experimental_experiment.torch_models.training_helper¶
- experimental_experiment.torch_models.training_helper.make_aot_ort(dynamic: bool = False, rewrite: bool = True, rewrite_more: bool = False, aten_conversion_changes: List[Tuple[Callable, str]] | None = None, verbose: int = 0, enable_pattern: str | List[str | type] | None = 'default', disable_pattern: str | List[str | type] | None = None, processor: str = 'CPU', ort_optimization_level: str | None = None, order_algorithm: str | None = None, dump_patterns: str | None = None, dump_prefix: str | None = None) tuple [source]¶
Creates a backend to train model with DORT.
- Parameters:
dynamic – enable dynamic shapes
rewrite – rewrite the model after its conversion to onnx, it must be True, as it is no longer possible to disable that option
rewrite_more – runs more optimization
aten_conversion_changes – calls aten ops
verbose – verbosity
enable_pattern – optimization patterns to enable
disable_pattern – optimization patterns to disable
processor – optimization should be made for this processor or this list of processors (comma separated value)
ort_optimization_level – onnxruntime optimization level
order_algorithm – algorithm optimizing the order the onnx node, none by default
dump_patterns – dump the applied patterns
dump_prefix – prefix before saving the models
- Returns:
twice the same backend