Source code for experimental_experiment.torch_models.llama_helper

"""
Code modified from different sources:

* https://github.com/huggingface/transformers/blob/main/tests/models/llama/test_modeling_llama.py
* https://github.com/pytorch/pytorch/pull/117009
"""

import random
from typing import Sequence, Tuple


def ids_tensor(shape, vocab_size, rng=None, name=None):
    #  Creates a random int32 tensor of the shape within the vocab size
    import torch

    if rng is None:
        rng = random.Random()

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))

    return torch.tensor(data=values, dtype=torch.long).view(shape).contiguous()


[docs] def get_llama_model( input_dims: Sequence[Tuple[int, int]] = ((2, 8), (4, 7), (9, 15)), hidden_size: int = 16, num_hidden_layers: int = 1, vocab_size: int = 1024, intermediate_size: int = 16, max_position_embeddings: int = 1024, num_attention_heads: int = 2, _attn_implementation: str = "eager", # needed value to remove graph breaks with_mask: bool = True, dynamic_shapes: bool = False, ): """ Returns a model. See `LlamaConfig <https://huggingface.co/docs/transformers/main/en/model_doc/llama#transformers.LlamaConfig>`_. The parameters are chosen for a unit test configuration. """ import torch from transformers import LlamaConfig from transformers.models.llama.modeling_llama import LlamaModel _dynamic_shapes = {0: {0: "batch", 1: "length"}} if with_mask: _dynamic_shapes.update({1: {0: "batch", 1: "length"}}) config = LlamaConfig( num_hidden_layers=num_hidden_layers, vocab_size=vocab_size, hidden_size=hidden_size, intermediate_size=intermediate_size, max_position_embeddings=max_position_embeddings, num_attention_heads=num_attention_heads, ) if _attn_implementation: config._attn_implementation = _attn_implementation if with_mask: class LlamaModelWrapper(torch.nn.Module): def __init__(self, config): super().__init__() self.model = LlamaModel(config) def forward(self, input_ids, attention_mask): model_output = self.model( input_ids, attention_mask=attention_mask, use_cache=False ) return model_output.to_tuple() def generate_example_inputs(batch: int, seq: int, vocab_size: int): input_ids = ids_tensor([batch, seq], vocab_size) input_mask = torch.tril(torch.ones(batch, seq, dtype=torch.float32)) assert input_mask.dtype == torch.float32 return input_ids, input_mask example_args_collection = [] for b, s in input_dims: example_args_collection.append(generate_example_inputs(b, s, vocab_size)) if not dynamic_shapes: return LlamaModelWrapper(config), example_args_collection return LlamaModelWrapper(config), example_args_collection, _dynamic_shapes # no mask class LlamaModelWrapper(torch.nn.Module): def __init__(self, config): super().__init__() self.model = LlamaModel(config) def forward(self, input_ids): model_output = self.model(input_ids, use_cache=False) return model_output.to_tuple() def generate_example_inputs(batch: int, seq: int, vocab_size: int): input_ids = ids_tensor([batch, seq], vocab_size) return (input_ids,) example_args_collection = [] for b, s in input_dims: example_args_collection.append(generate_example_inputs(b, s, vocab_size)) if not dynamic_shapes: return LlamaModelWrapper(config), example_args_collection return LlamaModelWrapper(config), example_args_collection, _dynamic_shapes