.mini_onnx_builder

class experimental_experiment.mini_onnx_builder.MiniOnnxBuilder(target_opset: int = 18, ir_version: int = 10, sep: str = '___')[source]

Simplified builder to build very simple model.

Parameters:
  • target_opset – opset to specify

  • ir_verison – IR version to use

  • sep – separator to build output names

append_output_dict(name: str, tensors: Dict[str, ndarray | torch.Tensor])[source]

Adds two outputs, a string tensors for the keys and a sequence of tensors for the values.

The output name is name___keys and name___values.

append_output_initializer(name: str, tensor: ndarray | torch.Tensor, randomize: bool = False)[source]

Adds an initializer as an output. The initializer name is prefixed by t_. The output name is name. If randomize is True, the tensor is not stored but replaced by a random generator.

append_output_sequence(name: str, tensors: List[ndarray | torch.Tensor])[source]

Adds a sequence of initializers as an output. The initializers names are prefixed by seq_. The output name is name.

to_onnx() ModelProto[source]

Conversion to onnx. :return: the proto

experimental_experiment.mini_onnx_builder.create_input_tensors_from_onnx_model(proto: str | ModelProto, device: str = 'cpu', engine: str = 'ExtendedReferenceEvaluator', sep: str = '___') Tuple[Any, ...] | Dict[str, Any][source]

Deserializes tensors stored with function create_onnx_model_from_input_tensors(). It relies on ExtendedReferenceEvaluator to restore the tensors.

Parameters:
  • proto – ModelProto or the file itself

  • device – moves the tensor to this device

  • engine – runtime to use, onnx, the default value, onnxruntime

  • sep – separator

Returns:

ModelProto

experimental_experiment.mini_onnx_builder.create_onnx_model_from_input_tensors(inputs: Any, switch_low_high: bool | None = None, randomize: bool = False, sep: str = '___') ModelProto[source]

Creates a model proto including all the value as initializers. They can be restored by executing the model. We assume these inputs are not bigger than 2Gb, the limit of protobuf.

Parameters:
  • inputs – anything

  • switch_low_high – if None, it is equal to switch_low_high=sys.byteorder != "big"

  • randomize – if True, float tensors are not stored but randomized to save space

  • sep – separator

Returns:

ModelProto

The function raises an error if not supported.

experimental_experiment.mini_onnx_builder.dtype_to_tensor_dtype(dt: dtype) int[source]

Converts a torch dtype or numpy dtype into a onnx element type.

Parameters:

to – dtype

Returns:

onnx type

experimental_experiment.mini_onnx_builder.flatten_iterator(obj: Any, sep: str) Iterator[source]

Iterates on all object.

experimental_experiment.mini_onnx_builder.proto_from_array(arr: torch.Tensor, name: str | None = None, verbose: int = 0) TensorProto[source]

Converts a torch Tensor into a TensorProto.

Parameters:
  • arr – tensor

  • verbose – display the type and shape

Returns:

a TensorProto

experimental_experiment.mini_onnx_builder.torch_dtype_to_onnx_dtype(to: torch.dtype) int[source]

Converts a torch dtype into a onnx element type.

Parameters:

to – torch dtype

Returns:

onnx type

experimental_experiment.mini_onnx_builder.unflatten(sep: str, names: List[str], outputs: List[Any], pos: int = 0, level: int = 0, device: str = 'cpu')[source]

Unflattens a list of outputs flattended with flatten_iterator().