from typing import Any, Sequence, Tuple, Union
import numpy as np
STATIC_SHAPE = Tuple[int, ...]
DYNAMIC_SHAPE = Tuple[
Union[int, "torch.SymInt", "torch.SymFloat", float, str], ... # noqa: F821
]
def all_int(seq: Sequence[Any]) -> bool:
return all(isinstance(i, int) for i in seq)
def all_float(seq: Sequence[Any]) -> bool:
return all(isinstance(i, float) for i in seq)
def all_int_or_float(seq: Sequence[Any]) -> bool:
return all(isinstance(i, (int, float)) for i in seq)
def all_int_or_str(seq: Sequence[Any]) -> bool:
return all(isinstance(i, (int, str)) for i in seq)
def is_static_shape(shape: DYNAMIC_SHAPE) -> bool:
if shape is None:
return False
return all(map(is_static_dimension, shape))
def is_static_dimension(d: int) -> bool:
import torch
if isinstance(d, torch.export.dynamic_shapes._Dim):
return False
if isinstance(d, int):
assert not isinstance(
d, (torch.SymInt, torch.SymFloat)
), f"Unexpected type {type(d)} for a dimension {d!r}"
return True
assert isinstance(
d, (torch.SymInt, torch.SymFloat, str)
), f"Unexpected type {type(d)} for a dimension {d!r}"
return False
[docs]
def compatible_shapes(sh1: DYNAMIC_SHAPE, sh2: DYNAMIC_SHAPE) -> bool:
"""
Checks that two shapes are compatible. If both static, they must be equal.
If dynamic, the variable part must be compatible meaning they could be equal.
:param sh1: first shape
:param sh2: seconde shape
:return: compatibility
.. runpython::
:showcode:
from experimental_experiment.xbuilder._shape_helper import compatible_shapes
print(compatible_shapes((1, 2), (1, 2))) # True
print(compatible_shapes((1, 2), (1, "D2"))) # True
print(compatible_shapes(("D2", 2), (1, "D2"))) # False
print(compatible_shapes(("D2", 2), (2, "D2"))) # True
"""
assert isinstance(sh1, tuple), f"type(sh1)={type(sh1)} is unexpected"
assert isinstance(sh2, tuple), f"type(sh2)={type(sh2)} is unexpected"
if len(sh1) != len(sh2):
# incompatible rank
return False
assert all_int_or_str(
sh1
), f"Shape sh1={sh1} has unexpected dimension type: {[type(i) for i in sh1]}"
assert all_int_or_str(
sh2
), f"Shape sh2={sh2} has unexpected dimension type: {[type(i) for i in sh2]}"
constraints = {}
for a, b in zip(sh1, sh2):
if a == b:
continue
if type(a) == type(b): # noqa: E721
# The same name should be used for the same value.
if a != b:
return False
continue
name, value = (b, a) if isinstance(a, int) else (a, b)
if name not in constraints:
constraints[name] = value
continue
if constraints[name] != value:
return False
return True
[docs]
def compatible_dimensions(*dims: Sequence[Union[int, str]]) -> bool:
"""
Evaluates the fact all the dimensions can be equal or not.
:param dims: dimensions
:return: compatibility
.. runpython::
:showcode:
from experimental_experiment.xbuilder._shape_helper import compatible_dimensions
print(compatible_dimensions(1, 1)) # True
print(compatible_dimensions(1, 2)) # False
print(compatible_dimensions(1, "D")) # True
print(compatible_dimensions(1, "D", "DD")) # True
"""
assert all_int_or_str(dims), f"unexpected types in {dims} ({[type(i) for i in dims]})"
unique = set(dims)
ints = [i for i in unique if isinstance(i, int)]
if len(ints) > 1:
return False
return True
def _reshape_shape(shape: Tuple[int, ...], new_shape: Tuple[int, ...]) -> Tuple[int, ...]:
"""
Computes the shape of the reshaped shape.
"""
assert all_int(new_shape), f"Unexpected new_shape={new_shape}"
if -1 not in new_shape:
return new_shape
pos = [i for i in new_shape if i > 0]
if not pos:
assert new_shape == (-1,), f"Unexpected new_shape={new_shape}, input shape is {shape}"
return (int(np.prod(shape)),)
res = []
for i in new_shape:
if i >= 0:
res.append(i)
else:
p = np.prod(pos)
s = np.prod(shape)
assert s % p == 0, f"Incompatible shapes shape={shape}, reshaped into {new_shape}"
res.append(int(s // p))
return tuple(res)