experimental_experiment.torch_interpreter.onnx_export¶
- class experimental_experiment.torch_interpreter.onnx_export.ParameterNaming(mod: torch.nn.Module)[source]¶
A class which maps parameters name in the original module and the different they have in the fx.graph.
- class experimental_experiment.torch_interpreter.onnx_export.SubModuleNaming(mod: torch.nn.Module)[source]¶
A class which maps class submodule name and local functions in order to give short but unique names.
- experimental_experiment.torch_interpreter.onnx_export.is_wrapped(model: Any, dynamic_shapes: Any | None = None) bool [source]¶
Tells if a model is wrapped.
- experimental_experiment.torch_interpreter.onnx_export.match_input_parameters(model: Any, names: List[str], args: Tuple[Any, ...] | None = None) Dict[str, Any] [source]¶
Maps the given names with the parameter names in the model.
- Parameters:
model – model
names – names to retrieve
args – available inputs
- Returns:
dictionary with values
Example:
<<<
import torch from torch._subclasses.fake_tensor import FakeTensorMode from experimental_experiment.reference import ExtendedReferenceEvaluator from experimental_experiment.torch_interpreter import to_onnx, match_input_parameters class Neuron(torch.nn.Module): def __init__(self, n_dims: int, n_targets: int): super(Neuron, self).__init__() self.linear = torch.nn.Linear(n_dims, n_targets) def forward(self, x): return torch.relu(self.linear(x)) fake_mode = FakeTensorMode() converter = fake_mode.fake_tensor_converter fake_x = converter.from_real_tensor(fake_mode, torch.rand(2, 5)) with fake_mode: model = Neuron(5, 3) onx = to_onnx(model, (fake_x,)) # expected values with a different model not_fake_model = Neuron(5, 3) x = torch.rand(2, 5) expected = not_fake_model(x) print(expected) # converts the model, fill inputs with the weights names = [i.name for i in onx.graph.input] pfeeds = match_input_parameters(not_fake_model, names, (x,)) nfeeds = {k: v.detach().numpy() for k, v in pfeeds.items()} ref = ExtendedReferenceEvaluator(onx) got = ref.run(None, nfeeds) print(got)
>>>
tensor([[0.1191, 0.2163, 0.0000], [0.0000, 0.1134, 0.0000]], grad_fn=<ReluBackward0>) [array([[0.119, 0.216, 0. ], [0. , 0.113, 0. ]], dtype=float32)]