.xoptim.patterns_ml¶
- experimental_experiment.xoptim.patterns_ml.get_ml_patterns(verbose: int = 0) List[PatternOptimization] [source]¶
Returns a default list of optimization patterns for ai.onnx.ml. It is equal to the following list.
<<<
from experimental_experiment.xoptim.patterns_api import pattern_table_doc from experimental_experiment.xoptim.patterns_ml import ( get_ml_patterns, ) print(pattern_table_doc(get_ml_patterns(), as_rst=True))
>>>
name
short_name
priority
doc
0
TreeEnsembleRegressorConcatPattern
TreeEnsembleRegressorConcat
1
Replaces multiple TreeEnsembleRegressor + Concat(., axis=1) with one TreeEnsembleRegressor. All trees must have only one target (it can be extended to multiple) and is assigned a distinct dimension. The aggregation must be SUM.
1
TreeEnsembleRegressorMulPattern
TreeEnsembleRegressorMul
1
Replaces TreeEnsembleRegressor + Mul(., scalar) with TreeEnsembleRegressor.