[1]], [[[1]]], ... as scalar as well
:param value: value to compare to if specified
:return: boolean
"""
if not self.is_constant(name):
return False
cst_shape = self.get_constant_shape(name, exc=False)
if cst_shape is None:
return False
if broadcast:
if cst_shape != tuple() and set(cst_shape) != {1}:
return False
elif cst_shape not in (tuple(), (1,)):
return False
cst = self.get_computed_constant(name)
assert hasattr(cst, "numpy") or isinstance(
cst, np.ndarray
), f"Unexpected type for constant {name}!r, type is {type(cst)}"
shape = cst.shape
if broadcast:
if shape != tuple() and set(shape) != {1}:
return False
elif shape not in (tuple(), (1,)):
return False
if value is None:
return True
if shape == (1,):
return all(cst == value)
if shape == tuple():
return cst == value
assert broadcast, f"Broadcast should be true at this stage, name={name!r}, cst={cst}"
return all(cst.reshape((1,)) == value)
[docs]
def get_constant_shape(self, name: str, exc: bool = True) -> Optional[Tuple[int, ...]]:
"""
Returns the shape of a constant.
:param name: name
:param exc: raises an exception is not possible
:return: shape
"""
if name in self._cache_computed_constant:
return self._cache_computed_constant[name].shape
if name in self.builder.initializers_dict:
proto = self.builder.initializers_dict[name]
elif name in self.builder.constants_:
proto = self.builder.constants_[name]
elif self.is_constant(name):
cst = self.get_computed_constant(name)
return cst.shape
else:
if exc:
raise AssertionError(
f"Unable to retrieve initializer or constant for {name!r}, "
f"is_constant={self.is_constant(name)}"
)
return None
if isinstance(proto, TensorProto):
return tuple(proto.dims)
if isinstance(proto, NodeProto) and proto.domain == "":
if proto.op_type == "Cast":
if self.is_constant(proto.output[0]) and not self.is_constant(proto.input[0]):
if exc:
raise AssertionError(
f"Incompatibilities, output is constant "
f"when input is not in node {proto}."
)
return None
return self.get_constant_shape(proto.input[0], exc=exc)
if proto.op_type == "Constant":
assert (
len(proto.attribute) == 1
), f"Unexpected number of attribute for node={proto}"
for att in proto.attribute:
if att.name == "value":
return tuple(att.t.dims)
if att.name in {"value_float", "value_int"}:
return tuple()
raise AssertionError(
f"Unable to retrieve shape for name={name!r} (type is NodeProto), "
f"node.op_type={proto.op_type!r}, "
f"attributes={[att.name for att in proto.attribute]}."
)
if self.is_constant(name):
cst = self.get_computed_constant(name)
return None if cst is None else cst.shape
if exc:
raise AssertionError(
f"Unable to retrieve shape for name={name!r} "
f"bash and node {proto.op_type!r}"
# f"{self.builder.get_debug_msg()}"
)
return None
if hasattr(proto, "shape"):
return proto.shape
if exc:
raise AssertionError(
f"Unable to retrieve shape for name={name!r} and type {type(proto)}"
)
return None
[docs]
def get_constant_scalar(self, name: str, broadcast: bool = False) -> Union[int, float]:
"""
Returns a scalar as a constant.
:param name: name
:param broadcast: consider [1], [[1]], [[[1]]] as constant as well
:return: int or float
"""
cst = self.get_computed_constant(name)
assert hasattr(cst, "numpy") or isinstance(
cst, np.ndarray
), f"Unexpected type for constant {name}!r, type is {type(cst)}"
assert cst.shape == tuple() or (
(broadcast and set(cst.shape) == {1}) or (not broadcast and cst.shape == (1,))
), f"Unexpected shape {cst.shape} for constant {name!r}"
shape = cst.shape
if broadcast:
value = cst.reshape((1,))[0]
else:
value = cst[0] if shape == (1,) else cst
if value.dtype in {
np.float32,
np.float16,
np.float64,
np.dtype("float32"),
np.dtype("float16"),
np.dtype("float64"),
}:
return float(value)
if value.dtype in {
np.complex64,
np.complex128,
np.dtype("complex64"),
np.dtype("complex128"),
}:
return complex(value)
if value.dtype in {
self.builder.torch.float32,
self.builder.torch.float16,
self.builder.torch.float64,
self.builder.torch.bfloat16,
}:
return float(value)
if value.dtype in {
self.builder.torch.complex64,
self.builder.torch.complex128,
}:
return complex(value)
return int(value)
[docs]
def get_computed_constant(self, name: str, statistics: Optional[List[str]] = None) -> Any:
"""
Returns the value for the constant `name`.
"""
if name in self._cache_computed_constant:
value = self._cache_computed_constant[name]
else:
value = self.builder.get_constant(name, computed_value=True, exc=False)
if value is not None:
self._cache_computed_constant[name] = value
if statistics is None:
return value
stats = []
for st in statistics:
key = name, st
if key in self._cache_computed_constant:
stat = self._cache_computed_constant[key]
else:
if st == "min":
stat = value.min()
elif st == "max":
stat = value.max()
else:
raise RuntimeError(f"Unknown statistics {st!r} for {name!r}.")
self._cache_computed_constant[key] = stat
stats.append(stat)
return stats
[docs]
def get_attribute(
self, node: NodeProto, att_name: str, exc: bool = True
) -> Optional[AttributeProto]:
"""
Returns an attribute for a node.
"""
return self.builder.get_attribute(node, att_name, exc=exc)
[docs]
def get_attributes_with_default(self, node: NodeProto, **default_values) -> Dict[str, Any]:
"""
Returns integer or float values for attributes.
"""
return self.builder.get_attributes_with_default(node, **default_values)
[docs]
def get_axis(self, node: NodeProto, default_axis: Optional[int] = None) -> int:
"""
Retrieves the axis for many operators.
"""
att = self.get_attribute(node, "axis", exc=False)
if att is None:
assert (
default_axis is not None
), f"Node {node.op_type} has no axis and no default value."
return default_axis
return att.i
[docs]
def get_constant_or_attribute(
self,
node: NodeProto,
attribute: str,
input_index: int,
cvt: Optional[Callable] = None,
) -> Any:
"""
Returns an input or the value of an attribute.
Some attributes became inputs in more recent opsets.
The function checks both.
:param node: node
:param attribute: attribute name
:param input_index: input index
:param cvt: if not None, called this conversion function before
returning the result
:return: value
"""
found = None
for att in node.attribute:
if att.name == attribute:
found = att
assert found is None, (
f"get_constant_or_attribute not implemented "
f"for attribute={attribute!r} and node={node}."
)
assert input_index < len(
node.input
), f"Input {input_index} does not exist in node {node}."
val = self.get_computed_constant(node.input[input_index])
if cvt is None:
return val
try:
return cvt(val)
except (ValueError, TypeError) as e:
raise RuntimeError(f"Unable to convert val={val} with cvt={cvt}") from e
[docs]
def has_type(self, name: str) -> bool:
"""
Tells if a result has a type.
"""
return self.builder.has_type(name)
[docs]
def get_type(self, name: str) -> int:
"""
Returns the type of a result.
"""
return self.builder.get_type(name)
[docs]
def has_rank(self, name: str) -> int:
"""
Tells if a result has a rank.
"""
return self.builder.has_rank(name)
[docs]
def get_rank(self, name: str) -> int:
"""
Returns the rank of a result.
"""
return self.builder.get_rank(name)
[docs]
def has_shape(self, name: str) -> bool:
"""
Tells if a result has a shape.
"""
return self.builder.has_shape(name)
[docs]
def get_shape(self, name: str) -> int:
"""
Returns the shape of a result.
"""
return self.builder.get_shape(name)
[docs]
def node_before(self, name: str) -> NodeProto:
"""
Returns the node producing this output.
Returns None if it is an input or an initializer.
"""
if name not in self.predecessors_:
return None
predecessor = self.predecessors_[name]
return self.nodes_[predecessor]
[docs]
def next_node(self, name: str) -> NodeProto:
"""
Returns the next node if it is unique, otherwise fails.
"""
res = self.next_nodes(name)
assert len(res) == 1, f"Unexpected number of successors {len(res)} for {name!r}"
return res[0]
[docs]
def next_nodes(self, name: str) -> List[NodeProto]:
"""
Returns the node consuming the given results.
"""
if name not in self.successors_:
return []
return [self.nodes_[i] for i in self.successors_[name]]
[docs]
def try_infer_type(self, name: str, exc: bool = False) -> int:
"""
Tries to infer the type of a result.
:param name: name of the result for which to infer the type
:param exc: if True, raises an exception if something goes wrong
:return: type
"""
if self.has_type(name):
it = self.get_type(name)
if exc and it == 0:
raise RuntimeError(
f"Unable to guess type for {name!r}, "
f"knowns types are {pprint.pformat(self.builder._known_types)}"
)
return it
assert (
name not in self.builder.initializers_dict
), f"name {name!r} has no type but it is an initializer"
assert name not in self.builder.input_names, (
f"name {name!r} has no type but it is an input, "
f"known_types={pprint.pformat(self.builder._known_types)}"
)
node = self.node_before(name)
input_types = [(self.get_type(i) if self.has_type(i) else 0) for i in node.input]
output_type = infer_types(node, input_types, name, exc=exc)
if output_type > 0:
return output_type
# second try with more depth
input_types = [self.try_infer_type(i, exc=exc) for i in node.input]
output_type = infer_types(node, input_types, name, exc=exc)
if output_type > 0:
return output_type
# no luck
if exc:
raise RuntimeError(
f"Unable to guess type for {name!r}, "
f"knowns types are {pprint.pformat(self.builder._known_types)}"
)
return 0
[docs]
def try_infer_shape(self, name: str, exc: bool = False) -> int:
"""
Tries to infer the type of a result.
:param name: name of the result for which to infer the type
:param exc: if True, raises an exception if something goes wrong
:return: type
"""
if self.has_shape(name):
return self.get_shape(name)
if exc:
raise RuntimeError(
f"Unable to guess shape for {name!r}, "
f"knowns shapes are {pprint.pformat(self.builder._known_shapes)}"
)
return None
@property
def main_opset(self):
"Returns the opset for the main domain (assuming it is used)."
return self.builder.opsets[""]
def make_initializer(
self, name: str, value: Any, external: bool = False, msg: str = ""
) -> str:
new_name = self.builder.make_initializer(name, value, external=external, msg=msg)
return new_name
[docs]
def unique_name(self, prefix: str) -> str:
"Returns a unique name."
return self.builder.unique_name(prefix)
[docs]
def make_node_check_opset(
self,
op_type: str,
inputs: Union[str, List[str]],
outputs: Union[int, List[str], str] = 1,
domain: str = "",
attributes: Optional[List[AttributeProto]] = None,
name: Optional[str] = None,
**kwargs,
):
"""
Creates a node without adding it to the graph but
adapt for some known operators changing over
multiple opets.
:param op_type: operator type
:param inputs: input names
:param outputs: outputs names, if one integer, creates n unique names,
if str, creates one unique names, if a list, use the name
:param domain: node domain
:param attributes: list of attributes
:param name: node name
:param kwargs: other attributes
:return: a node
"""
assert domain == "", f"The method only supports the main domain not {domain!r}"
if op_type in {"Squeeze", "Unsqueeze"}:
if self.builder.main_opset < 13:
assert len(inputs) == 1, f"axis must be given as an attribute for {op_type!r}"
return self.make_node(
op_type,
inputs,
outputs,
domain=domain,
attributes=attributes,
name=name,
**kwargs,
)
if len(inputs) == 1 and "axes" in kwargs:
axes = kwargs["axes"]
axes_name = self.make_initializer("", np.array([axes], dtype=np.int64))
inputs.append(axes_name)
del kwargs["axes"]
return self.make_node(
op_type,
inputs,
outputs,
domain=domain,
attributes=attributes,
name=name,
**kwargs,
)
raise RuntimeError(f"Operator {op_type!r} not supported yet.")
[docs]
def make_node(
self,
op_type: str,
inputs: Union[str, List[str]],
outputs: Union[int, List[str], str] = 1,
domain: str = "",
attributes: Optional[List[AttributeProto]] = None,
name: Optional[str] = None,
**kwargs,
) -> NodeProto:
"""
Creates a node without adding it to the graph.
:param op_type: operator type
:param inputs: input names
:param outputs: outputs names, if one integer, creates n unique names,
if str, creates one unique names, if a list, use the name
:param domain: node domain
:param attributes: list of attributes
:param name: node name
:param kwargs: other attributes
:return: a node
"""
assert name is not None and not name.startswith("None"), (
f"It is good practice to give every node a name so that is "
f"easier to see where this node is created but name={name!r} "
f"and op_type={op_type!r}."
)
name = self.builder.unique_node_name(name)
if isinstance(outputs, int):
if outputs == 1:
outputs = [self.unique_name(f"{op_type.lower()}-{inputs[0]}")]
else:
outputs = [
self.unique_name(f"{op_type.lower()}-{inputs[0]}-{i}")
for i in range(outputs)
]
elif isinstance(outputs, str):
outputs = [self.unique_name(outputs)]
proto = oh.make_node(
op_type,
inputs,
outputs,
domain=domain,
name=name,
**kwargs,
)
if all(self.is_constant(i) for i in inputs):
for o in outputs:
self.builder.update_node_constant(o, proto)
proto.doc_string += ":constant-5:"
assert len(outputs) == len(set(outputs)) or "" in outputs, (
f"Repeated outputs for node {op_type}({', '.join(inputs)}) -> "
f"{', '.join(outputs)}"
)
if attributes:
proto.attribute.extend(attributes)
return proto
[docs]
def apply_match(self, match: MatchResult) -> List[NodeProto]:
"""
Applies one match.
Returns the new nodes.
"""
idn = [id(n) for n in match.nodes if n is not None]
assert all(i in self.nodes_ for i in idn), f"One node in {idn} is not referenced"
positions = {id(n): i for i, n in enumerate(self.builder.nodes)}
assert all(i in positions for i in idn), f"One node in {idn} is not referenced"
removed = [positions[i] for i in idn]
position_insert = None if match.insert_at is None else positions[id(match.insert_at)]
new_nodes = match.apply(self, *match.nodes)
if self.verbose >= 10:
print(f"[GraphBuilderPatternOptimization.apply_match] {match}")
for node in match.nodes:
if node is None:
continue
print(f" - {node.op_type}: {node.input} -> {node.output}")
for node in new_nodes:
if node is None:
continue
print(f" + {node.op_type}: {node.input} -> {node.output}")
self.builder.insert_and_remove_nodes(position_insert, new_nodes, removed, debug=match)
if self.verbose >= 10:
print(f"[GraphBuilderPatternOptimization.apply_match] {match} applied.")
if self.dump_applied_patterns:
self._save_pattern_as_proto(self.dump_applied_patterns, match, new_nodes)
return new_nodes
def _to_cstop(self, init: Any, name: Optional[str] = None) -> NodeProto:
if isinstance(init, NodeProto):
assert (
name is None or init.output[0] == name
), f"Name mismatch {name!r} != {init.output[0]!r}"
return init
if isinstance(init, TensorProto):
assert (
name is None or init.name == name
), f"Name mismatch {name!r} != {init.name!r}"
return oh.make_node("Constant", [], [init.name], value=init)
if isinstance(init, np.ndarray):
return self._to_cstop(onh.from_array(init, name=name))
import torch
if isinstance(init, torch.Tensor):
return self._to_cstop(init.detach().cpu().numpy(), name=name)
raise AssertionError(f"Unexpected type {type(init)}")
def _save_pattern_as_proto(
self, folder: str, match: MatchResult, new_nodes: List[NodeProto]
):
assert isinstance(folder, str), f"Unexpected type {type(folder)} for folder."
if folder and not os.path.exists(folder):
os.makedirs(folder)
name = f"{match.pattern.__class__.__name__}_0.onnx"
fullname = os.path.join(folder, name)
n = 0
while os.path.exists(fullname):
n += 1
name = f"{match.pattern.__class__.__name__}_{n}.onnx"
fullname = os.path.join(folder, name)
if self.verbose >= 10:
print(
f"[GraphBuilderPatternOptimization._save_pattern_as_proto] save {fullname!r}"
)
unique_names = set()
for node in match.nodes:
if node is None:
continue
unique_names |= set(node.input)
unique_names |= set(node.output)
new_initializers = {}
input_names = set()
output_names = set()
for node in new_nodes:
if node is None:
continue
for i in node.input:
if i in unique_names:
input_names.add(i)
elif i in self.builder.initializers_dict:
new_initializers[i] = self.builder.initializers_dict[i]
for o in node.output:
if o in unique_names:
output_names.add(o)
old_initializers = {}
for node in match.nodes:
if node is None:
continue
for i in node.input:
if i in self.builder.initializers_dict:
old_initializers[i] = self.builder.initializers_dict[i]
new_init_nodes = [self._to_cstop(v, name=k) for k, v in new_initializers.items()]
old_init_nodes = [self._to_cstop(v, name=k) for k, v in old_initializers.items()]
fproto = oh.make_function(
domain="pattern",
fname=match.pattern.__class__.__name__,
inputs=list(input_names),
outputs=list(output_names),
nodes=old_init_nodes + [n for n in match.nodes if n is not None],
opset_imports=[oh.make_opsetid(k, v) for k, v in self.builder.opsets.items()],
)
fproto_apply = oh.make_function(
"pattern",
match.pattern.__class__.__name__,
list(input_names),
list(output_names),
new_init_nodes + [n for n in new_nodes if n is not None],
opset_imports=[oh.make_opsetid(k, v) for k, v in self.builder.opsets.items()],
)
def _sh(n):
if self.builder.has_shape(n):
return self.builder.get_shape(n)
if self.builder.has_rank(n):
return [None] * self.builder.get_rank(n)
return None
inputs = [
oh.make_tensor_value_info(n, self.builder.get_type(n), _sh(n))
for n in fproto.input
]
outputs = [
oh.make_tensor_value_info(n, self.builder.get_type(n), _sh(n))
for n in fproto.output
]
model = oh.make_model(
oh.make_graph(fproto.node, "pattern", inputs, outputs),
opset_imports=fproto.opset_import,
)
model_apply = oh.make_model(
oh.make_graph(fproto_apply.node, "pattern", inputs, outputs),
opset_imports=fproto_apply.opset_import,
)
if self.builder.ir_version:
model.ir_version = self.builder.ir_version
model_apply.ir_version = self.builder.ir_version
with open(fullname, "wb") as f:
f.write(model.SerializeToString())
if self.verbose >= 10:
print(
f"[GraphBuilderPatternOptimization._save_pattern_as_proto] "
f"saved {fullname!r}"
)
name = f"{match.pattern.__class__.__name__}_{n}_apply.onnx"
fullname = os.path.join(folder, name)
with open(fullname, "wb") as f:
f.write(model_apply.SerializeToString())
if self.verbose >= 10:
print(
f"[GraphBuilderPatternOptimization._save_pattern_as_proto] "
f"saved {fullname!r}"
)
def _chech_graph_verifies(self, node: NodeProto):
if (
node.op_type in {"MatMul", "Gemm", "FusedMatMul"}
and self.builder.has_shape(node.input[0])
and self.builder.has_shape(node.input[1])
):
sh1 = self.builder.get_shape(node.input[0])[-2:]
sh2 = self.builder.get_shape(node.input[1])[-2:]
tA = self.builder.get_attribute(node, "transA", exc=False)
tB = self.builder.get_attribute(node, "transB", exc=False)
tA = 0 if tA is None or tA.i == 0 else 1
tB = 0 if tB is None or tB.i == 0 else 1
if tA:
sh1 = (sh1[1], sh1[0])
if tB:
sh2 = (sh2[1], sh2[0])
assert type(sh1[-1]) != type(sh2[0]) or sh1[-1] == sh2[0], ( # noqa: E721
f"Node {node.op_type!r}, inputs={node.input}, "
f"shape1={self.builder.get_shape(node.input[0])}, "
f"shape2={self.builder.get_shape(node.input[1])}, "
f"tA={tA}, tB={tB}."
)
def _check_graph_verifies_whole(self):
onx = self.builder.to_onnx(optimize=False)
new_shapes = infer_shapes(onx)
for val in new_shapes.graph.value_info:
itype = val.type.tensor_type.elem_type
shape = tuple(
d.dim_param if d.dim_param else d.dim_value
for d in val.type.tensor_type.shape.dim
)
assert self.builder.has_name(val.name), f"name {val.name!r} is missing"
assert (
not self.builder.has_type(val.name) or self.builder.get_type(val.name) == itype
), (
f"Result {val.name!r} has type {itype} but the builder "
f"assumes it is {self.builder.get_type(val.name)}"
)
assert (
not self.builder.has_shape(val.name)
or self.builder.get_shape(val.name) == shape
), (
f"Result {val.name!r} has shape {shape} but the builder "
f"assumes it is {self.builder.get_shape(val.name)}"
)
# from onnxruntime import InferenceSession
# InferenceSession(
# onx.SerializeToString(),
# providers=["CPUExecutionProvider"],
# )
def _check_graph(
self,
statistics: List[Dict[str, Any]],
step: str,
iteration: int,
code: str,
verifies: bool,
):
begin = time.perf_counter()
assert len(self.builder.nodes) > 0, f"The onnx model is empty (step {step}, no node)"
known = set(n.name for n in self.builder.inputs)
known |= set(self.builder.initializers_dict)
for p, node in enumerate(self.builder.nodes):
assert (
node.domain in self.opsets
), f"domain {node.domain!r} is not registered in {self.opsets}"
for i in node.input:
if i == "":
continue
if i not in known:
after = set()
for nn in self.builder.nodes[p:]:
after |= set(nn.output)
raise AssertionError(
f"Unknown input {i!r}, step {step!r} at position {p} "
f"in node {node.op_type!r} "
f"[{node.name}]: {node.input} -> {node.output}, "
f"found after = {i in after}"
)
known |= set(node.output)
if verifies:
self._check_graph_verifies(node)
for o in self.builder.outputs:
assert o.name in known, f"Unknown output {o.name!r}, step {step!r}"
if verifies:
self._chech_graph_verifies_whole()
statistics.append(
dict(
pattern=f"check_pattern_{code}{1 if verifies else 0}",
time_in=time.perf_counter() - begin,
iteration=iteration,
)
)
[docs]
def do_not_remove(self, node: NodeProto) -> bool:
"""Tells if a node can be removed."""
return self.builder.do_not_remove(node)
[docs]
def optimize(
self, max_iter=-1, remove_identity: bool = True, stop_after: int = -1
) -> List[Dict[str, Any]]:
"""
Optimizes the based on the given list of patterns.
:param max_iter: maximum number of iterations
:param remove_identity: remove identity nodes, it is better to keep it True,
not doing it might prevent other patterns to find a set of nodes to optimize
:param sopt_after: stop after this number of replacements (to debug),
-1 not to stop
:return: the method returns informations about the applied processes.
The algorithm runs multiple iteration until the graph is not evolving
or `max_iter` is reached. By default, it is equal to the number of nodes.
An iteration is:
::
matches = []
builds all successors and predecessors
for all patterns P:
for all nodes n:
r = p.match(n)
if r:
if no node already scheduled to be rewritten by another match:
matches.append(r)
for all matches r:
apply the match r
This algorithm may apply more than one rewriting at each iteration
but it guarantees the local structure when applying the rewriting was
not altered by another one.
"""
assert (
not self.recursive
), "GraphBuilderPatternOptimization.optimize does not implement recursivity"
continue_optimization = True
if max_iter == -1:
max_iter = len(self.builder.nodes)
priorities = list(sorted(set(p.priority for p in self.patterns))) # noqa: C413
assert priorities, "list of priority is null."
if self.verbose > 0:
print(
f"[GraphBuilderPatternOptimization.optimize] start with "
f"{len(self.builder.nodes)} nodes, "
f"{len(self.builder.initializers_dict)} initializers, "
f"{len(self.patterns)} patterns, priorities={priorities}"
)
if self.verbose > 1:
for i, (pp, _, pattern) in enumerate(
sorted((p.priority, repr(p), p) for p in self.patterns)
):
print(
f"[GraphBuilderPatternOptimization.optimize] "
f"use pattern {i+1:3d}/{len(self.patterns)} - P{pp} - {pattern!r}"
)
if self.verbose >= 10:
print("--")
print(self.builder.pretty_text())
print("--")
begin_all = time.perf_counter()
statistics = []
self._check_graph(statistics, "-", -1, "0", False)
n_applied = 0
last_it = 0
current_priority_index = 0
for it in range(max_iter):
if not continue_optimization:
break
if self.verbose > 0:
print(
f"[GraphBuilderPatternOptimization.optimize] iteration {it}: "
f"{len(self.builder.nodes)} nodes, "
f"priority={priorities[current_priority_index]}"
)
# detects patterns
found = False
marked = set()
matches = []
durations = {}
for pattern in self.patterns:
if not continue_optimization:
break
if pattern.priority > priorities[current_priority_index]:
# skipping that pattern
continue
begin = time.perf_counter()
before = len(matches)
# loop over the nodes
for match in pattern.enumerate_matches(self):
# bypass this node if the name contains some specific name
fail_match = False
for n in match.nodes:
if n and self.do_not_remove(n):
fail_match = True
break
if fail_match:
continue
# checks that a node is not already part of another pattern
bypass = False
for n in match.nodes:
if n is None:
continue
if id(n) in marked:
# a node is already marked for replacements
bypass = True
break
if bypass:
if self.verbose >= 9:
print(
f"[{self.__class__.__name__}.match] OVERLAP "
f"match={match} #marked: {len(marked)})"
)
continue
for n in match.nodes:
if n is None:
continue
marked.add(id(n))
found = True
if self.verbose > 2:
print(f"[GraphBuilderPatternOptimization.optimize] match={match}")
matches.append((pattern, match))
if stop_after > 0 and len(matches) + n_applied >= stop_after:
continue_optimization = False
if self.verbose > 0:
print(
f"[GraphBuilderPatternOptimization.optimize] "
f"stop after with "
f"{len(matches)} as stop_after={stop_after} "
f"and n_applied={n_applied}"
)
break
# matches contains all the matchs
d = time.perf_counter() - begin
statistics.append(
dict(
pattern=f"match_{pattern}",
iteration=it,
instances=len(matches) - before,
time_in=d,
match_index=len(matches),
)
)
durations[pattern.__class__.__name__] = (
durations.get(pattern.__class__.__name__, 0) + d
)
if self.verbose > 0 and matches:
if durations:
rev = max([(v, k) for k, v in durations.items()])
revs = f"{rev[-1]}:{rev[0]:.3f}"
if len(matches) == 1:
print(
f"[GraphBuilderPatternOptimization.optimize] applies "
f"{len(matches)} matches, [0]={str(matches[0][-1])} - "
f"time={sum(durations.values()):.3f} | max_time={revs}"
)
else:
print(
f"[GraphBuilderPatternOptimization.optimize] applies "
f"{len(matches)} matches, {_count(matches)} - "
f"time={sum(durations.values()):.3f} | max_time={revs}"
)
elif len(matches) == 1:
print(
f"[GraphBuilderPatternOptimization.optimize] applies "
f"{len(matches)} matches, [0]={str(matches[0][-1])}"
)
else:
print(
f"[GraphBuilderPatternOptimization.optimize] applies "
f"{len(matches)} matches, {_count(matches)}"
)
# applies patterns (they must be disjoined)
added_types = set()
n_added = 0
n_removed = 0
# loop over patterns
for im, (pattern, match) in enumerate(matches):
if self.verbose > 3:
print(
f"[GraphBuilderPatternOptimization.optimize] "
f"apply {match.to_string(short=False)}"
)
begin = time.perf_counter()
added_nodes = self.apply_match(match)
added_types |= set(n.op_type for n in added_nodes)
if self.verbose > 3:
print(
f"[GraphBuilderPatternOptimization.optimize] - add "
f"{[n.op_type for n in added_nodes]}"
)
add = len(added_nodes)
added_outputs = set()
for n in added_nodes:
added_outputs |= set(n.output)
rem = len([n for n in match.nodes if n is not None])
removed_outputs = set()
for n in match.nodes:
if n is None:
continue
removed_outputs |= set(n.output)
full_removed = set(i for i in removed_outputs if i not in added_outputs)
for i in full_removed:
assert not self.is_output(i), (
f"Output {i!r} must not be removed, added_outputs={added_outputs},"
f"removed_outputs={removed_outputs}"
)
if self.verbose > 3:
print(
f"[GraphBuilderPatternOptimization.optimize] done "
f"{match}: -{rem} +{add} nodes"
)
if full_removed and self.verbose > 4:
print(
f"[GraphBuilderPatternOptimization.optimize] "
f"removed outputs {full_removed}"
)
obs = dict(
pattern=f"apply_{pattern}",
added=add,
removed=rem,
iteration=it,
match_index=im,
instances=1,
time_in=time.perf_counter() - begin,
)
statistics.append(obs)
self._check_graph(statistics, str(match), it, "A", self.verifies)
n_added += add
n_removed += rem
n_applied += 1
if self.verbose > 2:
print(
f"[GraphBuilderPatternOptimization.optimize] done all: "
f"-{n_removed} +{n_added} nodes"
)
if remove_identity and (it < 3 or "Identity" in added_types):
# remove unnecessary identity nodes
begin = time.perf_counter()
id_removed, id_added = self.builder.remove_identity_nodes()
statistics.append(
dict(
pattern="remove_identity_nodes",
iteration=it,
added=id_added,
removed=id_removed,
time_in=time.perf_counter() - begin,
)
)
self._check_graph(statistics, "remove_identity", it, "B", self.verifies)
# rebuild the graph structure
begin = time.perf_counter()
self._build()
statistics.append(
dict(
pattern="build_for_pattern",
iteration=it,
time_in=time.perf_counter() - begin,
)
)
# next iteration
last_it = it + 1
if not found:
# No match, increase the priority.
current_priority_index += 1
if current_priority_index >= len(priorities):
# There is priority left to explore.
continue_optimization = len(matches) > 0
break
if self.verbose > 0:
print(
f"[GraphBuilderPatternOptimization.optimize] increase priority "
f"to {priorities[current_priority_index]}"
)
if self.verbose > 0:
duration = time.perf_counter() - begin_all
print(
f"[GraphBuilderPatternOptimization.optimize] "
f"done after {last_it} iterations with "
f"{len(self.builder.nodes)} nodes in {duration:.3f}"
)
if self.verbose > 1:
msg = self.builder._compile_statistics(statistics)
print(msg)
return statistics