201: Evaluate different ways to export a torch model to ONNX

The example evaluates the performance of onnxruntime of a simple torch model after it was converted into ONNX through different processes:

  • TorchScript-based ONNX Exporter, let’s call it script

  • TorchDynamo-based ONNX Exporter, let’s call it dynamo

  • if available, the previous model but optimized, dynopt

  • a custom exporter cus_p0, this exporter supports a very limited set of models, as dynamo, it relies on torch.fx but the design is closer to what tensorflow-onnx does.

  • the same exporter but unused nodes were removed and constants were folded, cus_p2

To run the script:

python _doc/examples/plot_torch_export --help

The script takes around 12 minutes with a larger models.

Some helpers

from experimental_experiment.args import get_parsed_args


script_args = get_parsed_args(
    "plot_torch_export",
    description=__doc__,
    scenarios={
        "small": "small model to test",
        "middle": "55Mb model",
        "large": "1Gb model",
    },
    warmup=5,
    repeat=5,
    maxtime=(
        2,
        "maximum time to run a model to measure the computation time, "
        "it is 0.1 when scenario is small",
    ),
    expose="scenarios,repeat,warmup",
)


import contextlib
import itertools
import os
import platform
import pprint
import multiprocessing
import time
import cProfile
import pstats
import io
import warnings
import logging
from pstats import SortKey

try:
    with warnings.catch_warnings():
        warnings.simplefilter("ignore")
        import onnxruntime

        has_cuda = "CUDAExecutionProvider" in onnxruntime.get_available_providers()
except ImportError:
    print("onnxruntime not available.")
    import sys

    sys.exit(0)

import numpy as np
import matplotlib.pyplot as plt
import pandas
import onnx
from onnx_array_api.profiling import profile2graph
import torch
from torch import nn
import torch.nn.functional as F
import experimental_experiment
from experimental_experiment.torch_interpreter import to_onnx
from experimental_experiment.xbuilder import OptimizationOptions
from experimental_experiment.plotting.memory import memory_peak_plot
from experimental_experiment.ext_test_case import measure_time, get_figure
from experimental_experiment.memory_peak import start_spying_on
from experimental_experiment.ext_test_case import unit_test_going
from experimental_experiment.helpers import pretty_onnx
from tqdm import tqdm

has_cuda = has_cuda and torch.cuda.device_count() > 0
logging.disable(logging.ERROR)


def system_info():
    obs = {}
    obs["processor"] = platform.processor()
    obs["cores"] = multiprocessing.cpu_count()
    try:
        obs["cuda"] = 1 if torch.cuda.device_count() > 0 else 0
        obs["cuda_count"] = torch.cuda.device_count()
        obs["cuda_name"] = torch.cuda.get_device_name()
        obs["cuda_capa"] = torch.cuda.get_device_capability()
    except (RuntimeError, AssertionError):
        # no cuda
        pass
    return obs


pprint.pprint(system_info())
{'cores': 20,
 'cuda': 1,
 'cuda_capa': (8, 9),
 'cuda_count': 1,
 'cuda_name': 'NVIDIA GeForce RTX 4060 Laptop GPU',
 'processor': 'x86_64'}

Scripts arguments

if script_args.scenario in (None, "small"):
    script_args.maxtime = 0.1

if unit_test_going():
    script_args.warmup = 1
    script_args.repeat = 1
    script_args.maxtime = 0.1
    script_args.scenario = "small"

print(f"scenario={script_args.scenario or 'small'}")
print(f"warmup={script_args.warmup}")
print(f"repeat={script_args.repeat}")
print(f"maxtime={script_args.maxtime}")
scenario=small
warmup=5
repeat=5
maxtime=0.1

The model

A simple model to convert.

class MyModelClass(nn.Module):
    def __init__(self, scenario=script_args.scenario):
        super().__init__()
        if scenario == "middle":
            self.large = False
            self.conv1 = nn.Conv2d(1, 128, 5)
            self.conv2 = nn.Conv2d(128, 16, 5)
            self.fc1 = nn.Linear(13456, 1024)
            self.fcs = []
            self.fc2 = nn.Linear(1024, 128)
            self.fc3 = nn.Linear(128, 10)
        elif scenario in (None, "small"):
            self.large = False
            self.conv1 = nn.Conv2d(1, 16, 5)
            self.conv2 = nn.Conv2d(16, 16, 5)
            self.fc1 = nn.Linear(16, 512)
            self.fcs = []
            self.fc2 = nn.Linear(512, 128)
            self.fc3 = nn.Linear(128, 10)
        elif scenario in (None, "large"):
            self.large = True
            self.conv1 = nn.Conv2d(1, 128, 5)
            self.conv2 = nn.Conv2d(128, 16, 5)
            self.fc1 = nn.Linear(13456, 4096)
            # torch script does not support loops.
            self.fca = nn.Linear(4096, 4096)
            self.fcb = nn.Linear(4096, 4096)
            self.fcc = nn.Linear(4096, 4096)
            self.fcd = nn.Linear(4096, 4096)
            self.fce = nn.Linear(4096, 4096)
            self.fcf = nn.Linear(4096, 4096)
            self.fcg = nn.Linear(4096, 4096)
            self.fch = nn.Linear(4096, 4096)
            self.fci = nn.Linear(4096, 4096)
            self.fck = nn.Linear(4096, 4096)
            self.fcl = nn.Linear(4096, 4096)
            self.fcm = nn.Linear(4096, 4096)
            self.fcn = nn.Linear(4096, 4096)
            # end of the unfolded loop.
            self.fc2 = nn.Linear(4096, 128)
            self.fc3 = nn.Linear(128, 10)
        else:
            raise ValueError(f"Unsupported scenario={scenario!r}.")

    def forward(self, x):
        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
        x = F.max_pool2d(F.relu(self.conv2(x)), 2)
        x = torch.flatten(x, 1)
        x = F.relu(self.fc1(x))
        if self.large:
            # loop
            x = F.relu(self.fca(x))
            x = F.relu(self.fcb(x))
            x = F.relu(self.fcc(x))
            x = F.relu(self.fcd(x))
            x = F.relu(self.fce(x))
            x = F.relu(self.fcf(x))
            x = F.relu(self.fcg(x))
            x = F.relu(self.fch(x))
            x = F.relu(self.fci(x))
            x = F.relu(self.fck(x))
            x = F.relu(self.fcl(x))
            x = F.relu(self.fcm(x))
            x = F.relu(self.fcn(x))
            # end of the loop
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x


def create_model_and_input(scenario=script_args.scenario):
    if scenario == "middle":
        shape = [1, 1, 128, 128]
    elif scenario in (None, "small"):
        shape = [1, 1, 16, 16]
    elif scenario == "large":
        shape = [1, 1, 128, 128]
    else:
        raise ValueError(f"Unsupported scenario={scenario!r}.")
    input_tensor = torch.rand(*shape).to(torch.float32)
    model = MyModelClass(scenario=scenario)
    assert model(input_tensor) is not None
    return model, input_tensor


def torch_model_size(model):
    size_model = 0
    for param in model.parameters():
        size = param.numel() * torch.finfo(param.data.dtype).bits / 8
        size_model += size
    return size_model


model, input_tensor = create_model_and_input()
model_size = torch_model_size(model)
print(f"model size={model_size / 2 ** 20} Mb")
model size=0.31467437744140625 Mb

The exporters

def export_script(filename, model, *args):
    with contextlib.redirect_stdout(io.StringIO()):
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            torch.onnx.export(model, *args, filename, input_names=["input"])


def export_dynamo(filename, model, *args):
    with contextlib.redirect_stdout(io.StringIO()):
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            export_output = torch.onnx.export(model, args, dynamo=True)
            export_output.save(filename)


def export_dynopt(filename, model, *args):
    with contextlib.redirect_stdout(io.StringIO()):
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            export_output = torch.onnx.export(model, args, dynamo=True)
            model_onnx = export_output.model_proto

            from experimental_experiment.convert.convert_helper import (
                optimize_model_proto_oxs,
            )

            optimized_model = optimize_model_proto_oxs(model_onnx)

            with open(filename, "wb") as f:
                f.write(optimized_model.SerializeToString())


def export_cus_p0(filename, model, *args):
    onx = to_onnx(model, tuple(args), input_names=["input"])
    with open(filename, "wb") as f:
        f.write(onx.SerializeToString())


def export_cus_p2(filename, model, *args):
    onx = to_onnx(
        model,
        tuple(args),
        input_names=["input"],
        options=OptimizationOptions(
            remove_unused=True,
            constant_folding=True,
        ),
    )
    with open(filename, "wb") as f:
        f.write(onx.SerializeToString())

Let’s check they are working.

export_functions = [
    export_script,
    export_dynamo,
    export_dynopt,
    export_cus_p0,
    export_cus_p2,
]

exporters = {f.__name__.replace("export_", ""): f for f in export_functions}

supported_exporters = {}
for k, v in exporters.items():
    print(f"run exporter {k}")
    filename = f"plot_torch_export_{k}.onnx"
    try:
        v(filename, model, input_tensor)
    except Exception as e:
        print(f"skipped due to {str(e)[:1000]}")
        continue
    supported_exporters[k] = v
    print(f"done. size={os.stat(filename).st_size / 2 ** 20:1.0f} Mb")
run exporter script
done. size=0 Mb
run exporter dynamo
done. size=0 Mb
run exporter dynopt
done. size=0 Mb
run exporter cus_p0
done. size=0 Mb
run exporter cus_p2
done. size=0 Mb

Exporter memory

def flatten(ps):
    obs = ps["cpu"].to_dict(unit=2**20)
    if "gpus" in ps:
        for i, g in enumerate(ps["gpus"]):
            for k, v in g.to_dict(unit=2**20).items():
                obs[f"gpu{i}_{k}"] = v
    return obs


data = []

for k, v in supported_exporters.items():
    print(f"run exporter for memory {k}")
    filename = f"plot_torch_export_{k}.onnx"
    if has_cuda:
        torch.cuda.set_device(0)
    stat = start_spying_on(cuda=1 if has_cuda else 0)
    v(filename, model, input_tensor)
    obs = flatten(stat.stop())
    print("done.")
    onx = onnx.load(filename)
    obs.update(dict(nodes=len(onx.graph.node), export=k))
    data.append(obs)

stat = start_spying_on(cuda=1 if has_cuda else 0)
exported_mod = torch.export.export(model, (input_tensor,))
obs = flatten(stat.stop())
obs.update(dict(export="torch.fx"))
data.append(obs)
run exporter for memory script
done.
run exporter for memory dynamo
done.
run exporter for memory dynopt
done.
run exporter for memory cus_p0
done.
run exporter for memory cus_p2
done.

The result.

df1 = pandas.DataFrame(data)
df1.to_csv("plot_torch_export_memory.csv", index=False)
df1.to_excel("plot_torch_export_memory.xlsx", index=False)
print(df1)

ax = memory_peak_plot(
    data,
    bars=[model_size * i / 2**20 for i in range(1, 5)],
    suptitle=f"Memory Consumption of the Export\nmodel size={model_size / 2**20:1.0f} Mb",
)
get_figure(ax).savefig("plot_torch_export_memory.png")
Memory Consumption of the Export model size=0 Mb, Memory peak (Mb), Memory peak - memory begin (Mb), Memory average - memory begin (Mb), GPU Memory peak (Mb), GPU Memory peak - memory begin (Mb), GPU Memory average - memory begin (Mb)
          peak         mean    n        begin          end   gpu0_peak   gpu0_mean  gpu0_n  gpu0_begin    gpu0_end  nodes    export
0  1991.621094  1990.958984   12  1991.617188  1991.621094  449.617188  449.617188      12  449.617188  449.617188   12.0    script
1  1991.687500  1991.652860  106  1991.621094  1991.687500  449.617188  449.617188     106  449.617188  449.617188   13.0    dynamo
2  1991.687500  1991.687500  149  1991.687500  1991.687500  449.617188  449.617188     149  449.617188  449.617188   13.0    dynopt
3  1991.695312  1991.688519   23  1991.687500  1991.695312  449.617188  449.617188      23  449.617188  449.617188   15.0    cus_p0
4  1991.699219  1989.976412   26  1991.695312  1957.074219  449.617188  449.617188      26  449.617188  449.617188   12.0    cus_p2
5  1957.253906  1957.249844   25  1957.246094  1957.253906  449.617188  449.617188      25  449.617188  449.617188    NaN  torch.fx

Exporter speed

data = []

for k, v in supported_exporters.items():
    print(f"run exporter {k}")
    filename = f"plot_torch_export_{k}.onnx"
    times = []
    for _ in range(script_args.repeat):
        begin = time.perf_counter()
        v(filename, model, input_tensor)
        duration = time.perf_counter() - begin
        times.append(duration)
    onx = onnx.load(filename)
    print("done.")
    data.append(
        dict(
            export=k,
            time=np.mean(times),
            min=min(times),
            max=max(times),
            first=times[0],
            last=times[-1],
            std=np.std(times),
            nodes=len(onx.graph.node),
        )
    )
run exporter script
done.
run exporter dynamo
done.
run exporter dynopt
done.
run exporter cus_p0
done.
run exporter cus_p2
done.

The last export to measure time torch spends in export the model before any other export can begin the translation except the first one.

times = []
for _ in range(script_args.repeat):
    begin = time.perf_counter()
    exported_mod = torch.export.export(model, (input_tensor,))
    duration = time.perf_counter() - begin
    times.append(duration)
data.append(
    dict(
        export="torch.fx",
        time=np.mean(times),
        min=min(times),
        max=max(times),
        first=times[0],
        last=times[-1],
        std=np.std(times),
        nodes=len(onx.graph.node),
    )
)

The result.

df1 = pandas.DataFrame(data)
df1.to_csv("plot_torch_export_time.csv", index=False)
df1.to_excel("plot_torch_export_time.xlsx", index=False)
print(df1)

fig, ax = plt.subplots(1, 1)
dfi = df1[["export", "time", "std"]].set_index("export")
dfi["time"].plot.bar(ax=ax, title="Export time", yerr=dfi["std"], rot=30)
fig.tight_layout()
fig.savefig("plot_torch_export_time.png")
Export time
     export      time       min       max     first      last       std  nodes
0    script  0.071847  0.032638  0.175475  0.175475  0.035229  0.055204     12
1    dynamo  1.299576  1.013765  1.656289  1.656289  1.105589  0.226074     13
2    dynopt  1.265269  1.048148  1.540096  1.261092  1.048148  0.190792     13
3    cus_p0  0.260758  0.149327  0.392067  0.149327  0.392067  0.090509     15
4    cus_p2  0.203443  0.160868  0.250119  0.250119  0.176179  0.032620     12
5  torch.fx  0.129058  0.119741  0.146721  0.121158  0.146721  0.010517     12

Exporter Profiling

def clean_text(text):
    pathes = [
        os.path.abspath(os.path.normpath(os.path.join(os.path.dirname(torch.__file__), ".."))),
        os.path.abspath(os.path.normpath(os.path.join(os.path.dirname(onnx.__file__), ".."))),
        os.path.abspath(
            os.path.normpath(
                os.path.join(os.path.dirname(experimental_experiment.__file__), "..")
            )
        ),
    ]
    for p in pathes:
        text = text.replace(p, "")
    text = text.replace("experimental_experiment", "experimental_experiment".upper())
    return text


def profile_function(name, export_function, verbose=False):
    print(f"profile {name}: {export_function}")
    pr = cProfile.Profile()
    pr.enable()
    for _ in range(script_args.repeat):
        export_function("dummyc.onnx", model, input_tensor)
    pr.disable()
    s = io.StringIO()
    sortby = SortKey.CUMULATIVE
    ps = pstats.Stats(pr, stream=s).sort_stats(sortby)
    ps.print_stats()

    raw = s.getvalue()
    text = "\n".join(raw.split("\n")[:200])
    if verbose:
        print(text)
    with open(f"plot_torch_export_profile_{name}.txt", "w") as f:
        f.write(raw)

    root, nodes = profile2graph(ps, clean_text=clean_text)
    text = root.to_text()
    with open(f"plot_torch_export_profile_{name}_h.txt", "w") as f:
        f.write(text)
    print("done.")


profile_function("custom0", export_cus_p0, True)
profile_function("custom2", export_cus_p2)
profile custom0: <function export_cus_p0 at 0x7f50d07a0220>
         1041763 function calls (1012599 primitive calls) in 2.044 seconds

   Ordered by: cumulative time

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
       60    0.002    0.000    1.959    0.033 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py:966(call_function)
       25    0.002    0.000    1.845    0.074 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/nn_module.py:371(call_function)
 1080/690    0.004    0.000    0.516    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/utils/_stats.py:22(wrapper)
    55/10    0.004    0.000    0.414    0.041 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/symbolic_shapes.py:7081(run_node)
       65    0.001    0.000    0.409    0.006 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/builder.py:2209(wrap_fx_proxy)
       65    0.000    0.000    0.408    0.006 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/builder.py:2282(wrap_fx_proxy_cls)
       60    0.002    0.000    0.401    0.007 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/builder.py:2366(_wrap_fx_proxy)
       90    0.002    0.000    0.384    0.004 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/utils.py:2578(wrap_fake_exception)
      870    0.007    0.000    0.382    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:1257(__torch_dispatch__)
       60    0.003    0.000    0.382    0.006 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/utils.py:2993(get_fake_value)
      870    0.018    0.000    0.374    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:1782(dispatch)
      485    0.007    0.000    0.350    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:1342(_cached_dispatch_impl)
       50    0.002    0.000    0.310    0.006 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/nn/parameter.py:63(__deepcopy__)
   280/53    0.003    0.000    0.291    0.005 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py:1034(step)
  160/110    0.080    0.001    0.289    0.003 {method 'clone' of 'torch._C.TensorBase' objects}
    55/11    0.001    0.000    0.279    0.025 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py:741(wrapper)
    55/11    0.002    0.000    0.278    0.025 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py:2488(CALL)
    55/11    0.001    0.000    0.277    0.025 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py:2447(_call)
     1315    0.005    0.000    0.262    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:1229(__torch_function__)
        5    0.001    0.000    0.258    0.052 /home/xadupre/github/experimental-experiment/experimental_experiment/xbuilder/graph_builder.py:5046(to_onnx)
  435/325    0.001    0.000    0.257    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_ops.py:755(__call__)
5160/2130    0.018    0.000    0.256    0.000 /usr/lib/python3.12/copy.py:118(deepcopy)
       25    0.001    0.000    0.256    0.010 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/utils.py:2589(deepcopy_to_fake_tensor)
     1315    0.003    0.000    0.252    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:1258(__torch_function__)
   135/26    0.002    0.000    0.250    0.010 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/interpreter.py:218(run_node)
  595/235    0.004    0.000    0.247    0.001 /usr/lib/python3.12/copy.py:247(_reconstruct)
       60    0.002    0.000    0.245    0.004 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_ops.py:863(handler)
       60    0.012    0.000    0.240    0.004 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_library/utils.py:281(handle_dispatch_mode)
  255/120    0.019    0.000    0.238    0.002 /usr/lib/python3.12/copy.py:217(_deepcopy_dict)
       25    0.000    0.000    0.236    0.009 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/utils.py:2591(<lambda>)
       60    0.001    0.000    0.226    0.004 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:1327(__torch_dispatch__)
       60    0.005    0.000    0.224    0.004 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:760(proxy_call)
     20/4    0.001    0.000    0.201    0.050 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/interpreter.py:342(call_module)
       60    0.002    0.000    0.200    0.003 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph_module.py:800(recompile)
      250    0.003    0.000    0.190    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:2719(__torch_function__)
      485    0.004    0.000    0.183    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:1716(_output_from_cache_entry)
      515    0.021    0.000    0.179    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:1650(_get_output_tensor_from_cache_entry)
       65    0.001    0.000    0.175    0.003 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph.py:1562(python_code)
        5    0.001    0.000    0.154    0.031 /home/xadupre/github/experimental-experiment/experimental_experiment/xbuilder/graph_builder.py:5579(optimize)
      485    0.006    0.000    0.153    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:1385(_cache_key)
        5    0.000    0.000    0.148    0.030 /home/xadupre/github/experimental-experiment/experimental_experiment/xbuilder/graph_builder.py:5901(optimize_with_patterns)
       50    0.001    0.000    0.148    0.003 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/_symbolic_trace.py:480(call_module)
7485/7195    0.011    0.000    0.147    0.000 {built-in method builtins.next}
        5    0.010    0.002    0.147    0.029 /home/xadupre/github/experimental-experiment/experimental_experiment/xoptim/graph_builder_optim.py:1065(optimize)
       25    0.000    0.000    0.146    0.006 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/_symbolic_trace.py:801(module_call_wrapper)
       45    0.000    0.000    0.146    0.003 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/nn/modules/linear.py:124(forward)
       25    0.000    0.000    0.146    0.006 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:1739(call_module)
    75/45    0.013    0.000    0.146    0.003 {built-in method torch._C._nn.linear}
       65    0.002    0.000    0.142    0.002 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph.py:1639(_python_code)
       65    0.017    0.000    0.140    0.002 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph.py:397(_gen_python_code)
 2070/535    0.018    0.000    0.140    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:1461(_prep_args_for_hash)
       25    0.000    0.000    0.138    0.006 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/_symbolic_trace.py:803(forward)
   100/60    0.001    0.000    0.137    0.002 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/nn/functional.py:1693(relu)
       60    0.008    0.000    0.135    0.002 {built-in method torch.relu}
      150    0.003    0.000    0.127    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:758(__torch_dispatch__)
       35    0.000    0.000    0.126    0.004 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/interpreter.py:296(call_function)
       60    0.000    0.000    0.115    0.002 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/utils.py:3054(<lambda>)
       60    0.001    0.000    0.115    0.002 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/utils.py:3144(run_node)
        5    0.000    0.000    0.113    0.023 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_functorch/functional_call.py:11(functional_call)
        5    0.000    0.000    0.113    0.023 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/nn/utils/stateless.py:246(_functional_call)
        5    0.000    0.000    0.110    0.022 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/_lazy_graph_module.py:115(_lazy_forward)
       35    0.002    0.000    0.107    0.003 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/torch.py:970(call_function)
    60/30    0.000    0.000    0.106    0.004 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/overrides.py:1670(handle_torch_function)
     1115    0.029    0.000    0.103    0.000 /home/xadupre/github/experimental-experiment/experimental_experiment/xoptim/patterns_api.py:128(enumerate_matches)
       50    0.003    0.000    0.096    0.002 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/nn/parameter.py:40(__new__)
        5    0.001    0.000    0.094    0.019 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/export/_trace.py:437(_produce_aten_artifact)
  175/125    0.004    0.000    0.092    0.001 {method 'detach' of 'torch._C.TensorBase' objects}
3575/3430    0.004    0.000    0.092    0.000 /usr/lib/python3.12/contextlib.py:132(__enter__)
        5    0.000    0.000    0.091    0.018 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph_module.py:829(call_wrapped)
        5    0.000    0.000    0.091    0.018 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph_module.py:388(__call__)
      105    0.002    0.000    0.091    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/meta_utils.py:847(meta_tensor)
       30    0.000    0.000    0.087    0.003 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/nn/modules/conv.py:553(forward)
       30    0.000    0.000    0.086    0.003 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/nn/modules/conv.py:536(_conv_forward)
    50/30    0.007    0.000    0.086    0.003 {built-in method torch.conv2d}
        5    0.001    0.000    0.085    0.017 /home/xadupre/github/experimental-experiment/experimental_experiment/xbuilder/graph_builder.py:4342(_build_initializers)
       50    0.002    0.000    0.082    0.002 /home/xadupre/github/experimental-experiment/experimental_experiment/mini_onnx_builder.py:108(proto_from_array)
      105    0.005    0.000    0.080    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/autograd/grad_mode.py:273(__exit__)
      240    0.002    0.000    0.079    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/proxy.py:211(create_proxy)
  590/520    0.005    0.000    0.078    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/nn/modules/module.py:1944(__setattr__)
       25    0.001    0.000    0.076    0.003 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph_module.py:443(__init__)
193215/190695    0.063    0.000    0.075    0.000 {built-in method builtins.isinstance}
      110    0.001    0.000    0.072    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/base.py:484(build)
        5    0.000    0.000    0.071    0.014 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/eval_frame.py:1191(rewrite_signature)
        5    0.000    0.000    0.070    0.014 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/guards.py:1870(SHAPE_ENV)
        5    0.064    0.013    0.070    0.014 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/guards.py:1280(add_python_lambda_leaf_guard_to_root)
      110    0.001    0.000    0.070    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/builder.py:397(__call__)
        5    0.001    0.000    0.069    0.014 /home/xadupre/github/experimental-experiment/experimental_experiment/xbuilder/graph_builder.py:4780(process)
       25    0.000    0.000    0.068    0.003 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph_module.py:556(graph)
      120    0.002    0.000    0.066    0.001 /home/xadupre/github/experimental-experiment/experimental_experiment/torch_interpreter/interpreter.py:177(run_node)
       65    0.004    0.000    0.066    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/builder.py:534(_wrap)
      735    0.022    0.000    0.066    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:671(__new__)
3575/3430    0.005    0.000    0.063    0.000 /usr/lib/python3.12/contextlib.py:141(__exit__)
     1260    0.010    0.000    0.063    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph.py:627(emit_node)
        5    0.001    0.000    0.061    0.012 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/guards.py:2751(build_guard_function)
      635    0.014    0.000    0.060    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:968(extract_tensor_metadata)
      250    0.004    0.000    0.059    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/proxy.py:145(create_node)
    50/30    0.000    0.000    0.059    0.002 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_jit_internal.py:613(fn)
    50/30    0.000    0.000    0.059    0.002 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/nn/functional.py:807(_max_pool2d)
      635    0.018    0.000    0.058    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:948(_flatten_into)
       30    0.004    0.000    0.057    0.002 {built-in method torch.max_pool2d}
       65    0.000    0.000    0.057    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:592(track_tensor_tree)
   120/65    0.001    0.000    0.055    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:614(wrap_with_proxy)
       60    0.002    0.000    0.053    0.001 /home/xadupre/github/experimental-experiment/experimental_experiment/torch_interpreter/interpreter.py:1365(call_function)
        5    0.000    0.000    0.051    0.010 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py:2840(__init__)
      260    0.004    0.000    0.050    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph.py:1104(create_node)
 2920/135    0.008    0.000    0.050    0.000 /usr/lib/python3.12/ast.py:403(visit)
       10    0.000    0.000    0.050    0.005 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/lazy.py:64(realize)
      105    0.010    0.000    0.049    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/autograd/grad_mode.py:269(__enter__)
     55/5    0.001    0.000    0.047    0.009 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/lazy.py:107(realize_all)
      190    0.002    0.000    0.046    0.000 /home/xadupre/github/experimental-experiment/experimental_experiment/xbuilder/graph_builder_opset.py:115(make_node)
        5    0.000    0.000    0.046    0.009 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/eval_frame.py:1128(transform)
        5    0.001    0.000    0.046    0.009 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/interpreter.py:571(transform)
     4770    0.018    0.000    0.045    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/node.py:873(__setattr__)
      210    0.007    0.000    0.045    0.000 /home/xadupre/github/experimental-experiment/experimental_experiment/xbuilder/graph_builder.py:3609(make_node)
       65    0.000    0.000    0.044    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py:1934(LOAD_ATTR)
       10    0.000    0.000    0.044    0.004 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_export/passes/replace_with_hop_pass_util.py:157(_replace_with_hop_pass_helper)
       65    0.001    0.000    0.043    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py:1927(_load_attr)
       15    0.000    0.000    0.042    0.003 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/_lazy_graph_module.py:57(_make_graph_module)
        5    0.000    0.000    0.041    0.008 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py:3213(RETURN_VALUE)
        5    0.000    0.000    0.041    0.008 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py:3180(_return)
      115    0.001    0.000    0.041    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:485(set_meta)
       60    0.000    0.000    0.041    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py:1904(LOAD_METHOD)
        5    0.000    0.000    0.041    0.008 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/output_graph.py:977(compile_subgraph)
     4365    0.012    0.000    0.040    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/meta_utils.py:172(is_sparse_any)
       65    0.001    0.000    0.040    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/builtin.py:1064(call_function)
       65    0.000    0.000    0.039    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/builtin.py:917(builtin_dispatch)
       65    0.000    0.000    0.039    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/builtin.py:837(call_self_handler)
8260/4895    0.022    0.000    0.039    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/node.py:903(map_aggregate)
       65    0.001    0.000    0.039    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/builtin.py:1731(call_getattr)
       10    0.000    0.000    0.038    0.004 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/lazy.py:22(realize)
       65    0.005    0.000    0.037    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/output_graph.py:2002(create_proxy)
       60    0.000    0.000    0.037    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph_module.py:91(_forward_from_src)
     4340    0.005    0.000    0.037    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/node.py:894(map_arg)
       60    0.001    0.000    0.037    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph_module.py:97(_method_from_src)
      150    0.036    0.000    0.036    0.000 {built-in method builtins.compile}
       60    0.000    0.000    0.036    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph_module.py:86(_exec_with_source)
      360    0.001    0.000    0.036    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/guards.py:456(_ast_unparse)
        5    0.000    0.000    0.036    0.007 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/metrics_context.py:52(__exit__)
        5    0.001    0.000    0.036    0.007 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/utils.py:1425(record_compilation_metrics)
    35475    0.026    0.000    0.035    0.000 {built-in method builtins.getattr}
       60    0.001    0.000    0.035    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/output_graph.py:596(create_proxy)
        5    0.001    0.000    0.035    0.007 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/output_graph.py:1321(compile_and_call_fx_graph)
      105    0.000    0.000    0.035    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/guards.py:1277(get_guard_manager)
      360    0.001    0.000    0.034    0.000 /usr/lib/python3.12/ast.py:1789(unparse)
     1570    0.004    0.000    0.034    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/symbolic_shapes.py:3076(_suppress_guards)
      120    0.001    0.000    0.034    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:1775(create_node)
      360    0.001    0.000    0.033    0.000 /usr/lib/python3.12/ast.py:855(visit)
1655/1585    0.011    0.000    0.033    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/recording.py:238(wrapper)
 1845/360    0.002    0.000    0.032    0.000 /usr/lib/python3.12/ast.py:845(traverse)
  210/105    0.006    0.000    0.031    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/guards.py:927(get_guard_manager_from_source)
       45    0.000    0.000    0.031    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/guards.py:2757(replace)
       45    0.000    0.000    0.031    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/guards.py:2355(replace)
      105    0.008    0.000    0.031    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/meta_utils.py:255(describe_tensor)
      960    0.002    0.000    0.030    0.000 /home/xadupre/github/experimental-experiment/experimental_experiment/xoptim/patterns_api.py:968(match)
      620    0.029    0.000    0.029    0.000 {built-in method torch.empty_strided}
    13770    0.027    0.000    0.028    0.000 {built-in method builtins.setattr}
        1    0.000    0.000    0.028    0.028 <eval_with_key>.684:4(forward)
     4330    0.015    0.000    0.028    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph.py:144(create_name)
     3675    0.011    0.000    0.028    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:589(__set__)
       30    0.001    0.000    0.028    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/nn_module.py:275(var_getattr)
      960    0.002    0.000    0.028    0.000 /home/xadupre/github/experimental-experiment/experimental_experiment/xoptim/patterns_api.py:355(_get_match_pattern)
        5    0.000    0.000    0.027    0.005 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/builder.py:1593(wrap_tensor)
       10    0.000    0.000    0.027    0.003 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/utils/_config_module.py:623(get_config_copy)
      115    0.000    0.000    0.027    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:385(extract_val)
       10    0.004    0.000    0.027    0.003 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/utils/_config_module.py:463(_get_dict)
      115    0.001    0.000    0.026    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:359(snapshot_fake)
      130    0.003    0.000    0.026    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph.py:1616(override_node_repr)
     6110    0.005    0.000    0.025    0.000 {built-in method builtins.repr}
      115    0.003    0.000    0.025    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_impls.py:1010(fast_detach)
       10    0.001    0.000    0.025    0.003 /home/xadupre/github/experimental-experiment/experimental_experiment/xoptim/patterns_api.py:305(_build_pattern)
       85    0.010    0.000    0.024    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/guards.py:776(getitem_on_dict_mgr)
        1    0.000    0.000    0.024    0.024 <eval_with_key>.660:4(forward)
        5    0.000    0.000    0.024    0.005 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/guards.py:2346(count)
        5    0.002    0.000    0.024    0.005 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/utils.py:1382(_scrubbed_inductor_config_for_logging)
       30    0.001    0.000    0.024    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/builder.py:1471(wrap_module)
    25/15    0.002    0.000    0.023    0.002 {built-in method torch.flatten}
        5    0.001    0.000    0.023    0.005 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_export/utils.py:580(apply_runtime_assertion_pass)
   455/45    0.002    0.000    0.023    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/guards.py:2309(visit)
       75    0.000    0.000    0.023    0.000 /usr/lib/python3.12/inspect.py:3343(signature)
   415/45    0.002    0.000    0.023    0.001 /usr/lib/python3.12/ast.py:477(generic_visit)
       70    0.000    0.000    0.023    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/eval_frame.py:1108(run_node)
       75    0.000    0.000    0.023    0.000 /usr/lib/python3.12/inspect.py:3081(from_callable)
        5    0.000    0.000    0.022    0.004 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_export/passes/replace_autocast_with_hop_pass.py:178(replace_autocast_with_hop_pass)
   145/75    0.002    0.000    0.022    0.000 /usr/lib/python3.12/inspect.py:2501(_signature_from_callable)
   705/45    0.002    0.000    0.022    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/guards.py:2293(visit)
   705/45    0.002    0.000    0.022    0.000 /usr/lib/python3.12/ast.py:409(generic_visit)
        5    0.001    0.000    0.021    0.004 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_export/utils.py:820(placeholder_naming_pass)
4340/4240    0.006    0.000    0.021    0.000 {method 'join' of 'str' objects}
       65    0.003    0.000    0.021    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/builder.py:2390(handle_traced_output)
        5    0.000    0.000    0.021    0.004 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_export/passes/replace_set_grad_with_hop_pass.py:110(replace_set_grad_with_hop_pass)
      260    0.003    0.000    0.021    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/node.py:377(prepend)
        5    0.000    0.000    0.021    0.004 /home/xadupre/github/experimental-experiment/experimental_experiment/torch_interpreter/_aten_functions.py:2924(aten_flatten_using_ints)
  415/335    0.002    0.000    0.021    0.000 /usr/lib/python3.12/ast.py:1573(visit_Subscript)
      780    0.002    0.000    0.020    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph.py:548(_format_args)
     4125    0.004    0.000    0.020    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/node.py:602(__repr__)
done.
profile custom2: <function export_cus_p2 at 0x7f50d07a20c0>
done.

Same with dynamo-exporter.

profile_function("dynamo", export_dynamo, verbose=True)
if "dynopt" in supported_exporters:
    profile_function("dynopt", export_dynopt)
profile dynamo: <function export_dynamo at 0x7f50d07a18a0>
         10152076 function calls (9995653 primitive calls) in 11.901 seconds

   Ordered by: cumulative time

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        5    0.051    0.010    5.712    1.142 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/exporter/_registration.py:115(from_torchlib)
        5    0.093    0.019    4.183    0.837 /home/xadupre/github/onnxscript/onnxscript/_framework_apis/torch_2_5.py:82(get_torchlib_ops)
     2215    0.038    0.000    4.072    0.002 /home/xadupre/github/onnxscript/onnxscript/values.py:640(function_ir)
202120/201090    0.082    0.000    1.993    0.000 {built-in method builtins.next}
       10    0.002    0.000    1.911    0.191 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_export/utils.py:1134(_collect_all_valid_cia_ops)
      270    0.024    0.000    1.909    0.007 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_export/utils.py:1117(_collect_all_valid_cia_ops_for_namespace)
4680/4170    0.005    0.000    1.827    0.000 /usr/lib/python3.12/contextlib.py:132(__enter__)
       20    0.195    0.010    1.735    0.087 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/export/exported_program.py:188(_override_composite_implicit_decomp)
      270    0.597    0.002    1.732    0.006 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_export/utils.py:1052(_materialize_cpp_cia_ops)
     2215    0.024    0.000    1.648    0.001 /home/xadupre/github/onnxscript/onnxscript/_internal/ast_utils.py:16(get_src_and_ast)
     2895    0.117    0.000    1.396    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/exporter/_schemas.py:432(from_function)
     2215    0.008    0.000    1.299    0.001 /home/xadupre/github/onnxscript/onnxscript/converter.py:1466(translate_function_signature)
     2215    0.090    0.000    1.282    0.001 /home/xadupre/github/onnxscript/onnxscript/converter.py:1381(_translate_function_signature_common)
     2215    0.006    0.000    1.146    0.001 /usr/lib/python3.12/inspect.py:1279(getsource)
     2215    0.121    0.000    1.135    0.001 /usr/lib/python3.12/inspect.py:1258(getsourcelines)
    64735    1.030    0.000    1.113    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_ops.py:120(inner)
        5    0.012    0.002    1.112    0.222 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/exporter/_decomp.py:42(create_onnx_friendly_decomposition_table)
     35/5    0.003    0.000    1.031    0.206 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:2597(from_tensor)
    100/5    0.003    0.000    1.031    0.206 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:323(from_real_tensor)
    105/5    0.004    0.000    1.028    0.206 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/meta_utils.py:1809(__call__)
        5    0.000    0.000    1.025    0.205 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/export/decomp_utils.py:125(items)
        5    0.000    0.000    1.024    0.205 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/export/decomp_utils.py:142(_materialize_if_needed)
        5    0.003    0.001    1.024    0.205 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/export/decomp_utils.py:129(materialize)
     2215    0.085    0.000    1.017    0.000 /usr/lib/python3.12/inspect.py:1606(getclosurevars)
        5    0.011    0.002    1.017    0.203 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/export/exported_program.py:295(_split_decomp_table_to_cia_and_python_decomp)
    65905    0.340    0.000    0.852    0.000 /usr/lib/python3.12/dis.py:434(_get_instructions_bytes)
    24130    0.808    0.000    0.808    0.000 {built-in method builtins.compile}
     2215    0.227    0.000    0.784    0.000 /usr/lib/python3.12/inspect.py:1239(getblock)
75165/15510    0.148    0.000    0.745    0.000 /home/xadupre/github/onnxscript/onnxscript/type_annotation.py:131(is_value_type)
      660    0.192    0.000    0.667    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/functional_tensor.py:352(__torch_dispatch__)
   851980    0.624    0.000    0.631    0.000 {built-in method builtins.getattr}
    80/20    0.001    0.000    0.614    0.031 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/nn/functional.py:1693(relu)
     3450    0.012    0.000    0.548    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:1229(__torch_function__)
1578290/1570705    0.410    0.000    0.521    0.000 {built-in method builtins.isinstance}
     8980    0.009    0.000    0.495    0.000 /home/xadupre/github/onnxscript/onnxscript/type_annotation.py:172(is_valid_type)
     2895    0.067    0.000    0.494    0.000 /usr/lib/python3.12/typing.py:2215(get_type_hints)
   228115    0.266    0.000    0.485    0.000 /usr/lib/python3.12/tokenize.py:569(_generate_tokens_from_c_tokenizer)
27655/5170    0.133    0.000    0.440    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/exporter/_schemas.py:268(_get_allowed_types_from_type_annotation)
     2215    0.006    0.000    0.401    0.000 /usr/lib/python3.12/ast.py:34(parse)
      625    0.005    0.000    0.391    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:1327(__torch_dispatch__)
     1795    0.023    0.000    0.366    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:1782(dispatch)
      120    0.011    0.000    0.356    0.003 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:760(proxy_call)
    64735    0.057    0.000    0.354    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_ops.py:111(py_impl)
      495    0.007    0.000    0.332    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:1342(_cached_dispatch_impl)
     35/5    0.001    0.000    0.329    0.066 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/nn/modules/module.py:1755(_call_impl)
       90    0.003    0.000    0.329    0.004 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph_module.py:800(recompile)
        5    0.000    0.000    0.327    0.065 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/export/_trace.py:1775(forward)
        5    0.000    0.000    0.308    0.062 /home/xadupre/github/experimental-experiment/_doc/examples/plot_torch_export_201.py:191(forward)
   132200    0.181    0.000    0.308    0.000 /usr/lib/python3.12/typing.py:1546(__getitem__)
      270    0.300    0.001    0.300    0.001 {built-in method torch._C._dispatch_get_registrations_for_dispatch_key}
    75165    0.077    0.000    0.300    0.000 /home/xadupre/github/onnxscript/onnxscript/type_annotation.py:123(_is_tensor_type)
    11040    0.043    0.000    0.289    0.000 /home/xadupre/github/onnxscript/onnxscript/converter.py:451(_eval_constant_expr)
     6530    0.005    0.000    0.264    0.000 /home/xadupre/github/onnxscript/onnxscript/type_annotation.py:168(is_attr_type)
       90    0.002    0.000    0.253    0.003 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph.py:1562(python_code)
     1315    0.004    0.000    0.246    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:1258(__torch_function__)
     1725    0.005    0.000    0.240    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_export/non_strict_utils.py:636(__torch_function__)
     2935    0.004    0.000    0.231    0.000 /usr/lib/python3.12/inspect.py:3343(signature)
       60    0.004    0.000    0.228    0.004 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_ops.py:863(handler)
     2935    0.005    0.000    0.227    0.000 /usr/lib/python3.12/inspect.py:3081(from_callable)
     7285    0.007    0.000    0.226    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_export/utils.py:1038(_is_preservable_cia_op)
2965/2935    0.036    0.000    0.222    0.000 /usr/lib/python3.12/inspect.py:2501(_signature_from_callable)
       60    0.014    0.000    0.221    0.004 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_library/utils.py:281(handle_dispatch_mode)
     1365    0.006    0.000    0.220    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/utils/_pytree.py:1267(tree_map_only)
   225900    0.118    0.000    0.219    0.000 /usr/lib/python3.12/collections/__init__.py:447(_make)
    78040    0.062    0.000    0.217    0.000 /home/xadupre/github/onnxscript/onnxscript/type_annotation.py:70(_remove_annotation)
       70    0.001    0.000    0.216    0.003 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_higher_order_ops/utils.py:23(autograd_not_implemented_inner)
   503540    0.211    0.000    0.211    0.000 {method 'split' of 'str' objects}
     2215    0.032    0.000    0.211    0.000 /usr/lib/python3.12/inspect.py:1070(findsource)
       90    0.002    0.000    0.200    0.002 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph.py:1639(_python_code)
       90    0.022    0.000    0.198    0.002 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph.py:397(_gen_python_code)
    40/10    0.001    0.000    0.196    0.020 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_jit_internal.py:613(fn)
   117475    0.107    0.000    0.190    0.000 /usr/lib/python3.12/typing.py:2340(get_origin)
   131810    0.160    0.000    0.189    0.000 /usr/lib/python3.12/dis.py:623(_unpack_opargs)
    10785    0.019    0.000    0.187    0.000 /usr/lib/python3.12/typing.py:892(__init__)
53360/53310    0.043    0.000    0.187    0.000 {built-in method builtins.repr}
     7285    0.100    0.000    0.186    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_export/utils.py:1086(_check_valid_to_preserve)
24170/10785    0.031    0.000    0.177    0.000 /usr/lib/python3.12/typing.py:407(_eval_type)
1058405/1057915    0.171    0.000    0.172    0.000 {built-in method builtins.len}
    10785    0.036    0.000    0.163    0.000 /usr/lib/python3.12/typing.py:916(_evaluate)
    34220    0.028    0.000    0.159    0.000 /home/xadupre/github/onnxscript/onnxscript/ir/_core.py:1475(__hash__)
     2215    0.050    0.000    0.156    0.000 /usr/lib/python3.12/dis.py:647(findlabels)
     2935    0.053    0.000    0.151    0.000 /usr/lib/python3.12/inspect.py:2397(_signature_from_function)
        5    0.038    0.008    0.150    0.030 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/exporter/_decomp.py:15(get_onnx_implemented_overloads)
     20/5    0.000    0.000    0.147    0.029 {built-in method torch.flatten}
        5    0.001    0.000    0.141    0.028 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/exporter/_fx_passes.py:22(insert_type_promotion_nodes)
      170    0.004    0.000    0.131    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/meta_utils.py:847(meta_tensor)
    125/5    0.003    0.000    0.131    0.026 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/diagnostics/infra/decorator.py:66(wrapper)
      420    0.003    0.000    0.131    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:1716(_output_from_cache_entry)
        5    0.000    0.000    0.130    0.026 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/fx/_pass.py:240(run)
        5    0.000    0.000    0.130    0.026 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/fx/passes/type_promotion.py:1691(_run)
      440    0.014    0.000    0.128    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:1650(_get_output_tensor_from_cache_entry)
       30    0.002    0.000    0.127    0.004 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph_module.py:443(__init__)
  675/575    0.005    0.000    0.126    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/nn/modules/module.py:1944(__setattr__)
      495    0.006    0.000    0.121    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:1385(_cache_key)
      230    0.002    0.000    0.120    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/proxy.py:211(create_proxy)
       10    0.001    0.000    0.119    0.012 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/export/_trace.py:437(_produce_aten_artifact)
      120    0.001    0.000    0.117    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/fx/passes/type_promotion.py:1596(run_node)
       30    0.000    0.000    0.116    0.004 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph_module.py:556(graph)
    90/30    0.001    0.000    0.113    0.004 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/overrides.py:1670(handle_torch_function)
 1875/495    0.016    0.000    0.110    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:1461(_prep_args_for_hash)
        5    0.000    0.000    0.109    0.022 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/export/exported_program.py:1314(module)
        5    0.000    0.000    0.109    0.022 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/export/_unlift.py:383(_unlift_exported_program_lifted_states)
   357250    0.108    0.000    0.108    0.000 {built-in method __new__ of type object at 0xa20960}
    37640    0.047    0.000    0.107    0.000 /home/xadupre/github/onnxscript/onnxscript/ir/_core.py:1483(__repr__)
4680/4170    0.006    0.000    0.106    0.000 /usr/lib/python3.12/contextlib.py:141(__exit__)
      130    0.001    0.000    0.105    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:592(track_tensor_tree)
   219216    0.084    0.000    0.105    0.000 {built-in method builtins.hasattr}
      240    0.006    0.000    0.102    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:1775(create_node)
  240/130    0.003    0.000    0.102    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:614(wrap_with_proxy)
      170    0.007    0.000    0.101    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/autograd/grad_mode.py:273(__exit__)
    21845    0.078    0.000    0.101    0.000 {built-in method builtins.eval}
     1995    0.005    0.000    0.098    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/utils/_pytree.py:985(tree_flatten)
6985/1995    0.025    0.000    0.093    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/utils/_pytree.py:993(helper)
        5    0.001    0.000    0.093    0.019 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/exporter/_core.py:933(_exported_program_to_onnx_program)
     1575    0.002    0.000    0.092    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/utils/_pytree.py:1212(wrapped)
     2160    0.012    0.000    0.088    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph.py:627(emit_node)
    63865    0.041    0.000    0.087    0.000 {built-in method builtins.issubclass}
      145    0.005    0.000    0.084    0.001 /home/xadupre/github/onnxscript/onnxscript/optimizer/_constant_folding.py:923(process_node)
        5    0.001    0.000    0.081    0.016 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/exporter/_core.py:662(_translate_fx_graph)
       60    0.002    0.000    0.078    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/exporter/_core.py:449(_handle_call_function_node_with_lowering)
   146545    0.050    0.000    0.077    0.000 /usr/lib/python3.12/inspect.py:302(isclass)
    75/15    0.001    0.000    0.076    0.005 {built-in method torch._to_functional_tensor}
      230    0.005    0.000    0.075    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:485(set_meta)
     2215    0.015    0.000    0.074    0.000 /usr/lib/python3.12/textwrap.py:419(dedent)
     2215    0.023    0.000    0.074    0.000 /usr/lib/python3.12/inspect.py:951(getsourcefile)
    15135    0.011    0.000    0.072    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/exporter/_registration.py:261(is_registered)
    83575    0.033    0.000    0.072    0.000 <frozen abc>:117(__instancecheck__)
       20    0.001    0.000    0.072    0.004 {built-in method torch.relu}
   225900    0.072    0.000    0.072    0.000 /usr/lib/python3.12/inspect.py:1196(tokeneater)
     8405    0.009    0.000    0.070    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/node.py:894(map_arg)
    95045    0.043    0.000    0.070    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_ops.py:763(__hash__)
   134610    0.069    0.000    0.070    0.000 /usr/lib/python3.12/typing.py:392(inner)
      145    0.003    0.000    0.069    0.000 /home/xadupre/github/onnxscript/onnxscript/optimizer/_constant_folding.py:823(_do_inference)
       10    0.000    0.000    0.068    0.007 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/export/exported_program.py:928(__init__)
       75    0.001    0.000    0.068    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:1968(_dispatch_impl)
       90    0.000    0.000    0.066    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph_module.py:91(_forward_from_src)
15805/9585    0.030    0.000    0.066    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/node.py:903(map_aggregate)
       90    0.000    0.000    0.066    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph_module.py:97(_method_from_src)
       90    0.001    0.000    0.065    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph_module.py:86(_exec_with_source)
     2215    0.027    0.000    0.065    0.000 /usr/lib/python3.12/dis.py:342(get_instructions)
       55    0.000    0.000    0.064    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_functorch/_aot_autograd/dispatch_and_compile_graph.py:66(_detach_and_copy_item_memo)
      105    0.005    0.000    0.064    0.001 {method 'detach' of 'torch._C.TensorBase' objects}
      840    0.019    0.000    0.062    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:671(__new__)
    15195    0.037    0.000    0.062    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/exporter/_registration.py:239(get_decomps)
     8085    0.020    0.000    0.062    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/node.py:873(__setattr__)
       15    0.000    0.000    0.061    0.004 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/nn/modules/linear.py:124(forward)
    60/15    0.001    0.000    0.061    0.004 {built-in method torch._C._nn.linear}
      170    0.010    0.000    0.060    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/autograd/grad_mode.py:269(__enter__)
   122945    0.053    0.000    0.057    0.000 {method 'get' of 'dict' objects}
    70/60    0.000    0.000    0.056    0.001 /home/xadupre/github/onnxscript/onnxscript/values.py:634(__call__)
        5    0.000    0.000    0.056    0.011 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/export/exported_program.py:339(default_decompositions)
        5    0.003    0.001    0.056    0.011 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/export/decomp_utils.py:33(__init__)
    10785    0.034    0.000    0.056    0.000 /usr/lib/python3.12/typing.py:175(_type_check)
3530/1190    0.005    0.000    0.054    0.000 /home/xadupre/github/onnxscript/onnxscript/ir/serde.py:95(wrapper)
       10    0.000    0.000    0.054    0.005 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/export/exported_program.py:1587(_create_graph_module_for_export)
 1260/775    0.025    0.000    0.054    0.000 {built-in method torch._ops.prim.}
155250/153420    0.048    0.000    0.053    0.000 {built-in method builtins.hash}
    37640    0.022    0.000    0.053    0.000 /home/xadupre/github/onnxscript/onnxscript/ir/_enums.py:95(__repr__)
    63690    0.033    0.000    0.052    0.000 <string>:1(<lambda>)
     2300    0.008    0.000    0.051    0.000 /usr/lib/python3.12/linecache.py:52(checkcache)
    70/65    0.001    0.000    0.051    0.001 /home/xadupre/github/onnxscript/onnxscript/values.py:295(__call__)
      145    0.017    0.000    0.051    0.000 /home/xadupre/github/onnx/onnx/shape_inference.py:99(infer_node_outputs)
   251250    0.050    0.000    0.050    0.000 /usr/lib/python3.12/dis.py:195(_deoptop)
    70/65    0.001    0.000    0.049    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/exporter/_building.py:570(eval)
      415    0.006    0.000    0.049    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph.py:1104(create_node)
      620    0.015    0.000    0.048    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:948(_flatten_into)
13385/10785    0.022    0.000    0.047    0.000 /usr/lib/python3.12/typing.py:2315(_strip_annotations)
    62065    0.022    0.000    0.047    0.000 <frozen abc>:121(__subclasscheck__)
       10    0.000    0.000    0.046    0.005 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/nn/modules/conv.py:553(forward)
       10    0.000    0.000    0.046    0.005 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/nn/modules/conv.py:536(_conv_forward)
    40/10    0.001    0.000    0.046    0.005 {built-in method torch.conv2d}
       60    0.002    0.000    0.046    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/utils/_traceback.py:171(summary)
     8300    0.045    0.000    0.045    0.000 {method 'copy' of 'dict' objects}
      230    0.001    0.000    0.045    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:385(extract_val)
       10    0.001    0.000    0.045    0.004 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_export/utils.py:580(apply_runtime_assertion_pass)
      240    0.003    0.000    0.044    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/proxy.py:145(create_node)
      620    0.012    0.000    0.044    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:968(extract_tensor_metadata)
      230    0.001    0.000    0.043    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:359(snapshot_fake)
  2395/16    0.008    0.000    0.043    0.003 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/utils/_stats.py:22(wrapper)
      170    0.010    0.000    0.043    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/meta_utils.py:255(describe_tensor)
      180    0.005    0.000    0.043    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph.py:1616(override_node_repr)
       10    0.002    0.000    0.043    0.004 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_export/utils.py:820(placeholder_naming_pass)
     7405    0.037    0.000    0.042    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_decomp/__init__.py:56(_should_decompose_because_unsafe_op)
     2295    0.042    0.000    0.042    0.000 {built-in method posix.stat}
      230    0.009    0.000    0.042    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_impls.py:1010(fast_detach)
        5    0.000    0.000    0.042    0.008 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/export/_unlift.py:178(_unlift)
     5215    0.008    0.000    0.042    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/meta_utils.py:172(is_sparse_any)
    17470    0.024    0.000    0.042    0.000 /usr/lib/python3.12/typing.py:2370(get_args)
       10    0.000    0.000    0.042    0.004 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_export/passes/replace_with_hop_pass_util.py:157(_replace_with_hop_pass_helper)
     5180    0.021    0.000    0.041    0.000 /usr/lib/python3.12/inspect.py:754(unwrap)
     8075    0.022    0.000    0.040    0.000 /usr/lib/python3.12/inspect.py:2743(__init__)
    83575    0.040    0.000    0.040    0.000 {built-in method _abc._abc_instancecheck}
       10    0.000    0.000    0.039    0.004 /home/xadupre/github/onnxscript/onnxscript/rewriter/__init__.py:26(rewrite)
 3135/130    0.008    0.000    0.038    0.000 /usr/lib/python3.12/copy.py:118(deepcopy)
    40/10    0.000    0.000    0.038    0.004 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/nn/functional.py:807(_max_pool2d)
done.
profile dynopt: <function export_dynopt at 0x7f50d07a1620>
done.

Benchmark exported models with ORT

def benchmark(shape):
    from onnxruntime import InferenceSession, SessionOptions, GraphOptimizationLevel

    providers = [["CPUExecutionProvider"]]
    if has_cuda:
        providers.append(["CUDAExecutionProvider", "CPUExecutionProvider"])

    data = []
    data1 = []
    data_mem_load = []
    data_mem_first_run = []
    data_mem_run = []
    confs = list(
        itertools.product(
            [_ for _ in os.listdir(".") if ".onnx" in _ and _.startswith("plot_torch")],
            providers,
            ["0", "1"],
        )
    )
    loop = tqdm(confs)
    print(f"number of experiments: {len(loop)}")
    for name, ps, aot in loop:
        root = os.path.split(name)[-1]
        _, ext = os.path.splitext(root)
        if ext != ".onnx":
            continue

        obs = {}  # system_info()
        obs["name"] = name
        obs["providers"] = ",".join(ps)
        p = "CUDA" if "CUDA" in obs["providers"] else "CPU"
        obs["compute"] = p
        obs["aot"] = 1 if aot == "0" else 0
        obs["export"] = name.replace("plot_torch_export_", "").replace(".onnx", "")

        if not has_cuda and p == "CUDA":
            continue

        onx = onnx.load(name)
        obs["n_nodes"] = len(onx.graph.node)
        obs["n_function"] = len(onx.functions or [])
        obs["n_sub"] = len([n for n in onx.graph.node if n.op_type == "Sub"])
        obs1 = obs.copy()
        short_obs = dict(
            name=obs["name"],
            aot=obs["aot"],
            providers=obs["providers"],
            export=obs["export"],
            compute=obs["compute"],
        )

        opts = SessionOptions()
        opts.add_session_config_entry("session.disable_aot_function_inlining", aot)
        opts.graph_optimization_level = GraphOptimizationLevel.ORT_ENABLE_ALL
        opts.optimized_model_filepath = (
            f"ort-{name.replace('.onnx', '')}-{p.lower()}-aot{1 if aot == '0' else 0}.onnx"
        )

        try:
            InferenceSession(name, opts, providers=ps)
        except Exception as e:
            loop.set_description(f"ERROR-load: {name} {e}")
            obs.update({"error": e, "step": "run"})
            data.append(obs)
            continue

        opts = SessionOptions()
        opts.add_session_config_entry("session.disable_aot_function_inlining", aot)
        opts.graph_optimization_level = GraphOptimizationLevel.ORT_ENABLE_ALL
        stat = start_spying_on(cuda=1 if has_cuda else 0)
        sess = InferenceSession(name, opts, providers=ps)
        memobs = flatten(stat.stop())
        memobs.update(short_obs)
        data_mem_load.append(memobs)

        input_name = sess.get_inputs()[0].name
        feeds = {input_name: np.random.rand(*shape).astype(np.float32)}

        stat = start_spying_on(cuda=1 if has_cuda else 0)
        try:
            sess.run(None, feeds)
        except Exception as e:
            loop.set_description(f"ERROR-run: {name} {e}")
            obs.update({"error": e, "step": "load"})
            data.append(obs)
            stat.stop()
            continue
        memobs = flatten(stat.stop())
        memobs.update(short_obs)
        data_mem_first_run.append(memobs)

        # memory consumption
        stat = start_spying_on(cuda=1 if has_cuda else 0)
        for _ in range(0, script_args.warmup):
            sess.run(None, feeds)
        memobs = flatten(stat.stop())
        memobs.update(short_obs)
        data_mem_run.append(memobs)

        obs.update(
            measure_time(
                lambda sess=sess, feeds=feeds: sess.run(None, feeds),
                max_time=script_args.maxtime,
                repeat=script_args.repeat,
                number=1,
            )
        )

        loop.set_description(f"{obs['average']} {name} {ps}")
        data.append(obs)

        # check first run
        obs1.update(
            measure_time(
                lambda name=name, opts=opts, ps=ps, feeds=feeds: InferenceSession(
                    name, opts, providers=ps
                ).run(None, feeds),
                max_time=script_args.maxtime,
                repeat=max(1, script_args.repeat // 2),
                number=1,
            )
        )
        data1.append(obs1)

    df = pandas.DataFrame(data)
    df.to_csv("plot_torch_export_ort_time.csv", index=False)
    df.to_excel("plot_torch_export_ort_time.xlsx", index=False)
    df1 = pandas.DataFrame(data1)
    df1.to_csv("plot_torch_export_ort_time1_init.csv", index=False)
    df1.to_excel("plot_torch_export_ort_time1_init.xlsx", index=False)
    dfmem = pandas.DataFrame(data_mem_load)
    dfmem.to_csv("plot_torch_export_ort_load_mem.csv", index=False)
    dfmem.to_excel("plot_torch_export_ort_load_mem.xlsx", index=False)
    dfmemr = pandas.DataFrame(data_mem_run)
    dfmemr.to_csv("plot_torch_export_ort_run_mem.csv", index=False)
    dfmemr.to_excel("plot_torch_export_ort_run_mem.xlsx", index=False)
    dfmemfr = pandas.DataFrame(data_mem_first_run)
    dfmemfr.to_csv("plot_torch_export_ort_first_run_mem.csv", index=False)
    dfmemfr.to_excel("plot_torch_export_ort_first_run_mem.xlsx", index=False)
    return df, df1, dfmem, dfmemfr, dfmemr


df, df_init, dfmem, dfmemfr, dfmemr = benchmark(list(input_tensor.shape))
print(df)
  0%|          | 0/20 [00:00<?, ?it/s]number of experiments: 20

6.774530103809392e-05 plot_torch_export_cus_p2.onnx ['CPUExecutionProvider']:   0%|          | 0/20 [00:01<?, ?it/s]
6.774530103809392e-05 plot_torch_export_cus_p2.onnx ['CPUExecutionProvider']:   5%|▌         | 1/20 [00:01<00:27,  1.45s/it]
9.85442191134514e-05 plot_torch_export_cus_p2.onnx ['CPUExecutionProvider']:   5%|▌         | 1/20 [00:02<00:27,  1.45s/it]
9.85442191134514e-05 plot_torch_export_cus_p2.onnx ['CPUExecutionProvider']:  10%|█         | 2/20 [00:02<00:19,  1.06s/it]
0.0011334410512887174 plot_torch_export_cus_p2.onnx ['CUDAExecutionProvider', 'CPUExecutionProvider']:  10%|█         | 2/20 [00:03<00:19,  1.06s/it]
0.0011334410512887174 plot_torch_export_cus_p2.onnx ['CUDAExecutionProvider', 'CPUExecutionProvider']:  15%|█▌        | 3/20 [00:03<00:17,  1.06s/it]
0.0015487084047522547 plot_torch_export_cus_p2.onnx ['CUDAExecutionProvider', 'CPUExecutionProvider']:  15%|█▌        | 3/20 [00:03<00:17,  1.06s/it]
0.0015487084047522547 plot_torch_export_cus_p2.onnx ['CUDAExecutionProvider', 'CPUExecutionProvider']:  20%|██        | 4/20 [00:04<00:15,  1.04it/s]
9.094345524299926e-05 plot_torch_export_dynopt.onnx ['CPUExecutionProvider']:  20%|██        | 4/20 [00:04<00:15,  1.04it/s]
9.094345524299926e-05 plot_torch_export_dynopt.onnx ['CPUExecutionProvider']:  25%|██▌       | 5/20 [00:04<00:12,  1.18it/s]
8.639918181899357e-05 plot_torch_export_dynopt.onnx ['CPUExecutionProvider']:  25%|██▌       | 5/20 [00:05<00:12,  1.18it/s]
8.639918181899357e-05 plot_torch_export_dynopt.onnx ['CPUExecutionProvider']:  30%|███       | 6/20 [00:05<00:10,  1.30it/s]
0.0009676481709343184 plot_torch_export_dynopt.onnx ['CUDAExecutionProvider', 'CPUExecutionProvider']:  30%|███       | 6/20 [00:05<00:10,  1.30it/s]
0.0009676481709343184 plot_torch_export_dynopt.onnx ['CUDAExecutionProvider', 'CPUExecutionProvider']:  35%|███▌      | 7/20 [00:06<00:09,  1.33it/s]
0.0013565394561466523 plot_torch_export_dynopt.onnx ['CUDAExecutionProvider', 'CPUExecutionProvider']:  35%|███▌      | 7/20 [00:06<00:09,  1.33it/s]
0.0013565394561466523 plot_torch_export_dynopt.onnx ['CUDAExecutionProvider', 'CPUExecutionProvider']:  40%|████      | 8/20 [00:07<00:09,  1.21it/s]
6.677814703928677e-05 plot_torch_export_dynamo.onnx ['CPUExecutionProvider']:  40%|████      | 8/20 [00:07<00:09,  1.21it/s]
6.677814703928677e-05 plot_torch_export_dynamo.onnx ['CPUExecutionProvider']:  45%|████▌     | 9/20 [00:07<00:08,  1.28it/s]
7.941147486441518e-05 plot_torch_export_dynamo.onnx ['CPUExecutionProvider']:  45%|████▌     | 9/20 [00:08<00:08,  1.28it/s]
7.941147486441518e-05 plot_torch_export_dynamo.onnx ['CPUExecutionProvider']:  50%|█████     | 10/20 [00:08<00:07,  1.36it/s]
0.0007144002052966894 plot_torch_export_dynamo.onnx ['CUDAExecutionProvider', 'CPUExecutionProvider']:  50%|█████     | 10/20 [00:08<00:07,  1.36it/s]
0.0007144002052966894 plot_torch_export_dynamo.onnx ['CUDAExecutionProvider', 'CPUExecutionProvider']:  55%|█████▌    | 11/20 [00:09<00:06,  1.43it/s]
0.0008318764285788694 plot_torch_export_dynamo.onnx ['CUDAExecutionProvider', 'CPUExecutionProvider']:  55%|█████▌    | 11/20 [00:09<00:06,  1.43it/s]
0.0008318764285788694 plot_torch_export_dynamo.onnx ['CUDAExecutionProvider', 'CPUExecutionProvider']:  60%|██████    | 12/20 [00:09<00:05,  1.44it/s]
6.236133662293357e-05 plot_torch_export_script.onnx ['CPUExecutionProvider']:  60%|██████    | 12/20 [00:10<00:05,  1.44it/s]
6.236133662293357e-05 plot_torch_export_script.onnx ['CPUExecutionProvider']:  65%|██████▌   | 13/20 [00:10<00:04,  1.45it/s]
6.37282538627513e-05 plot_torch_export_script.onnx ['CPUExecutionProvider']:  65%|██████▌   | 13/20 [00:10<00:04,  1.45it/s]
6.37282538627513e-05 plot_torch_export_script.onnx ['CPUExecutionProvider']:  70%|███████   | 14/20 [00:10<00:04,  1.50it/s]
0.0007548896853152725 plot_torch_export_script.onnx ['CUDAExecutionProvider', 'CPUExecutionProvider']:  70%|███████   | 14/20 [00:11<00:04,  1.50it/s]
0.0007548896853152725 plot_torch_export_script.onnx ['CUDAExecutionProvider', 'CPUExecutionProvider']:  75%|███████▌  | 15/20 [00:11<00:03,  1.56it/s]
0.0007309904576326989 plot_torch_export_script.onnx ['CUDAExecutionProvider', 'CPUExecutionProvider']:  75%|███████▌  | 15/20 [00:12<00:03,  1.56it/s]
0.0007309904576326989 plot_torch_export_script.onnx ['CUDAExecutionProvider', 'CPUExecutionProvider']:  80%|████████  | 16/20 [00:12<00:02,  1.59it/s]
7.436829438438482e-05 plot_torch_export_cus_p0.onnx ['CPUExecutionProvider']:  80%|████████  | 16/20 [00:12<00:02,  1.59it/s]
7.436829438438482e-05 plot_torch_export_cus_p0.onnx ['CPUExecutionProvider']:  85%|████████▌ | 17/20 [00:12<00:02,  1.50it/s]
6.242102288097068e-05 plot_torch_export_cus_p0.onnx ['CPUExecutionProvider']:  85%|████████▌ | 17/20 [00:13<00:02,  1.50it/s]
6.242102288097068e-05 plot_torch_export_cus_p0.onnx ['CPUExecutionProvider']:  90%|█████████ | 18/20 [00:13<00:01,  1.55it/s]
0.0007602554666610322 plot_torch_export_cus_p0.onnx ['CUDAExecutionProvider', 'CPUExecutionProvider']:  90%|█████████ | 18/20 [00:13<00:01,  1.55it/s]
0.0007602554666610322 plot_torch_export_cus_p0.onnx ['CUDAExecutionProvider', 'CPUExecutionProvider']:  95%|█████████▌| 19/20 [00:14<00:00,  1.58it/s]
0.0007602310370472238 plot_torch_export_cus_p0.onnx ['CUDAExecutionProvider', 'CPUExecutionProvider']:  95%|█████████▌| 19/20 [00:14<00:00,  1.58it/s]
0.0007602310370472238 plot_torch_export_cus_p0.onnx ['CUDAExecutionProvider', 'CPUExecutionProvider']: 100%|██████████| 20/20 [00:14<00:00,  1.62it/s]
0.0007602310370472238 plot_torch_export_cus_p0.onnx ['CUDAExecutionProvider', 'CPUExecutionProvider']: 100%|██████████| 20/20 [00:14<00:00,  1.36it/s]
                             name                                   providers compute  aot  export  n_nodes  ...  max_exec  repeat  number     ttime  context_size  warmup_time
0   plot_torch_export_cus_p2.onnx                        CPUExecutionProvider     CPU    1  cus_p2       12  ...  0.000070       1  1734.0  0.117470            64     0.000297
1   plot_torch_export_cus_p2.onnx                        CPUExecutionProvider     CPU    0  cus_p2       12  ...  0.000134       1  1287.0  0.126826            64     0.000366
2   plot_torch_export_cus_p2.onnx  CUDAExecutionProvider,CPUExecutionProvider    CUDA    1  cus_p2       12  ...  0.001289       1   117.0  0.132613            64     0.001657
3   plot_torch_export_cus_p2.onnx  CUDAExecutionProvider,CPUExecutionProvider    CUDA    0  cus_p2       12  ...  0.001685       1    84.0  0.130092            64     0.002684
4   plot_torch_export_dynopt.onnx                        CPUExecutionProvider     CPU    1  dynopt       13  ...  0.000100       1  1173.0  0.106677            64     0.000316
5   plot_torch_export_dynopt.onnx                        CPUExecutionProvider     CPU    0  dynopt       13  ...  0.000256       1  1265.0  0.109295            64     0.000601
6   plot_torch_export_dynopt.onnx  CUDAExecutionProvider,CPUExecutionProvider    CUDA    1  dynopt       13  ...  0.001662       1   117.0  0.113215            64     0.002181
7   plot_torch_export_dynopt.onnx  CUDAExecutionProvider,CPUExecutionProvider    CUDA    0  dynopt       13  ...  0.001411       1   114.0  0.154645            64     0.001793
8   plot_torch_export_dynamo.onnx                        CPUExecutionProvider     CPU    1  dynamo       13  ...  0.000142       1  1503.0  0.100368            64     0.000361
9   plot_torch_export_dynamo.onnx                        CPUExecutionProvider     CPU    0  dynamo       13  ...  0.000095       1  1293.0  0.102679            64     0.000347
10  plot_torch_export_dynamo.onnx  CUDAExecutionProvider,CPUExecutionProvider    CUDA    1  dynamo       13  ...  0.001068       1   151.0  0.107874            64     0.001688
11  plot_torch_export_dynamo.onnx  CUDAExecutionProvider,CPUExecutionProvider    CUDA    0  dynamo       13  ...  0.000858       1   126.0  0.104816            64     0.001903
12  plot_torch_export_script.onnx                        CPUExecutionProvider     CPU    1  script       12  ...  0.000098       1  1723.0  0.107449            64     0.000367
13  plot_torch_export_script.onnx                        CPUExecutionProvider     CPU    0  script       12  ...  0.000109       1  2265.0  0.144344            64     0.000326
14  plot_torch_export_script.onnx  CUDAExecutionProvider,CPUExecutionProvider    CUDA    1  script       12  ...  0.001012       1   143.0  0.107949            64     0.001761
15  plot_torch_export_script.onnx  CUDAExecutionProvider,CPUExecutionProvider    CUDA    0  script       12  ...  0.001096       1   177.0  0.129385            64     0.001868
16  plot_torch_export_cus_p0.onnx                        CPUExecutionProvider     CPU    1  cus_p0       15  ...  0.000096       1  1763.0  0.131111            64     0.000427
17  plot_torch_export_cus_p0.onnx                        CPUExecutionProvider     CPU    0  cus_p0       15  ...  0.000081       1  1923.0  0.120036            64     0.000351
18  plot_torch_export_cus_p0.onnx  CUDAExecutionProvider,CPUExecutionProvider    CUDA    1  cus_p0       15  ...  0.001160       1   135.0  0.102634            64     0.001992
19  plot_torch_export_cus_p0.onnx  CUDAExecutionProvider,CPUExecutionProvider    CUDA    0  cus_p0       15  ...  0.000769       1   135.0  0.102631            64     0.001782

[20 rows x 17 columns]

Other view

def view_time(df, title, suffix="time"):
    piv = pandas.pivot_table(df, index="export", columns=["compute", "aot"], values="average")
    print(piv)
    piv.to_csv(f"plot_torch_export_ort_{suffix}_compute.csv")
    piv.to_excel(f"plot_torch_export_ort_{suffix}_compute.xlsx")

    piv_cpu = pandas.pivot_table(
        df[df.compute == "CPU"],
        index="export",
        columns=["compute", "aot"],
        values="average",
    )

    fig, ax = plt.subplots(1, 2, figsize=(12, 4))
    fig.suptitle(title)
    piv_cpu.plot.barh(ax=ax[0], title="CPU")

    if has_cuda:
        piv_gpu = pandas.pivot_table(
            df[df.compute == "CUDA"],
            index="export",
            columns=["compute", "aot"],
            values="average",
        )
        piv_gpu.plot.barh(ax=ax[1], title="CUDA")

    fig.tight_layout()
    fig.savefig(f"plot_torch_export_ort_{suffix}.png")
    return ax


view_time(df, "Compares onnxruntime time on exported models")
Compares onnxruntime time on exported models, CPU, CUDA
compute       CPU                CUDA
aot             0         1         0         1
export
cus_p0   0.000062  0.000074  0.000760  0.000760
cus_p2   0.000099  0.000068  0.001549  0.001133
dynamo   0.000079  0.000067  0.000832  0.000714
dynopt   0.000086  0.000091  0.001357  0.000968
script   0.000064  0.000062  0.000731  0.000755

array([<Axes: title={'center': 'CPU'}, ylabel='export'>,
       <Axes: title={'center': 'CUDA'}, ylabel='export'>], dtype=object)

New graph without the very long times.

piv_cpu = pandas.pivot_table(
    df[
        (df.compute == "CPU")
        & ((df.aot == 1) | ((df.export != "dynamo") & (df.export != "dynopt")))
    ],
    index="export",
    columns=["compute", "aot"],
    values="average",
)

fig, ax = plt.subplots(1, 2, figsize=(12, 4))
fig.suptitle("Compares onnxruntime time on exported models\nHide dynamo without AOT")
piv_cpu.plot.barh(ax=ax[0], title="CPU")

if has_cuda:
    piv_gpu = pandas.pivot_table(
        df[df.compute == "CUDA"],
        index="export",
        columns=["compute", "aot"],
        values="average",
    )
    piv_gpu.plot.barh(ax=ax[1], title="CUDA")

fig.tight_layout()
fig.savefig("plot_torch_export_ort_time_2.png")
Compares onnxruntime time on exported models Hide dynamo without AOT, CPU, CUDA

Let’s do the same with the loading time + the first run.

view_time(
    df_init,
    "Compares onnxruntime loading time and first run on exported models",
    suffix="time1_init",
)
Compares onnxruntime loading time and first run on exported models, CPU, CUDA
compute       CPU                CUDA
aot             0         1         0         1
export
cus_p0   0.005893  0.011159  0.015356  0.020402
cus_p2   0.008422  0.006899  0.029318  0.023198
dynamo   0.007780  0.006664  0.030340  0.019251
dynopt   0.008386  0.007506  0.020447  0.019667
script   0.006734  0.005652  0.034694  0.036693

array([<Axes: title={'center': 'CPU'}, ylabel='export'>,
       <Axes: title={'center': 'CUDA'}, ylabel='export'>], dtype=object)

Memory Loading Time (ORT)

for compute in ["CPU", "CUDA"]:
    if not has_cuda and compute == "CUDA":
        continue
    ax = memory_peak_plot(
        dfmem[dfmem.compute == compute],
        ("export", "aot"),
        suptitle=f"Memory Consumption of onnxruntime loading time\nrunning on {compute}",
        bars=[model_size * i / 2**20 for i in range(1, 3)],
        figsize=(18, 6),
    )
    get_figure(ax).savefig(f"plot_torch_export_ort_load_mem_{compute}.png")
  • Memory Consumption of onnxruntime loading time running on CPU, Memory peak (Mb), Memory peak - memory begin (Mb), Memory average - memory begin (Mb), GPU Memory peak (Mb), GPU Memory peak - memory begin (Mb), GPU Memory average - memory begin (Mb)
  • Memory Consumption of onnxruntime loading time running on CUDA, Memory peak (Mb), Memory peak - memory begin (Mb), Memory average - memory begin (Mb), GPU Memory peak (Mb), GPU Memory peak - memory begin (Mb), GPU Memory average - memory begin (Mb)

Memory First Running Time (ORT)

for compute in ["CPU", "CUDA"]:
    if not has_cuda and compute == "CUDA":
        continue
    ax = memory_peak_plot(
        dfmemfr[dfmemfr.compute == compute],
        ("export", "aot"),
        suptitle=f"Memory Consumption of onnxruntime first running time"
        f"\nrunning on {compute}",
        bars=[model_size * i / 2**20 for i in range(1, 3)],
        figsize=(18, 6),
    )
    get_figure(ax).savefig(f"plot_torch_export_ort_first_run_mem_{compute}.png")
  • Memory Consumption of onnxruntime first running time running on CPU, Memory peak (Mb), Memory peak - memory begin (Mb), Memory average - memory begin (Mb), GPU Memory peak (Mb), GPU Memory peak - memory begin (Mb), GPU Memory average - memory begin (Mb)
  • Memory Consumption of onnxruntime first running time running on CUDA, Memory peak (Mb), Memory peak - memory begin (Mb), Memory average - memory begin (Mb), GPU Memory peak (Mb), GPU Memory peak - memory begin (Mb), GPU Memory average - memory begin (Mb)

Memory Running Time (ORT)

for compute in ["CPU", "CUDA"]:
    if not has_cuda and compute == "CUDA":
        continue
    ax = memory_peak_plot(
        dfmemr[dfmemr.compute == compute],
        ("export", "aot"),
        suptitle=f"Memory Consumption of onnxruntime running time\nrunning on {compute}",
        bars=[model_size * i / 2**20 for i in range(1, 3)],
        figsize=(18, 6),
    )
    get_figure(ax).savefig(f"plot_torch_export_ort_run_mem_{compute}.png")
  • Memory Consumption of onnxruntime running time running on CPU, Memory peak (Mb), Memory peak - memory begin (Mb), Memory average - memory begin (Mb), GPU Memory peak (Mb), GPU Memory peak - memory begin (Mb), GPU Memory average - memory begin (Mb)
  • Memory Consumption of onnxruntime running time running on CUDA, Memory peak (Mb), Memory peak - memory begin (Mb), Memory average - memory begin (Mb), GPU Memory peak (Mb), GPU Memory peak - memory begin (Mb), GPU Memory average - memory begin (Mb)

Show the interesting models for CPU

script

model = "ort-plot_torch_export_cus_p2-cpu-aot0.onnx"
if os.path.exists(model):
    print(pretty_onnx(onnx.load(model)))
opset: domain='' version=18
opset: domain='ai.onnx.ml' version=5
opset: domain='onnx_extended.ortops.optim.cuda' version=1000
opset: domain='ai.onnx.training' version=1
opset: domain='ai.onnx.preview.training' version=1
opset: domain='com.microsoft' version=1
opset: domain='com.microsoft.experimental' version=1
opset: domain='com.microsoft.nchwc' version=1
opset: domain='org.pytorch.aten' version=1
input: name='input' type=dtype('float32') shape=[1, 1, 16, 16]
init: name='_onx_concat_gatherelements__shape_max_pool2d_1000' type=int64 shape=(2,) -- array([ 1, -1])-- GraphBuilder.constant_folding.from/fold(_onx_gatherelements__shape_max_pool2d_100,init7_s1_-1)##_onx_gatherelements__shape_max_pool2d_100/GraphBuilder.constant_folding.from/fold(_shape_max_pool2d_10,init7_s1_0)##_shape_max_pool2d_10/##init7_s1_0/Opset.make_node.1/Shape##init7_s1_-1/Opset.make_node.1/Shape
init: name='GemmTransposePattern--_onx_transpose_p_fc1_weight0' type=float32 shape=(512, 16)-- GraphBuilder.constant_folding.from/fold(_onx_transpose_p_fc1_weight0)##_onx_transpose_p_fc1_weight0/GraphBuilder.constant_folding.from/fold(p_fc1_weight)##p_fc1_weight/DynamoInterpret.placeholder.1/P(fc1.weight)
init: name='GemmTransposePattern--_onx_transpose_p_fc2_weight0' type=float32 shape=(128, 512)-- GraphBuilder.constant_folding.from/fold(_onx_transpose_p_fc2_weight0)##_onx_transpose_p_fc2_weight0/GraphBuilder.constant_folding.from/fold(p_fc2_weight)##p_fc2_weight/DynamoInterpret.placeholder.1/P(fc2.weight)
init: name='GemmTransposePattern--_onx_transpose_p_fc3_weight0' type=float32 shape=(10, 128)-- GraphBuilder.constant_folding.from/fold(_onx_transpose_p_fc3_weight0)##_onx_transpose_p_fc3_weight0/GraphBuilder.constant_folding.from/fold(p_fc3_weight)##p_fc3_weight/DynamoInterpret.placeholder.1/P(fc3.weight)
init: name='reorder' type=float32 shape=(16, 1, 5, 5)
init: name='conv1.bias' type=float32 shape=(16,)                      -- DynamoInterpret.placeholder.1/P(conv1.bias)
init: name='reorder_token_2' type=float32 shape=(16, 16, 5, 5)
init: name='conv2.bias' type=float32 shape=(16,)                      -- DynamoInterpret.placeholder.1/P(conv2.bias)
init: name='fc1.bias' type=float32 shape=(512,)                       -- DynamoInterpret.placeholder.1/P(fc1.bias)
init: name='fc2.bias' type=float32 shape=(128,)                       -- DynamoInterpret.placeholder.1/P(fc2.bias)
init: name='fc3.bias' type=float32 shape=(10,)                        -- DynamoInterpret.placeholder.1/P(fc3.bias)
Conv[com.microsoft.nchwc](input, reorder, conv1.bias, activation=b'Relu', dilations=[1,1], group=1, strides=[1,1], pads=[0,0,0,0], auto_pad=b'NOTSET') -> reorder_token_0
  MaxPool[com.microsoft.nchwc](reorder_token_0, storage_order=0, auto_pad=b'NOTSET', ceil_mode=0, dilations=[1,1], kernel_shape=[2,2], pads=[0,0,0,0], strides=[2,2]) -> reorder_token_1
    Conv[com.microsoft.nchwc](reorder_token_1, reorder_token_2, conv2.bias, activation=b'Relu', dilations=[1,1], group=1, strides=[1,1], pads=[0,0,0,0], auto_pad=b'NOTSET') -> reorder_token_3
      MaxPool[com.microsoft.nchwc](reorder_token_3, storage_order=0, auto_pad=b'NOTSET', ceil_mode=0, dilations=[1,1], kernel_shape=[2,2], pads=[0,0,0,0], strides=[2,2]) -> reorder_token_4
        ReorderOutput[com.microsoft.nchwc](reorder_token_4, channels_last=0, channels=16) -> max_pool2d_1
          Reshape(max_pool2d_1, _onx_concat_gatherelements__shape_max_pool2d_1000, allowzero=0) -> flatten
            FusedGemm[com.microsoft](flatten, GemmTransposePattern--_onx_transpose_p_fc1_weight0, fc1.bias, transA=0, beta=1.00, activation=b'Relu', transB=1, alpha=1.00) -> relu_2
              FusedGemm[com.microsoft](relu_2, GemmTransposePattern--_onx_transpose_p_fc2_weight0, fc2.bias, transA=0, beta=1.00, activation=b'Relu', transB=1, alpha=1.00) -> relu_3
                Gemm(relu_3, GemmTransposePattern--_onx_transpose_p_fc3_weight0, fc3.bias, transA=0, beta=1.00, transB=1, alpha=1.00) -> output_0
output: name='output_0' type=dtype('float32') shape=[1, 10]

cus_p2

model = "ort-plot_torch_export_cus_p2-cpu-aot0.onnx"
if os.path.exists(model):
    print(pretty_onnx(onnx.load(model)))
opset: domain='' version=18
opset: domain='ai.onnx.ml' version=5
opset: domain='onnx_extended.ortops.optim.cuda' version=1000
opset: domain='ai.onnx.training' version=1
opset: domain='ai.onnx.preview.training' version=1
opset: domain='com.microsoft' version=1
opset: domain='com.microsoft.experimental' version=1
opset: domain='com.microsoft.nchwc' version=1
opset: domain='org.pytorch.aten' version=1
input: name='input' type=dtype('float32') shape=[1, 1, 16, 16]
init: name='_onx_concat_gatherelements__shape_max_pool2d_1000' type=int64 shape=(2,) -- array([ 1, -1])-- GraphBuilder.constant_folding.from/fold(_onx_gatherelements__shape_max_pool2d_100,init7_s1_-1)##_onx_gatherelements__shape_max_pool2d_100/GraphBuilder.constant_folding.from/fold(_shape_max_pool2d_10,init7_s1_0)##_shape_max_pool2d_10/##init7_s1_0/Opset.make_node.1/Shape##init7_s1_-1/Opset.make_node.1/Shape
init: name='GemmTransposePattern--_onx_transpose_p_fc1_weight0' type=float32 shape=(512, 16)-- GraphBuilder.constant_folding.from/fold(_onx_transpose_p_fc1_weight0)##_onx_transpose_p_fc1_weight0/GraphBuilder.constant_folding.from/fold(p_fc1_weight)##p_fc1_weight/DynamoInterpret.placeholder.1/P(fc1.weight)
init: name='GemmTransposePattern--_onx_transpose_p_fc2_weight0' type=float32 shape=(128, 512)-- GraphBuilder.constant_folding.from/fold(_onx_transpose_p_fc2_weight0)##_onx_transpose_p_fc2_weight0/GraphBuilder.constant_folding.from/fold(p_fc2_weight)##p_fc2_weight/DynamoInterpret.placeholder.1/P(fc2.weight)
init: name='GemmTransposePattern--_onx_transpose_p_fc3_weight0' type=float32 shape=(10, 128)-- GraphBuilder.constant_folding.from/fold(_onx_transpose_p_fc3_weight0)##_onx_transpose_p_fc3_weight0/GraphBuilder.constant_folding.from/fold(p_fc3_weight)##p_fc3_weight/DynamoInterpret.placeholder.1/P(fc3.weight)
init: name='reorder' type=float32 shape=(16, 1, 5, 5)
init: name='conv1.bias' type=float32 shape=(16,)                      -- DynamoInterpret.placeholder.1/P(conv1.bias)
init: name='reorder_token_2' type=float32 shape=(16, 16, 5, 5)
init: name='conv2.bias' type=float32 shape=(16,)                      -- DynamoInterpret.placeholder.1/P(conv2.bias)
init: name='fc1.bias' type=float32 shape=(512,)                       -- DynamoInterpret.placeholder.1/P(fc1.bias)
init: name='fc2.bias' type=float32 shape=(128,)                       -- DynamoInterpret.placeholder.1/P(fc2.bias)
init: name='fc3.bias' type=float32 shape=(10,)                        -- DynamoInterpret.placeholder.1/P(fc3.bias)
Conv[com.microsoft.nchwc](input, reorder, conv1.bias, activation=b'Relu', dilations=[1,1], group=1, strides=[1,1], pads=[0,0,0,0], auto_pad=b'NOTSET') -> reorder_token_0
  MaxPool[com.microsoft.nchwc](reorder_token_0, storage_order=0, auto_pad=b'NOTSET', ceil_mode=0, dilations=[1,1], kernel_shape=[2,2], pads=[0,0,0,0], strides=[2,2]) -> reorder_token_1
    Conv[com.microsoft.nchwc](reorder_token_1, reorder_token_2, conv2.bias, activation=b'Relu', dilations=[1,1], group=1, strides=[1,1], pads=[0,0,0,0], auto_pad=b'NOTSET') -> reorder_token_3
      MaxPool[com.microsoft.nchwc](reorder_token_3, storage_order=0, auto_pad=b'NOTSET', ceil_mode=0, dilations=[1,1], kernel_shape=[2,2], pads=[0,0,0,0], strides=[2,2]) -> reorder_token_4
        ReorderOutput[com.microsoft.nchwc](reorder_token_4, channels_last=0, channels=16) -> max_pool2d_1
          Reshape(max_pool2d_1, _onx_concat_gatherelements__shape_max_pool2d_1000, allowzero=0) -> flatten
            FusedGemm[com.microsoft](flatten, GemmTransposePattern--_onx_transpose_p_fc1_weight0, fc1.bias, transA=0, beta=1.00, activation=b'Relu', transB=1, alpha=1.00) -> relu_2
              FusedGemm[com.microsoft](relu_2, GemmTransposePattern--_onx_transpose_p_fc2_weight0, fc2.bias, transA=0, beta=1.00, activation=b'Relu', transB=1, alpha=1.00) -> relu_3
                Gemm(relu_3, GemmTransposePattern--_onx_transpose_p_fc3_weight0, fc3.bias, transA=0, beta=1.00, transB=1, alpha=1.00) -> output_0
output: name='output_0' type=dtype('float32') shape=[1, 10]

dynopt

model = "ort-plot_torch_export_dynopt-cpu-aot1.onnx"
if os.path.exists(model):
    print(pretty_onnx(onnx.load(model)))
opset: domain='pkg.onnxscript.torch_lib.common' version=1
opset: domain='' version=18
opset: domain='ai.onnx.ml' version=5
opset: domain='onnx_extended.ortops.optim.cuda' version=1000
opset: domain='ai.onnx.training' version=1
opset: domain='ai.onnx.preview.training' version=1
opset: domain='com.microsoft' version=1
opset: domain='com.microsoft.experimental' version=1
opset: domain='com.microsoft.nchwc' version=1
opset: domain='org.pytorch.aten' version=1
input: name='x' type=dtype('float32') shape=[1, 1, 16, 16]
init: name='reorder' type=float32 shape=(16, 1, 5, 5)
init: name='conv1.bias' type=float32 shape=(16,)
init: name='reorder_token_2' type=float32 shape=(16, 16, 5, 5)
init: name='conv2.bias' type=float32 shape=(16,)
init: name='fc1.weight' type=float32 shape=(512, 16)
init: name='fc1.bias' type=float32 shape=(512,)
init: name='fc2.weight' type=float32 shape=(128, 512)
init: name='fc2.bias' type=float32 shape=(128,)
init: name='fc3.weight' type=float32 shape=(10, 128)
init: name='fc3.bias' type=float32 shape=(10,)
init: name='val_3' type=int64 shape=(2,) -- array([ 1, 16])
Conv[com.microsoft.nchwc](x, reorder, conv1.bias, activation=b'Relu', group=1, strides=[1,1], pads=[0,0,0,0], auto_pad=b'NOTSET', dilations=[1,1]) -> reorder_token_0
  MaxPool[com.microsoft.nchwc](reorder_token_0, pads=[0,0,0,0], kernel_shape=[2,2], ceil_mode=0, auto_pad=b'NOTSET', dilations=[1,1], strides=[2,2], storage_order=0) -> reorder_token_1
    Conv[com.microsoft.nchwc](reorder_token_1, reorder_token_2, conv2.bias, activation=b'Relu', group=1, strides=[1,1], pads=[0,0,0,0], auto_pad=b'NOTSET', dilations=[1,1]) -> reorder_token_3
      MaxPool[com.microsoft.nchwc](reorder_token_3, pads=[0,0,0,0], kernel_shape=[2,2], ceil_mode=0, auto_pad=b'NOTSET', dilations=[1,1], strides=[2,2], storage_order=0) -> reorder_token_4
        ReorderOutput[com.microsoft.nchwc](reorder_token_4, channels_last=0, channels=16) -> max_pool2d_1
          Reshape(max_pool2d_1, val_3, allowzero=0) -> view
            FusedGemm[com.microsoft](view, fc1.weight, fc1.bias, transA=0, alpha=1.00, activation=b'Relu', transB=1, beta=1.00) -> relu_2
              FusedGemm[com.microsoft](relu_2, fc2.weight, fc2.bias, transA=0, alpha=1.00, activation=b'Relu', transB=1, beta=1.00) -> relu_3
                Gemm(relu_3, fc3.weight, fc3.bias, transA=0, alpha=1.00, transB=1, beta=1.00) -> linear_2
output: name='linear_2' type=dtype('float32') shape=[1, 10]

dynamo

model = "ort-plot_torch_export_dynamo-cpu-aot1.onnx"
if os.path.exists(model):
    print(pretty_onnx(onnx.load(model)))
opset: domain='pkg.onnxscript.torch_lib.common' version=1
opset: domain='' version=18
opset: domain='ai.onnx.ml' version=5
opset: domain='onnx_extended.ortops.optim.cuda' version=1000
opset: domain='ai.onnx.training' version=1
opset: domain='ai.onnx.preview.training' version=1
opset: domain='com.microsoft' version=1
opset: domain='com.microsoft.experimental' version=1
opset: domain='com.microsoft.nchwc' version=1
opset: domain='org.pytorch.aten' version=1
input: name='x' type=dtype('float32') shape=[1, 1, 16, 16]
init: name='reorder' type=float32 shape=(16, 1, 5, 5)
init: name='conv1.bias' type=float32 shape=(16,)
init: name='reorder_token_2' type=float32 shape=(16, 16, 5, 5)
init: name='conv2.bias' type=float32 shape=(16,)
init: name='fc1.weight' type=float32 shape=(512, 16)
init: name='fc1.bias' type=float32 shape=(512,)
init: name='fc2.weight' type=float32 shape=(128, 512)
init: name='fc2.bias' type=float32 shape=(128,)
init: name='fc3.weight' type=float32 shape=(10, 128)
init: name='fc3.bias' type=float32 shape=(10,)
init: name='val_3' type=int64 shape=(2,) -- array([ 1, 16])
Conv[com.microsoft.nchwc](x, reorder, conv1.bias, activation=b'Relu', group=1, strides=[1,1], pads=[0,0,0,0], auto_pad=b'NOTSET', dilations=[1,1]) -> reorder_token_0
  MaxPool[com.microsoft.nchwc](reorder_token_0, pads=[0,0,0,0], kernel_shape=[2,2], ceil_mode=0, auto_pad=b'NOTSET', dilations=[1,1], strides=[2,2], storage_order=0) -> reorder_token_1
    Conv[com.microsoft.nchwc](reorder_token_1, reorder_token_2, conv2.bias, activation=b'Relu', group=1, strides=[1,1], pads=[0,0,0,0], auto_pad=b'NOTSET', dilations=[1,1]) -> reorder_token_3
      MaxPool[com.microsoft.nchwc](reorder_token_3, pads=[0,0,0,0], kernel_shape=[2,2], ceil_mode=0, auto_pad=b'NOTSET', dilations=[1,1], strides=[2,2], storage_order=0) -> reorder_token_4
        ReorderOutput[com.microsoft.nchwc](reorder_token_4, channels_last=0, channels=16) -> max_pool2d_1
          Reshape(max_pool2d_1, val_3, allowzero=0) -> view
            FusedGemm[com.microsoft](view, fc1.weight, fc1.bias, transA=0, alpha=1.00, activation=b'Relu', transB=1, beta=1.00) -> relu_2
              FusedGemm[com.microsoft](relu_2, fc2.weight, fc2.bias, transA=0, alpha=1.00, activation=b'Relu', transB=1, beta=1.00) -> relu_3
                Gemm(relu_3, fc3.weight, fc3.bias, transA=0, alpha=1.00, transB=1, beta=1.00) -> linear_2
output: name='linear_2' type=dtype('float32') shape=[1, 10]

Show the interesting models for CUDA

script

model = "ort-plot_torch_export_cus_p2-cuda-aot0.onnx"
if os.path.exists(model):
    print(pretty_onnx(onnx.load(model)))
opset: domain='' version=18
opset: domain='ai.onnx.ml' version=5
opset: domain='onnx_extended.ortops.optim.cuda' version=1000
opset: domain='ai.onnx.training' version=1
opset: domain='ai.onnx.preview.training' version=1
opset: domain='com.microsoft' version=1
opset: domain='com.microsoft.experimental' version=1
opset: domain='com.microsoft.nchwc' version=1
opset: domain='org.pytorch.aten' version=1
input: name='input' type=dtype('float32') shape=[1, 1, 16, 16]
init: name='_onx_concat_gatherelements__shape_max_pool2d_1000' type=int64 shape=(2,) -- array([ 1, -1])-- GraphBuilder.constant_folding.from/fold(_onx_gatherelements__shape_max_pool2d_100,init7_s1_-1)##_onx_gatherelements__shape_max_pool2d_100/GraphBuilder.constant_folding.from/fold(_shape_max_pool2d_10,init7_s1_0)##_shape_max_pool2d_10/##init7_s1_0/Opset.make_node.1/Shape##init7_s1_-1/Opset.make_node.1/Shape
init: name='GemmTransposePattern--_onx_transpose_p_fc1_weight0' type=float32 shape=(512, 16)-- GraphBuilder.constant_folding.from/fold(_onx_transpose_p_fc1_weight0)##_onx_transpose_p_fc1_weight0/GraphBuilder.constant_folding.from/fold(p_fc1_weight)##p_fc1_weight/DynamoInterpret.placeholder.1/P(fc1.weight)
init: name='GemmTransposePattern--_onx_transpose_p_fc2_weight0' type=float32 shape=(128, 512)-- GraphBuilder.constant_folding.from/fold(_onx_transpose_p_fc2_weight0)##_onx_transpose_p_fc2_weight0/GraphBuilder.constant_folding.from/fold(p_fc2_weight)##p_fc2_weight/DynamoInterpret.placeholder.1/P(fc2.weight)
init: name='GemmTransposePattern--_onx_transpose_p_fc3_weight0' type=float32 shape=(10, 128)-- GraphBuilder.constant_folding.from/fold(_onx_transpose_p_fc3_weight0)##_onx_transpose_p_fc3_weight0/GraphBuilder.constant_folding.from/fold(p_fc3_weight)##p_fc3_weight/DynamoInterpret.placeholder.1/P(fc3.weight)
init: name='conv1.weight' type=float32 shape=(16, 1, 5, 5)            -- DynamoInterpret.placeholder.1/P(conv1.weight)
init: name='conv1.bias' type=float32 shape=(16,)                      -- DynamoInterpret.placeholder.1/P(conv1.bias)
init: name='conv2.weight' type=float32 shape=(16, 16, 5, 5)           -- DynamoInterpret.placeholder.1/P(conv2.weight)
init: name='conv2.bias' type=float32 shape=(16,)                      -- DynamoInterpret.placeholder.1/P(conv2.bias)
init: name='fc1.bias' type=float32 shape=(512,)                       -- DynamoInterpret.placeholder.1/P(fc1.bias)
init: name='fc2.bias' type=float32 shape=(128,)                       -- DynamoInterpret.placeholder.1/P(fc2.bias)
init: name='fc3.bias' type=float32 shape=(10,)                        -- DynamoInterpret.placeholder.1/P(fc3.bias)
Conv(input, conv1.weight, conv1.bias, dilations=[1,1], group=1, pads=[0,0,0,0], strides=[1,1]) -> conv2d
  Relu(conv2d) -> relu
    MaxPool(relu, ceil_mode=0, dilations=[1,1], kernel_shape=[2,2], pads=[0,0,0,0], strides=[2,2]) -> max_pool2d
      Conv(max_pool2d, conv2.weight, conv2.bias, dilations=[1,1], group=1, pads=[0,0,0,0], strides=[1,1]) -> conv2d_1
        Relu(conv2d_1) -> relu_1
          MaxPool(relu_1, ceil_mode=0, dilations=[1,1], kernel_shape=[2,2], pads=[0,0,0,0], strides=[2,2]) -> max_pool2d_1
            Reshape(max_pool2d_1, _onx_concat_gatherelements__shape_max_pool2d_1000) -> flatten
              Gemm(flatten, GemmTransposePattern--_onx_transpose_p_fc1_weight0, fc1.bias, transB=1) -> linear
                Relu(linear) -> relu_2
                  Gemm(relu_2, GemmTransposePattern--_onx_transpose_p_fc2_weight0, fc2.bias, transB=1) -> linear_1
                    Relu(linear_1) -> relu_3
                      Gemm(relu_3, GemmTransposePattern--_onx_transpose_p_fc3_weight0, fc3.bias, transB=1) -> output_0
output: name='output_0' type=dtype('float32') shape=[1, 10]

cus_p2

model = "ort-plot_torch_export_cus_p2-cuda-aot0.onnx"
if os.path.exists(model):
    print(pretty_onnx(onnx.load(model)))
opset: domain='' version=18
opset: domain='ai.onnx.ml' version=5
opset: domain='onnx_extended.ortops.optim.cuda' version=1000
opset: domain='ai.onnx.training' version=1
opset: domain='ai.onnx.preview.training' version=1
opset: domain='com.microsoft' version=1
opset: domain='com.microsoft.experimental' version=1
opset: domain='com.microsoft.nchwc' version=1
opset: domain='org.pytorch.aten' version=1
input: name='input' type=dtype('float32') shape=[1, 1, 16, 16]
init: name='_onx_concat_gatherelements__shape_max_pool2d_1000' type=int64 shape=(2,) -- array([ 1, -1])-- GraphBuilder.constant_folding.from/fold(_onx_gatherelements__shape_max_pool2d_100,init7_s1_-1)##_onx_gatherelements__shape_max_pool2d_100/GraphBuilder.constant_folding.from/fold(_shape_max_pool2d_10,init7_s1_0)##_shape_max_pool2d_10/##init7_s1_0/Opset.make_node.1/Shape##init7_s1_-1/Opset.make_node.1/Shape
init: name='GemmTransposePattern--_onx_transpose_p_fc1_weight0' type=float32 shape=(512, 16)-- GraphBuilder.constant_folding.from/fold(_onx_transpose_p_fc1_weight0)##_onx_transpose_p_fc1_weight0/GraphBuilder.constant_folding.from/fold(p_fc1_weight)##p_fc1_weight/DynamoInterpret.placeholder.1/P(fc1.weight)
init: name='GemmTransposePattern--_onx_transpose_p_fc2_weight0' type=float32 shape=(128, 512)-- GraphBuilder.constant_folding.from/fold(_onx_transpose_p_fc2_weight0)##_onx_transpose_p_fc2_weight0/GraphBuilder.constant_folding.from/fold(p_fc2_weight)##p_fc2_weight/DynamoInterpret.placeholder.1/P(fc2.weight)
init: name='GemmTransposePattern--_onx_transpose_p_fc3_weight0' type=float32 shape=(10, 128)-- GraphBuilder.constant_folding.from/fold(_onx_transpose_p_fc3_weight0)##_onx_transpose_p_fc3_weight0/GraphBuilder.constant_folding.from/fold(p_fc3_weight)##p_fc3_weight/DynamoInterpret.placeholder.1/P(fc3.weight)
init: name='conv1.weight' type=float32 shape=(16, 1, 5, 5)            -- DynamoInterpret.placeholder.1/P(conv1.weight)
init: name='conv1.bias' type=float32 shape=(16,)                      -- DynamoInterpret.placeholder.1/P(conv1.bias)
init: name='conv2.weight' type=float32 shape=(16, 16, 5, 5)           -- DynamoInterpret.placeholder.1/P(conv2.weight)
init: name='conv2.bias' type=float32 shape=(16,)                      -- DynamoInterpret.placeholder.1/P(conv2.bias)
init: name='fc1.bias' type=float32 shape=(512,)                       -- DynamoInterpret.placeholder.1/P(fc1.bias)
init: name='fc2.bias' type=float32 shape=(128,)                       -- DynamoInterpret.placeholder.1/P(fc2.bias)
init: name='fc3.bias' type=float32 shape=(10,)                        -- DynamoInterpret.placeholder.1/P(fc3.bias)
Conv(input, conv1.weight, conv1.bias, dilations=[1,1], group=1, pads=[0,0,0,0], strides=[1,1]) -> conv2d
  Relu(conv2d) -> relu
    MaxPool(relu, ceil_mode=0, dilations=[1,1], kernel_shape=[2,2], pads=[0,0,0,0], strides=[2,2]) -> max_pool2d
      Conv(max_pool2d, conv2.weight, conv2.bias, dilations=[1,1], group=1, pads=[0,0,0,0], strides=[1,1]) -> conv2d_1
        Relu(conv2d_1) -> relu_1
          MaxPool(relu_1, ceil_mode=0, dilations=[1,1], kernel_shape=[2,2], pads=[0,0,0,0], strides=[2,2]) -> max_pool2d_1
            Reshape(max_pool2d_1, _onx_concat_gatherelements__shape_max_pool2d_1000) -> flatten
              Gemm(flatten, GemmTransposePattern--_onx_transpose_p_fc1_weight0, fc1.bias, transB=1) -> linear
                Relu(linear) -> relu_2
                  Gemm(relu_2, GemmTransposePattern--_onx_transpose_p_fc2_weight0, fc2.bias, transB=1) -> linear_1
                    Relu(linear_1) -> relu_3
                      Gemm(relu_3, GemmTransposePattern--_onx_transpose_p_fc3_weight0, fc3.bias, transB=1) -> output_0
output: name='output_0' type=dtype('float32') shape=[1, 10]

dynopt

model = "ort-plot_torch_export_dynopt-cuda-aot1.onnx"
if os.path.exists(model):
    print(pretty_onnx(onnx.load(model)))
opset: domain='pkg.onnxscript.torch_lib.common' version=1
opset: domain='' version=18
opset: domain='ai.onnx.ml' version=5
opset: domain='onnx_extended.ortops.optim.cuda' version=1000
opset: domain='ai.onnx.training' version=1
opset: domain='ai.onnx.preview.training' version=1
opset: domain='com.microsoft' version=1
opset: domain='com.microsoft.experimental' version=1
opset: domain='com.microsoft.nchwc' version=1
opset: domain='org.pytorch.aten' version=1
input: name='x' type=dtype('float32') shape=[1, 1, 16, 16]
init: name='conv1.weight' type=float32 shape=(16, 1, 5, 5)
init: name='conv1.bias' type=float32 shape=(16,)
init: name='conv2.weight' type=float32 shape=(16, 16, 5, 5)
init: name='conv2.bias' type=float32 shape=(16,)
init: name='fc1.weight' type=float32 shape=(512, 16)
init: name='fc1.bias' type=float32 shape=(512,)
init: name='fc2.weight' type=float32 shape=(128, 512)
init: name='fc2.bias' type=float32 shape=(128,)
init: name='fc3.weight' type=float32 shape=(10, 128)
init: name='fc3.bias' type=float32 shape=(10,)
init: name='val_3' type=int64 shape=(2,) -- array([ 1, 16])
Conv(x, conv1.weight, conv1.bias, group=1, pads=[0,0,0,0], auto_pad=b'NOTSET', strides=[1,1], dilations=[1,1]) -> conv2d
  Relu(conv2d) -> relu
    MaxPool(relu, storage_order=0, dilations=[1,1], ceil_mode=0, pads=[0,0,0,0], auto_pad=b'NOTSET', strides=[2,2], kernel_shape=[2,2]) -> max_pool2d
      Conv(max_pool2d, conv2.weight, conv2.bias, group=1, pads=[0,0,0,0], auto_pad=b'NOTSET', strides=[1,1], dilations=[1,1]) -> conv2d_1
        Relu(conv2d_1) -> relu_1
          MaxPool(relu_1, storage_order=0, dilations=[1,1], ceil_mode=0, pads=[0,0,0,0], auto_pad=b'NOTSET', strides=[2,2], kernel_shape=[2,2]) -> max_pool2d_1
            Reshape(max_pool2d_1, val_3, allowzero=0) -> view
              Gemm(view, fc1.weight, fc1.bias, beta=1.00, transB=1, alpha=1.00, transA=0) -> linear
                Relu(linear) -> relu_2
                  Gemm(relu_2, fc2.weight, fc2.bias, beta=1.00, transB=1, alpha=1.00, transA=0) -> linear_1
                    Relu(linear_1) -> relu_3
                      Gemm(relu_3, fc3.weight, fc3.bias, beta=1.00, transB=1, alpha=1.00, transA=0) -> linear_2
output: name='linear_2' type=dtype('float32') shape=[1, 10]

dynamo

model = "ort-plot_torch_export_dynamo-cuda-aot1.onnx"
if os.path.exists(model):
    print(pretty_onnx(onnx.load(model)))
opset: domain='pkg.onnxscript.torch_lib.common' version=1
opset: domain='' version=18
opset: domain='ai.onnx.ml' version=5
opset: domain='onnx_extended.ortops.optim.cuda' version=1000
opset: domain='ai.onnx.training' version=1
opset: domain='ai.onnx.preview.training' version=1
opset: domain='com.microsoft' version=1
opset: domain='com.microsoft.experimental' version=1
opset: domain='com.microsoft.nchwc' version=1
opset: domain='org.pytorch.aten' version=1
input: name='x' type=dtype('float32') shape=[1, 1, 16, 16]
init: name='conv1.weight' type=float32 shape=(16, 1, 5, 5)
init: name='conv1.bias' type=float32 shape=(16,)
init: name='conv2.weight' type=float32 shape=(16, 16, 5, 5)
init: name='conv2.bias' type=float32 shape=(16,)
init: name='fc1.weight' type=float32 shape=(512, 16)
init: name='fc1.bias' type=float32 shape=(512,)
init: name='fc2.weight' type=float32 shape=(128, 512)
init: name='fc2.bias' type=float32 shape=(128,)
init: name='fc3.weight' type=float32 shape=(10, 128)
init: name='fc3.bias' type=float32 shape=(10,)
init: name='val_3' type=int64 shape=(2,) -- array([ 1, 16])
Conv(x, conv1.weight, conv1.bias, group=1, pads=[0,0,0,0], auto_pad=b'NOTSET', strides=[1,1], dilations=[1,1]) -> conv2d
  Relu(conv2d) -> relu
    MaxPool(relu, storage_order=0, dilations=[1,1], ceil_mode=0, pads=[0,0,0,0], auto_pad=b'NOTSET', strides=[2,2], kernel_shape=[2,2]) -> max_pool2d
      Conv(max_pool2d, conv2.weight, conv2.bias, group=1, pads=[0,0,0,0], auto_pad=b'NOTSET', strides=[1,1], dilations=[1,1]) -> conv2d_1
        Relu(conv2d_1) -> relu_1
          MaxPool(relu_1, storage_order=0, dilations=[1,1], ceil_mode=0, pads=[0,0,0,0], auto_pad=b'NOTSET', strides=[2,2], kernel_shape=[2,2]) -> max_pool2d_1
            Reshape(max_pool2d_1, val_3, allowzero=0) -> view
              Gemm(view, fc1.weight, fc1.bias, beta=1.00, transB=1, alpha=1.00, transA=0) -> linear
                Relu(linear) -> relu_2
                  Gemm(relu_2, fc2.weight, fc2.bias, beta=1.00, transB=1, alpha=1.00, transA=0) -> linear_1
                    Relu(linear_1) -> relu_3
                      Gemm(relu_3, fc3.weight, fc3.bias, beta=1.00, transB=1, alpha=1.00, transA=0) -> linear_2
output: name='linear_2' type=dtype('float32') shape=[1, 10]

Total running time of the script: (1 minutes 21.352 seconds)

Related examples

201: Evaluate DORT Training

201: Evaluate DORT Training

201: Evaluate DORT

201: Evaluate DORT

301: Compares LLAMA exporters

301: Compares LLAMA exporters

101: Profile an existing model with onnxruntime

101: Profile an existing model with onnxruntime

102: Fuse kernels in a small Llama Model

102: Fuse kernels in a small Llama Model

Gallery generated by Sphinx-Gallery