Source code for experimental_experiment.torch_interpreter.eval.model_cases

import numpy as np
import torch


[docs] class AtenRollRelu(torch.nn.Module):
[docs] def forward(self, x): return torch.relu(torch.roll(x, -1, -1))
_inputs = ((torch.arange(8 * 3) + 10).reshape((2, -1, 4)).to(torch.float32),) _dynamic = {"x": {0: torch.export.Dim("batch")}}
[docs] class AtenRollPos(torch.nn.Module):
[docs] def forward(self, x): return torch.roll(x, 1, -1)
_inputs = ((torch.arange(8 * 3) + 10).reshape((2, -1, 4)).to(torch.float32),) _dynamic = {"x": {0: torch.export.Dim("batch")}}
[docs] class InplaceAdd(torch.nn.Module): def __init__(self): super().__init__() self.bias = torch.ones((1, 4), dtype=torch.float32)
[docs] def forward(self, x): x += self.bias return x
_inputs = [(torch.rand(3, 4),), (torch.rand(5, 4),)] _dynamic = {"x": {0: torch.export.Dim("batch")}}
[docs] class InplaceAdd_(torch.nn.Module): def __init__(self): super().__init__() self.bias = torch.ones((1, 4), dtype=torch.float32)
[docs] def forward(self, x): x.add_(self.bias) return x
_inputs = [(torch.rand(3, 4),), (torch.rand(5, 4),)] _dynamic = {"x": {0: torch.export.Dim("batch")}}
[docs] class InplaceAdd_Mul(torch.nn.Module): def __init__(self): super().__init__() self.bias = torch.ones((1, 4), dtype=torch.float32)
[docs] def forward(self, x): x.add_(self.bias) return x * 2
_inputs = [(torch.rand(3, 4),), (torch.rand(5, 4),)] _dynamic = {"x": {0: torch.export.Dim("batch")}}
[docs] class InplaceCloneAdd_(torch.nn.Module): def __init__(self): super().__init__() self.bias = torch.ones((1, 4), dtype=torch.float32)
[docs] def forward(self, x): x = x.clone() x.add_(self.bias) return x
_inputs = [(torch.rand(3, 4),), (torch.rand(5, 4),)] _dynamic = {"x": {0: torch.export.Dim("batch")}}
[docs] class InplaceSetItemSquare(torch.nn.Module):
[docs] def forward(self, x): x[:2, :3] = 1 return x
_inputs = [(torch.rand(5, 5),), (torch.rand(7, 5),)] _dynamic = {"x": {0: torch.export.Dim("batch")}}
[docs] class InplaceSetItemSquareAdd(torch.nn.Module):
[docs] def forward(self, x): x[:2, :3] = 1 return x + 2
_inputs = [(torch.rand(5, 5),), (torch.rand(7, 5),)] _dynamic = {"x": {0: torch.export.Dim("batch")}}
[docs] class InplaceSetItemSquareAdd2(torch.nn.Module):
[docs] def forward(self, x): x[:2, :3] = 1 return x + 2, x + 3
_inputs = [(torch.rand(5, 5),), (torch.rand(7, 5),)] _dynamic = {"x": {0: torch.export.Dim("batch")}}
[docs] class InplaceSetItemEllipsis_1(torch.nn.Module): def __init__(self): super().__init__() self.params = torch.zeros((1, 8192, 4), dtype=torch.float32)
[docs] def forward(self, index, update): copy = self.params.clone() copy[..., index] = update return copy
_inputs = ( (torch.from_numpy(np.array([0, 3, 2, 1])).to(torch.int64)), (torch.arange(4 * 8192) + 10).reshape((-1, 4)).to(torch.float32), ) _dynamic = {"x": {0: torch.export.Dim("batch")}}
[docs] class InplaceSetItemEllipsis_2(torch.nn.Module): def __init__(self): super().__init__() self.params = torch.zeros((1, 8192, 6), dtype=torch.float32)
[docs] def forward(self, index, update): copy = self.params.clone() copy[..., index] = update return copy
_inputs = ( torch.from_numpy(np.array([0, 3, 2, 5])).to(torch.int64), (torch.arange(4 * 8192) + 10).reshape((-1, 4)).to(torch.float32), ) _dynamic = {"x": {0: torch.export.Dim("batch")}}
[docs] class InplaceSetItemMask(torch.nn.Module):
[docs] def forward(self, x): mask = x.to(bool) x[mask] = 2 return x
_inputs = [(torch.randn((2, 3, 3)),), (torch.randn((3, 3, 3)),)] _dynamic = {"x": {0: torch.export.Dim("batch")}}
[docs] class AtenInterpolate(torch.nn.Module):
[docs] def forward(self, x): y = torch.nn.functional.interpolate( x, scale_factor=2.0, mode="bilinear", recompute_scale_factor=False, ) return y
_inputs = (torch.randn(2, 2, 3, 4, requires_grad=False),) _dynamic = {"x": {0: torch.export.Dim("batch")}}
[docs] class AtenNonZero(torch.nn.Module):
[docs] def forward(self, x): y = torch.nonzero(x) return y
_inputs = (torch.randn(3, 4, requires_grad=False),) _dynamic = {"x": {0: torch.export.Dim("batch")}}
[docs] class AtenNonZeroTuple(torch.nn.Module):
[docs] def forward(self, x): y = torch.nonzero(x, as_tuple=True) return y[0], y[1]
_inputs = (torch.randn(3, 4, requires_grad=False),) _dynamic = {"x": {0: torch.export.Dim("batch")}}
[docs] class AtenAsStrided(torch.nn.Module): def __init__(self): super().__init__()
[docs] def forward(self, x): y = torch.as_strided(x, (2, 2, 8, 4), (128, 8, 16, 1)) return y
_inputs = (torch.randn((2, 2, 8, 8), requires_grad=False),) _dynamic = {"x": {0: torch.export.Dim("batch")}}
[docs] class ComplexPolar(torch.nn.Module):
[docs] def forward(self, x, angle): return torch.polar(x, angle)
_inputs = (torch.rand(4, 4), torch.rand(4, 4)) _dynamic = {"x": {0: torch.export.Dim("batch")}, "angle": {0: torch.export.Dim("batch")}}
[docs] class ControlFlowCond(torch.nn.Module):
[docs] def forward(self, x): def true_fn(x): return torch.sin(x) def false_fn(x): return torch.cos(x) return torch.cond(x.sum() > 0, true_fn, false_fn, [x])
_inputs = (torch.rand(5, 3),) _dynamic = {"x": {0: torch.export.Dim("batch")}}
[docs] class ControlFlowCond2Outputs(torch.nn.Module):
[docs] def forward(self, x): def true_fn(x): return torch.sin(x), torch.cos(x) def false_fn(x): return torch.cos(x), torch.sin(x) return torch.cond(x.sum() > 0, true_fn, false_fn, [x])
_inputs = (torch.rand(5, 3),) _dynamic = {"x": {0: torch.export.Dim("batch")}}
[docs] class ControlFlowCond2Inputs(torch.nn.Module):
[docs] def forward(self, x, y): def true_fn(x, y): return torch.sin(x), torch.cos(x) + y def false_fn(x, y): return torch.cos(x), torch.sin(x) + y return torch.cond(x.sum() > 0, true_fn, false_fn, [x, y])
_inputs = torch.rand(5, 3), torch.rand(5, 3) _dynamic = {"x": {0: torch.export.Dim("batch")}, "y": {0: torch.export.Dim("batch")}}
[docs] class ControlFlowNestCond(torch.nn.Module):
[docs] def forward(self, x): def true_fn2(x): def true_fn1(x): return torch.sin(x) def false_fn1(x): return torch.cos(x) return torch.cond(x.sum() < 0, true_fn1, false_fn1, [x]) def false_fn2(x): return -x return torch.cond(x.sum() > 0, true_fn2, false_fn2, [x])
_inputs = (torch.rand(5, 3),) _dynamic = {"x": {0: torch.export.Dim("batch")}}
[docs] class ControlFlowCondConstant(torch.nn.Module):
[docs] def forward(self, x): def true_fn(x): return torch.sin(x) - torch.ones(x.shape, dtype=x.dtype) def false_fn(x): return torch.cos(x) + torch.ones((1, 1024), dtype=x.dtype) return torch.cond(x.sum() > 0, true_fn, false_fn, [x])
_inputs = (torch.rand(1024, 1024),) _dynamic = {"x": {0: torch.export.Dim("batch")}}
[docs] class ControlFlowCondNestedModule(torch.nn.Module):
[docs] class Submodule(torch.nn.Module): def __init__(self): super().__init__() # Nested weight self.weight = torch.nn.Parameter(torch.tensor([100.0]))
[docs] def forward(self, x): def true_fn(x): return x * self.weight def false_fn(x): return x / self.weight y = torch.cond(torch.abs(x).sum() > 100, true_fn, false_fn, [x]) return y
def __init__(self): super().__init__() self.submodule = ControlFlowCondNestedModule.Submodule() self.weight = torch.nn.Parameter(torch.tensor([42.0]))
[docs] def forward(self, x): def true_fn(x): return self.submodule(x) def false_fn(x): return x - self.weight y = torch.cond(x.sum() > 0, true_fn, false_fn, [x]) return y
_inputs = (torch.tensor([-1, 2]),) _dynamic = {"x": {0: torch.export.Dim("batch")}}
[docs] class ControlFlowScan(torch.nn.Module):
[docs] @staticmethod def add(carry: torch.Tensor, y: torch.Tensor): next_carry = carry + y return [next_carry, next_carry]
[docs] def forward(self, x): init = torch.zeros_like(x[0]) carry, out = torch.ops.higher_order.scan( ControlFlowScan.add, [init], [x], dim=0, reverse=False, additional_inputs=[] ) return carry
_inputs = (torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=torch.float32),) _dynamic = {"x": {0: torch.export.Dim("batch")}}
[docs] class ControlFlowScan2Carried(torch.nn.Module):
[docs] @staticmethod def add(carry1: torch.Tensor, carry2: torch.Tensor, y1: torch.Tensor, y2: torch.Tensor): next_carry1 = carry1 + y1 next_carry2 = carry2 * y2 return [next_carry1, next_carry2, next_carry1, next_carry2]
[docs] def forward(self, x): init1 = torch.zeros_like(x[0]) init2 = torch.ones_like(x[0]) carry1, carry2, out1, out2 = torch.ops.higher_order.scan( ControlFlowScan2Carried.add, [init1, init2], [x, x * 2], dim=0, reverse=False, additional_inputs=[], ) return carry1, carry2, out1, out2
_inputs = ( torch.tensor([[1, 2, 3, -1], [4, 5, 6, -1], [7, 8, 9, -1]], dtype=torch.float32), ) _dynamic = {"x": {0: torch.export.Dim("batch")}}
[docs] class ControlFlowScanCDist(torch.nn.Module):
[docs] @staticmethod def dist(carry: torch.Tensor, x: torch.Tensor): sub = carry - x.reshape((1, -1)) sq = sub * sub rd = sq.sum(axis=1) ** 0.5 # clone --> UnsupportedAliasMutationException: # Combine_fn might be aliasing the input! return [carry.clone(), rd]
[docs] def forward(self, x): carry, out = torch.ops.higher_order.scan( ControlFlowScanCDist.dist, [x], [x], dim=0, reverse=False, additional_inputs=[], ) return out
_inputs = ( torch.tensor([[1, 2, 3, -1], [4, 5, 6, -1], [7, 8, 9, -1]], dtype=torch.float32), ) _dynamic = {"x": {0: torch.export.Dim("batch")}}
[docs] class ControlFlowScanCDist2(torch.nn.Module):
[docs] @staticmethod def dist(unused: torch.Tensor, x: torch.Tensor, samex: torch.Tensor): sub = samex - x.reshape((1, -1)) sq = sub * sub rd = torch.sqrt(sq.sum(axis=1)) # clone --> UnsupportedAliasMutationException: # Combine_fn might be aliasing the input! return [unused.clone(), rd]
[docs] def forward(self, x): z = torch.tensor([0], dtype=torch.float32) y = x.clone() out = torch.ops.higher_order.scan( ControlFlowScanCDist2.dist, [z], [x], dim=0, reverse=False, additional_inputs=[y], ) return out[1]
_inputs = ( torch.tensor([[1, 2, 3, -1], [4, 5, 6, -1], [7, 8, 9, -1]], dtype=torch.float32), ) _dynamic = {"x": {0: torch.export.Dim("batch")}}
[docs] class ControlFlowScanCDistXY(torch.nn.Module):
[docs] @staticmethod def dist(y: torch.Tensor, scanned_x: torch.Tensor): sub = y - scanned_x.reshape((1, -1)) sq = sub * sub rd = torch.sqrt(sq.sum(axis=1)) # clone --> UnsupportedAliasMutationException: # Combine_fn might be aliasing the input! return [y.clone(), rd]
[docs] def forward(self, x, y): carry, out = torch.ops.higher_order.scan( ControlFlowScanCDistXY.dist, [y], [x], dim=0, reverse=False, additional_inputs=[], ) return out
_inputs = [ (torch.randn(3, 4), torch.randn(5, 4)), (torch.randn(13, 14), torch.randn(15, 14)), ] _dynamic = { "x": {0: torch.export.Dim("x_rows"), 1: torch.export.Dim("dim")}, "y": {0: torch.export.Dim("y_rows"), 1: torch.export.Dim("dim")}, }
[docs] class SignatureInt1(torch.nn.Module): def __init__(self, n_dims: int = 3, n_targets: int = 1): super().__init__() self.linear = torch.nn.Linear(n_dims, n_targets) self.buff = torch.nn.parameter.Buffer(torch.tensor([0.5] * n_targets))
[docs] def forward(self, x, i: int = 2): return torch.sigmoid(self.linear(x)) - self.buff + x[:, i : i + 1]
_inputs = [ ((torch.arange(4 * 3) + 10).reshape((-1, 3)).to(torch.float32), 1), ((torch.arange(8 * 3) + 10).reshape((-1, 3)).to(torch.float32), 2), ] _dynamic = ({0: torch.export.Dim("batch", min=1, max=1024)}, None)
[docs] class SignatureFloat1(torch.nn.Module): def __init__(self, n_dims: int = 3, n_targets: int = 1): super().__init__() self.linear = torch.nn.Linear(n_dims, n_targets) self.buff = torch.nn.parameter.Buffer(torch.tensor([0.5] * n_targets))
[docs] def forward(self, x, alpha: float = 2.0): return torch.sigmoid(self.linear(x)) - self.buff * alpha
_inputs = [ ((torch.arange(4 * 3) + 10).reshape((-1, 3)).to(torch.float32), 1.5), ((torch.arange(8 * 3) + 10).reshape((-1, 3)).to(torch.float32), 2.5), ] _dynamic = ({0: torch.export.Dim("batch", min=1, max=1024)}, None)
[docs] class SignatureInt2(torch.nn.Module): def __init__(self, n_dims: int = 3, n_targets: int = 1): super().__init__() self.linear = torch.nn.Linear(n_dims, n_targets) self.buff = torch.nn.parameter.Buffer(torch.tensor([0.5] * n_targets))
[docs] def forward(self, x, i: int = 2): return torch.sigmoid(self.linear(x)) - self.buff + x[:, i]
_inputs = ((torch.arange(4 * 3) + 10).reshape((-1, 3)).to(torch.float32), 1) _dynamic = { "x": {0: torch.export.Dim("batch")}, "i": None, # torch.export.Dim("ii", min=0, max=3)} }
[docs] class SignatureListFixedLength(torch.nn.Module): def __init__(self, n_dims: int = 3, n_targets: int = 1): super().__init__() self.linear = torch.nn.Linear(n_dims, n_targets) self.buff = torch.nn.parameter.Buffer(torch.tensor([0.5] * n_targets))
[docs] def forward(self, x, lx: list): return ( torch.sigmoid(self.linear(x)) - self.buff + lx[0] * lx[1].sum(axis=1, keepdim=True) )
_inputs = [ ( (torch.arange(4 * 3) + 10).reshape((-1, 3)).to(torch.float32), [ (torch.arange(4) + 10).reshape((-1, 1)).to(torch.float32), (torch.arange(4 * 2) + 10).reshape((-1, 2)).to(torch.float32), ], ), ( (torch.arange(8 * 3) + 10).reshape((-1, 3)).to(torch.float32), [ (torch.arange(8) + 10).reshape((-1, 1)).to(torch.float32), (torch.arange(8 * 2) + 10).reshape((-1, 2)).to(torch.float32), ], ), ] _dynamic = { "x": {0: torch.export.Dim("batch")}, "lx": [{0: torch.export.Dim("batch")}, {0: torch.export.Dim("batch")}], }
[docs] class SignatureListVariableLength(torch.nn.Module): def __init__(self, n_dims: int = 3, n_targets: int = 1): super().__init__() self.linear = torch.nn.Linear(n_dims, n_targets) self.buff = torch.nn.parameter.Buffer(torch.tensor([0.5] * n_targets))
[docs] def forward(self, x, lx: list): t = torch.cat(lx, dim=1).sum(axis=1, keepdim=True) return torch.sigmoid(self.linear(x)) - self.buff + t
_inputs = [ ( (torch.arange(4 * 3) + 10).reshape((-1, 3)).to(torch.float32), [ (torch.arange(4) + 10).reshape((-1, 1)).to(torch.float32), (torch.arange(4 * 2) + 10).reshape((-1, 2)).to(torch.float32), ], ), ( (torch.arange(8 * 3) + 10).reshape((-1, 3)).to(torch.float32), [ (torch.arange(8) + 10).reshape((-1, 1)).to(torch.float32), (torch.arange(8 * 2) + 10).reshape((-1, 2)).to(torch.float32), (torch.arange(8 * 3) + 10).reshape((-1, 3)).to(torch.float32), ], ), ] _dynamic = { "x": {0: torch.export.Dim("batch")}, "lx": [{0: torch.export.Dim("batch")}, {0: torch.export.Dim("batch")}], }
[docs] class BuildInLen(torch.nn.Module): def __init__(self, n_dims: int = 3, n_targets: int = 1): super().__init__() self.linear = torch.nn.Linear(n_dims, n_targets) self.buff = torch.nn.parameter.Buffer(torch.tensor([0.5] * n_targets))
[docs] def forward(self, x, lx: list): t = lx[0] * lx[1].sum(axis=1, keepdim=True) if len(lx) > 2: t = t + lx[2].sum(axis=1, keepdim=True) return torch.sigmoid(self.linear(x)) - self.buff + t
_inputs = [ ( (torch.arange(4 * 3) + 10).reshape((-1, 3)).to(torch.float32), [ (torch.arange(4) + 10).reshape((-1, 1)).to(torch.float32), (torch.arange(4 * 2) + 10).reshape((-1, 2)).to(torch.float32), ], ), ( (torch.arange(8 * 3) + 10).reshape((-1, 3)).to(torch.float32), [ (torch.arange(8) + 10).reshape((-1, 1)).to(torch.float32), (torch.arange(8 * 2) + 10).reshape((-1, 2)).to(torch.float32), (torch.arange(8 * 3) + 10).reshape((-1, 3)).to(torch.float32), ], ), ] _dynamic = { "x": {0: torch.export.Dim("batch")}, "lx": [{0: torch.export.Dim("batch")}, {0: torch.export.Dim("batch")}], }
[docs] class BuildInIsInstance(torch.nn.Module): def __init__(self, n_dims: int = 3, n_targets: int = 1): super().__init__() self.linear = torch.nn.Linear(n_dims, n_targets) self.buff = torch.nn.parameter.Buffer(torch.tensor([0.5] * n_targets))
[docs] def forward(self, x, lx: list | torch.Tensor): if isinstance(lx, list): t = lx[0] * lx[1].sum(axis=1, keepdim=True) return torch.sigmoid(self.linear(x)) - self.buff + t return torch.sigmoid(self.linear(x)) - self.buff + lx
_inputs = [ ( (torch.arange(4 * 3) + 10).reshape((-1, 3)).to(torch.float32), [ (torch.arange(4) + 10).reshape((-1, 1)).to(torch.float32), (torch.arange(4 * 2) + 10).reshape((-1, 2)).to(torch.float32), ], ), ( (torch.arange(8 * 3) + 10).reshape((-1, 3)).to(torch.float32), [ (torch.arange(8) + 10).reshape((-1, 1)).to(torch.float32), (torch.arange(8 * 2) + 10).reshape((-1, 2)).to(torch.float32), ], ), ] _dynamic = { "x": {0: torch.export.Dim("batch")}, "lx": [{0: torch.export.Dim("batch")}, {0: torch.export.Dim("batch")}], }
[docs] class SignatureShapeAsIndex(torch.nn.Module): def __init__(self, n_dims: int = 3, n_targets: int = 1): super().__init__() self.linear = torch.nn.Linear(n_dims, n_targets) self.buff = torch.nn.parameter.Buffer(torch.tensor([0.5] * n_targets))
[docs] def forward(self, x, y): t = torch.sigmoid(self.linear(x)) + x return t[:, : y.shape[1]]
_inputs = ( (torch.arange(4 * 3) + 10).reshape((-1, 3)).to(torch.float32), (torch.arange(4 * 2) + 10).reshape((-1, 2)).to(torch.float32), ) _dynamic = { "x": {0: torch.export.Dim("batch", min=0, max=1024)}, "y": { 0: torch.export.Dim("batch", min=0, max=1024), 1: torch.export.Dim("length", min=0, max=2), }, }
[docs] class TypeBFloat16(torch.nn.Module):
[docs] def forward(self, x): xb = x.to(torch.bfloat16) return (xb + xb).to(torch.float32)
_inputs = (torch.rand(4, 4).to(torch.float32),) _dynamic = {"x": {0: torch.export.Dim("batch")}}
[docs] class CropLastDimensionWithTensorShape(torch.nn.Module):
[docs] def forward(self, x, y): return x[..., : y.shape[0]]
_inputs = [ ( torch.rand(3, 4, 4).to(torch.float32), torch.rand( 2, ).to(torch.float32), ), ( torch.rand(6, 4, 4).to(torch.float32), torch.rand( 3, ).to(torch.float32), ), ] _dynamic = { "x": {0: torch.export.Dim("batch")}, "y": {0: torch.export.Dim("crop", min=1, max=3)}, }
[docs] class CropLastDimensionWithTensorContent(torch.nn.Module):
[docs] def forward(self, x, shape): return x[..., : shape[0]]
_inputs = [ (torch.rand(3, 4, 4).to(torch.float32), torch.tensor([2], dtype=torch.int64)), (torch.rand(6, 4, 4).to(torch.float32), torch.tensor([3], dtype=torch.int64)), ] _dynamic = {"x": {0: torch.export.Dim("batch")}}
[docs] class SignatureListFixedWithNone(torch.nn.Module):
[docs] def forward(self, lx): print(lx) print(lx[1]) x = lx[0] if lx[1] is not None: x += lx[1] if lx[2] is not None: x += lx[2] return x
_inputs = [ ([torch.rand((4, 4)), torch.rand((4, 4)), None],), ([torch.rand((4, 4)), torch.rand((4, 4)), torch.rand((4, 4))],), ] _dynamic = { "lx": [{0: torch.export.Dim("batch")}, {0: torch.export.Dim("batch")}], }
[docs] class CreateFromShape(torch.nn.Module):
[docs] def forward(self, x): y = torch.ones((x.shape[0], x.shape[1] + 1)) return y
_inputs = [(torch.rand((4, 4)),), (torch.rand((5, 5)),)] _dynamic = {"x": {0: torch.export.Dim("dx"), 1: torch.export.Dim("dy")}}
[docs] class CreateFromShapeThroughFunction(torch.nn.Module):
[docs] @staticmethod def add_one(dim: int) -> int: return dim + 1
[docs] def forward(self, x): dy1 = CreateFromShapeThroughFunction.add_one(x.shape[1]) y = torch.ones((x.shape[0], dy1)) return y
_inputs = [(torch.rand((4, 4)),), (torch.rand((5, 5)),)] _dynamic = {"x": {0: torch.export.Dim("dx"), 1: torch.export.Dim("dy")}}