experimental_experiment.torch_interpreter¶
- experimental_experiment.torch_interpreter._aten_functions
- experimental_experiment.torch_interpreter._aten_functions_attention
- experimental_experiment.torch_interpreter._aten_methods
- experimental_experiment.torch_interpreter._doc_
- experimental_experiment.torch_interpreter._exceptions
- experimental_experiment.torch_interpreter._prims_functions
- experimental_experiment.torch_interpreter._torch_helper
- experimental_experiment.torch_interpreter.aten_functions
- experimental_experiment.torch_interpreter.aten_methods
- experimental_experiment.torch_interpreter.dispatcher
- experimental_experiment.torch_interpreter.eval
- experimental_experiment.torch_interpreter.export_options
- experimental_experiment.torch_interpreter.interpreter
- experimental_experiment.torch_interpreter.onnx_export
- experimental_experiment.torch_interpreter.onnx_export_errors
- experimental_experiment.torch_interpreter.onnx_export_serialization
- experimental_experiment.torch_interpreter.oxs_dispatcher
- experimental_experiment.torch_interpreter.oxs_opset
- experimental_experiment.torch_interpreter.patches
- experimental_experiment.torch_interpreter.tracing
to_onnx¶
- experimental_experiment.torch_interpreter.to_onnx(mod: torch.nn.Module | torch.fx.GraphModule, args: Sequence[torch.Tensor] | None = None, kwargs: Dict[str, torch.Tensor] | None = None, input_names: Sequence[str] | None = None, target_opset: int | Dict[str, int] | None = None, as_function: bool = False, options: OptimizationOptions | None = None, verbose: int = 0, return_builder: bool = False, raise_list: Set[str] | None = None, dynamic_shapes: Dict[str, Any] | Tuple[Any] | None = None, optimize: bool = True, dispatcher: Dispatcher | None = None, large_model: bool = False, external_threshold: int = 1024, export_options: str | ExportOptions | None = None, return_optimize_report: bool = False, filename: str | None = None, inline: bool = False, export_modules_as_functions: bool | Set[type[torch.nn.Module]] = False, function_options: FunctionOptions | None = None) ModelProto | ModelContainer | Tuple[ModelProto | ModelContainer, GraphBuilder] [source]¶
Exports a torch model into ONNX using dynamo export.
- Parameters:
mod – torch module
args – input arguments
kwargs – keyword attributes
input_names – input names
target_opset – targeted opset or targeted opsets as a dictionary
as_function – export as a ModelProto or a FunctionProto
options – optimization options
verbose – verbosity level
return_builder – returns the builder as well
raise_list – the builder stops any time a name falls into that list, this is a debbuging tool
dynamic_shapes – see torch.export.export
optimize – optimize the model before exporting into onnx
dispatcher – see
experimental_experiment.torch_interpreter.Dispatcher
large_model – if True returns a
onnx.model_container.ModelContainer
, it lets the user to decide later if the weights should be part of the model or saved as external weightsexternal_threshold – if large_model is True, every tensor above this limit is stored as external
return_optimize_report – returns statistics on the optimization as well
filename – if specified, stores the model into that file
inline – inline the model before converting to onnx, this is done before any optimization takes place
export_options – to apply differents options before to get the exported program
export_modules_as_functions – export submodules as local functions, this parameter can be filled with a set of class to preserve, all this other will be exported as usual
function_options – to specify what to do with the initializers in local functions, add them as constants or inputs
- Returns:
onnx model
If environment variable
PRINT_GRAPH_MODULE
is set to one, information about the graph module is printed out.Environment variable
ONNXVERBOSE=1
can be used to increase verbosity in this function. Environment variableONNX_BUILDER_PROGRESS=1
can be used to show a progress bar on big models.
Dispatcher¶
- class experimental_experiment.torch_interpreter.Dispatcher(registered_functions: Dict[str, Callable], verbose: int = 0)[source]¶
Used to changes the way class
DynamoInterpreter
selects the function translating aten function or module.- Parameters:
registered_functions – registered functions
verbose – verbose
- fallback(name: Any, fct: Callable | None, args: List[Any], kwargs: Dict[str, Any], builder: GraphBuilder) Callable | None [source]¶
The function is called after the function converting an aten function into ONNX. fct is this function. It can be changed and just set when mapping was found.
- Parameters:
name – object or str
fct – function found so far
args – known arguments coming from the graph module
kwargs – known named arguments coming from the graph module
builder – GraphBuilder
- Returns:
callable
ExportOptions¶
- class experimental_experiment.torch_interpreter.ExportOptions(strict: bool = True, fallback: bool = False, tracing: bool = False, jit: bool = False, decomposition_table: str | Dict[TorchOpOverload, Callable[[...], Any]] | None = None, strategy: str | None = None, dynamo: bool = False, aten_as_function: bool = False, remove_inplace: bool = True)[source]¶
Gathers altogether all the options defining the way to export a model into a graph (not onnx).
- Parameters:
strict – strict export or not
fallback – fallback to jit
decomposition_table – decomposition_table, a string as well such as default to use the default decomposition table returned by
get_decomposition_table
, it can'all'
,'default'
or a decomposition listdynamo – to use
torch._dynamo.export
instead oftorch.export.export()
tracing – use symbolic tracing
jit – use jit to get a graph then converts it into a fx graph
strategy – to overwrite all the previous parameters with just a value
remove_inplace – remove inplace nodes
aten_as_function – keeps aten function as local function to keep a faithful translation of the fx graph.
The fallback strategy tries the following in order:
<<<
import pprint from experimental_experiment.torch_interpreter import ExportOptions print("-- default fallback") pprint.pprint(ExportOptions().get_fallback_options()) print("-- default fallback with decomposition") pprint.pprint(ExportOptions(decomposition_table="default").get_fallback_options())
>>>
-- default fallback [ExportOptions(), ExportOptions(strict=False), ExportOptions(decomposition_table='default'), ExportOptions(strict=False, decomposition_table='default'), ExportOptions(dynamo=True), ExportOptions(decomposition_table='default', dynamo=True), ExportOptions(jit=True)] -- default fallback with decomposition [ExportOptions(decomposition_table='default'), ExportOptions(strict=False, decomposition_table='default'), ExportOptions(), ExportOptions(strict=False), ExportOptions(decomposition_table='default', dynamo=True), ExportOptions(dynamo=True), ExportOptions(jit=True, decomposition_table='default')]
Most of the models works with strict=True or False and no decompositions. But if it contains control flows (test or loop), inplace modifications, it may be useful to try different values for strict and to apply decompositions
decomposition_table='default'
. The decompositions removes unused results coming from inplace modifications.A graph is considered as invalid if decompositions were not run and there is one node with no user. This usually indicates one inplace operation is still part of the graph.
- export(mod: Any, args: Tuple[Any, ...] | None, kwargs: Dict[str, Any] | None, tracing_mode: bool, dynamic_shapes: Dict, same_signature: bool, input_names: List[str] | None = None, exc: bool = True, verbose: int = 0) torch.export.ExportedProgram | torch.fx.GraphModule [source]¶
Exports the model into an exported program.
match_input_parameters¶
- experimental_experiment.torch_interpreter.match_input_parameters(model: Any, names: List[str], args: Tuple[Any, ...] | None = None) Dict[str, Any] [source]¶
Maps the given names with the parameter names in the model.
- Parameters:
model – model
names – names to retrieve
args – available inputs
- Returns:
dictionary with values
Example:
<<<
import torch from torch._subclasses.fake_tensor import FakeTensorMode from experimental_experiment.reference import ExtendedReferenceEvaluator from experimental_experiment.torch_interpreter import to_onnx, match_input_parameters class Neuron(torch.nn.Module): def __init__(self, n_dims: int, n_targets: int): super(Neuron, self).__init__() self.linear = torch.nn.Linear(n_dims, n_targets) def forward(self, x): return torch.relu(self.linear(x)) fake_mode = FakeTensorMode() converter = fake_mode.fake_tensor_converter fake_x = converter.from_real_tensor(fake_mode, torch.rand(2, 5)) with fake_mode: model = Neuron(5, 3) onx = to_onnx(model, (fake_x,)) # expected values with a different model not_fake_model = Neuron(5, 3) x = torch.rand(2, 5) expected = not_fake_model(x) print(expected) # converts the model, fill inputs with the weights names = [i.name for i in onx.graph.input] pfeeds = match_input_parameters(not_fake_model, names, (x,)) nfeeds = {k: v.detach().numpy() for k, v in pfeeds.items()} ref = ExtendedReferenceEvaluator(onx) got = ref.run(None, nfeeds) print(got)
>>>
tensor([[0.5364, 0.1163, 0.0000], [0.2415, 0.0000, 0.1370]], grad_fn=<ReluBackward0>) [array([[0.536, 0.116, 0. ], [0.241, 0. , 0.137]], dtype=float32)]