.xoptim.patterns_ml

experimental_experiment.xoptim.patterns_ml.get_ml_patterns(verbose: int = 0) List[PatternOptimization][source]

Returns a default list of optimization patterns for ai.onnx.ml. It is equal to the following list.

<<<

from experimental_experiment.xoptim.patterns_api import pattern_table_doc
from experimental_experiment.xoptim.patterns_ml import (
    get_ml_patterns,
)

print(pattern_table_doc(get_ml_patterns(), as_rst=True))

>>>

name

short_name

priority

doc

0

TreeEnsembleRegressorConcatPattern

TreeEnsembleRegressorConcat

1

Replaces multiple TreeEnsembleRegressor + Concat(., axis=1) with one TreeEnsembleRegressor. All trees must have only one target (it can be extended to multiple) and is assigned a distinct dimension. The aggregation must be SUM.

1

TreeEnsembleRegressorMulPattern

TreeEnsembleRegressorMul

1

Replaces TreeEnsembleRegressor + Mul(., scalar) with TreeEnsembleRegressor.