201: Evaluate DORT

It compares DORT to eager mode and onnxrt backend.

To run the script:

python _doc/examples/plot_torch_dort --help

Some helpers

import warnings

try:
    with warnings.catch_warnings():
        warnings.simplefilter("ignore")
        import onnxruntime

        has_cuda = "CUDAExecutionProvider" in onnxruntime.get_available_providers()
except ImportError:
    print("onnxruntime not available.")
    import sys

    sys.exit(0)

import torch._dynamo
import contextlib
import itertools
import os
import gc
import platform

# import pickle
import pprint
import multiprocessing
import time
import cProfile
import pstats
import io
import logging
from pstats import SortKey

import numpy as np
import matplotlib.pyplot as plt
import pandas
import onnx
from onnx_array_api.profiling import profile2graph
import torch
from torch import nn
import torch.nn.functional as F
import experimental_experiment
from experimental_experiment.plotting.memory import memory_peak_plot
from experimental_experiment.ext_test_case import measure_time, get_figure
from experimental_experiment.args import get_parsed_args
from experimental_experiment.memory_peak import start_spying_on
from experimental_experiment.torch_models.training_helper import make_aot_ort
from tqdm import tqdm

has_cuda = has_cuda and torch.cuda.is_available()
logging.disable(logging.ERROR)


def system_info():
    obs = {}
    obs["processor"] = platform.processor()
    obs["cores"] = multiprocessing.cpu_count()
    try:
        obs["cuda"] = 1 if torch.cuda.is_available() else 0
        obs["cuda_count"] = torch.cuda.device_count()
        obs["cuda_name"] = torch.cuda.get_device_name()
        obs["cuda_capa"] = torch.cuda.get_device_capability()
    except (RuntimeError, AssertionError):
        # no cuda
        pass
    return obs


pprint.pprint(system_info())
{'cores': 20,
 'cuda': 1,
 'cuda_capa': (8, 9),
 'cuda_count': 1,
 'cuda_name': 'NVIDIA GeForce RTX 4060 Laptop GPU',
 'processor': 'x86_64'}

Scripts arguments

script_args = get_parsed_args(
    "plot_torch_dort",
    description=__doc__,
    scenarios={
        "small": "small model to test",
        "middle": "55Mb model",
        "large": "1Gb model",
    },
    warmup=5,
    repeat=5,
    repeat1=(1, "repeat for the first iteration"),
    maxtime=(
        2,
        "maximum time to run a model to measure the computation time, "
        "it is 0.1 when scenario is small",
    ),
    expose="scenarios,repeat,repeat1,warmup",
)

if script_args.scenario in (None, "small"):
    script_args.maxtime = 0.1
print(f"scenario={script_args.scenario or 'small'}")
print(f"warmup={script_args.warmup}")
print(f"repeat={script_args.repeat}")
print(f"repeat1={script_args.repeat1}")
print(f"maxtime={script_args.maxtime}")
scenario=small
warmup=5
repeat=5
repeat1=1
maxtime=0.1

The model

A simple model to convert.

class MyModelClass(nn.Module):
    def __init__(self, scenario=script_args.scenario):
        super().__init__()
        if scenario == "middle":
            self.large = False
            self.conv1 = nn.Conv2d(1, 32, 5)
            # self.conv2 = nn.Conv2d(128, 16, 5)
            self.fc1 = nn.Linear(30752, 1024)
            self.fcs = []
            self.fc2 = nn.Linear(1024, 128)
            self.fc3 = nn.Linear(128, 10)
        elif scenario in (None, "small"):
            self.large = False
            self.conv1 = nn.Conv2d(1, 16, 5)
            # self.conv2 = nn.Conv2d(16, 16, 5)
            self.fc1 = nn.Linear(144, 512)
            self.fcs = []
            self.fc2 = nn.Linear(512, 128)
            self.fc3 = nn.Linear(128, 10)
        elif scenario in (None, "large"):
            self.large = True
            self.conv1 = nn.Conv2d(1, 32, 5)
            # self.conv2 = nn.Conv2d(128, 16, 5)
            self.fc1 = nn.Linear(30752, 4096)
            # torch script does not support loops.
            self.fca = nn.Linear(4096, 4096)
            self.fcb = nn.Linear(4096, 4096)
            self.fcc = nn.Linear(4096, 4096)
            self.fcd = nn.Linear(4096, 4096)
            self.fce = nn.Linear(4096, 4096)
            self.fcf = nn.Linear(4096, 4096)
            self.fcg = nn.Linear(4096, 4096)
            self.fch = nn.Linear(4096, 4096)
            self.fci = nn.Linear(4096, 4096)
            # end of the unfolded loop.
            self.fc2 = nn.Linear(4096, 128)
            self.fc3 = nn.Linear(128, 10)
        else:
            raise ValueError(f"Unsupported scenario={scenario!r}.")

    def forward(self, x):
        x = F.max_pool2d(F.relu(self.conv1(x)), (4, 4))
        # x = F.max_pool2d(F.relu(self.conv2(x)), 2)
        x = torch.flatten(x, 1)
        x = F.relu(self.fc1(x))
        if self.large:
            # loop
            x = F.relu(self.fca(x))
            x = F.relu(self.fcb(x))
            x = F.relu(self.fcc(x))
            x = F.relu(self.fcd(x))
            x = F.relu(self.fce(x))
            x = F.relu(self.fcf(x))
            x = F.relu(self.fcg(x))
            x = F.relu(self.fch(x))
            x = F.relu(self.fci(x))
            # end of the loop
        x = F.relu(self.fc2(x))
        y = self.fc3(x)
        return y


def create_model_and_input(scenario=script_args.scenario):
    if scenario == "middle":
        shape = [1, 1, 128, 128]
    elif scenario in (None, "small"):
        shape = [1, 1, 16, 16]
    elif scenario == "large":
        shape = [1, 1, 128, 128]
    else:
        raise ValueError(f"Unsupported scenario={scenario!r}.")
    input_tensor = torch.rand(*shape).to(torch.float32)
    model = MyModelClass(scenario=scenario)
    assert model(input_tensor) is not None
    return model, input_tensor


def torch_model_size(model):
    size_model = 0
    for param in model.parameters():
        size = param.numel() * torch.finfo(param.data.dtype).bits / 8
        size_model += size
    return size_model


model, input_tensor = create_model_and_input()
model_size = torch_model_size(model)
print(f"model size={model_size / 2 ** 20} Mb")
model size=0.5401992797851562 Mb

Backends

def get_torch_eager(model, *args):
    def my_compiler(gm, example_inputs):
        return gm.forward

    with contextlib.redirect_stdout(io.StringIO()):
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            optimized_mod = torch.compile(model, fullgraph=True, backend=my_compiler)
            optimized_mod(*args)
            return optimized_mod


def get_torch_default(model, *args):
    with contextlib.redirect_stdout(io.StringIO()):
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            optimized_mod = torch.compile(model, fullgraph=True, mode="reduce-overhead")
            optimized_mod(*args)
            return optimized_mod


def get_torch_dort(model, *args):
    with contextlib.redirect_stdout(io.StringIO()):
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            local_aot_ort, _ = make_aot_ort(dynamic=True, rewrite=True)
            optimized_mod = torch.compile(model, backend=local_aot_ort, fullgraph=True)
            optimized_mod(*args)
            return optimized_mod


def get_torch_opti(model, *args):
    with contextlib.redirect_stdout(io.StringIO()):
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            local_aot_ort, _ = make_aot_ort(dynamic=True, rewrite=True)
            optimized_mod = torch.compile(model, backend=local_aot_ort, fullgraph=True)
            optimized_mod(*args)
            return optimized_mod

Let’s check they are working.

export_functions = [
    get_torch_eager,
    get_torch_default,
    get_torch_dort,
    # get_torch_opti,
]

exporters = {f.__name__.replace("get_", ""): f for f in export_functions}

supported_exporters = {}
for k, v in exporters.items():
    print(f"run function {k}")
    filename = f"plot_torch_dort_{k}.onnx"
    torch._dynamo.reset()
    model, input_tensor = create_model_and_input()
    try:
        v(model, input_tensor)
    except Exception as e:
        print(f"skipped due to {str(e)[:1000]}")
        continue
    supported_exporters[k] = v
    del model
    gc.collect()
    time.sleep(1)
run function torch_eager
run function torch_default
run function torch_dort

Compile and Memory

def flatten(ps):
    obs = ps["cpu"].to_dict(unit=2**20)
    if "gpus" in ps:
        for i, g in enumerate(ps["gpus"]):
            for k, v in g.to_dict(unit=2**20).items():
                obs[f"gpu{i}_{k}"] = v
    return obs


data = []

for k, v in supported_exporters.items():
    print(f"run compile for memory {k} on cpu")
    filename = f"plot_torch_dort_{k}.onnx"
    if has_cuda:
        torch.cuda.set_device(0)
    torch._dynamo.reset()
    # CPU
    model, input_tensor = create_model_and_input()
    stat = start_spying_on(cuda=1 if has_cuda else 0)
    v(model, input_tensor)
    obs = flatten(stat.stop())
    print("done.")
    obs.update(dict(export=k, p="cpu"))
    data.append(obs)
    del model
    gc.collect()
    time.sleep(1)

    if not has_cuda:
        continue
    if k in {"torch_default"}:
        print(f"skip compile for memory {k} on cuda")
        continue
    torch._dynamo.reset()
    # CUDA
    model, input_tensor = create_model_and_input()
    model = model.cuda()
    input_tensor = input_tensor.cuda()
    print(f"run compile for memory {k} on cuda")
    stat = start_spying_on(cuda=1 if has_cuda else 0)
    v(model, input_tensor)
    obs = flatten(stat.stop())
    print("done.")
    obs.update(dict(export=k, p="cuda"))
    data.append(obs)
    del model
    gc.collect()
    time.sleep(1)
run compile for memory torch_eager on cpu
done.
run compile for memory torch_eager on cuda
done.
run compile for memory torch_default on cpu
done.
skip compile for memory torch_default on cuda
run compile for memory torch_dort on cpu
done.
run compile for memory torch_dort on cuda
done.

The result.

df1 = pandas.DataFrame(data)
df1.to_csv("plot_torch_dort_1_memory.csv", index=False)
df1.to_excel("plot_torch_dort_1_memory.xlsx", index=False)
print(df1)

for p in ["cpu", "cuda"]:
    if not has_cuda and p == "cuda":
        continue
    ax = memory_peak_plot(
        df1[df1["p"] == p],
        key=("export",),
        bars=[model_size * i / 2**20 for i in range(1, 5)],
        suptitle=f"Memory Consumption of the Compilation on {p}\n"
        f"model size={model_size / 2**20:1.0f} Mb",
    )
    get_figure(ax).savefig(f"plot_torch_dort_1_memory_{p}.png")
  • Memory Consumption of the Compilation on cpu model size=1 Mb, Memory peak (Mb), Memory peak - memory begin (Mb), Memory average - memory begin (Mb), GPU Memory peak (Mb), GPU Memory peak - memory begin (Mb), GPU Memory average - memory begin (Mb)
  • Memory Consumption of the Compilation on cuda model size=1 Mb, Memory peak (Mb), Memory peak - memory begin (Mb), Memory average - memory begin (Mb), GPU Memory peak (Mb), GPU Memory peak - memory begin (Mb), GPU Memory average - memory begin (Mb)
          peak         mean    n        begin          end    gpu0_peak    gpu0_mean  gpu0_n   gpu0_begin     gpu0_end         export     p
0  3946.113281  3943.472957   13  3940.308594  3946.113281  1045.617188  1045.617188      13  1045.617188  1045.617188    torch_eager   cpu
1  6143.183594  5042.613445  358  3942.214844  6143.183594  1499.617188  1258.723333     358  1045.617188  1499.617188    torch_eager  cuda
2  6145.734375  6143.777054   27  6143.675781  6145.734375  1499.617188  1499.617188      27  1499.617188  1499.617188  torch_default   cpu
3  6144.332031  6143.607096   48  6143.757812  6140.191406  1499.617188  1499.617188      48  1499.617188  1499.617188     torch_dort   cpu
4  6148.609375  6142.613664   51  6142.269531  6148.609375  1517.617188  1500.166207      51  1499.617188  1517.617188     torch_dort  cuda

dort first iteration speed

data = []

for k, v in supported_exporters.items():
    print(f"run dort cpu {k}: {script_args.repeat1}")
    times = []
    for _ in range(int(script_args.repeat1)):
        model, input_tensor = create_model_and_input()
        torch._dynamo.reset()
        begin = time.perf_counter()
        v(model, input_tensor)
        duration = time.perf_counter() - begin
        times.append(duration)
        del model
        gc.collect()
        time.sleep(1)

    print(f"done: {times[-1]}")
    data.append(
        dict(
            export=k,
            time=np.mean(times),
            min=min(times),
            max=max(times),
            first=times[0],
            last=times[-1],
            std=np.std(times),
            p="cpu",
        )
    )

    if not has_cuda:
        continue
    if k in {"torch_dort", "torch_default"}:
        print(f"skip dort cuda {k}: {script_args.repeat1}")
        continue
    print(f"run dort cuda {k}: {script_args.repeat1}")
    times = []
    for _ in range(int(script_args.repeat1)):
        model, input_tensor = create_model_and_input()
        model = model.cuda()
        input_tensor = input_tensor.cuda()
        torch._dynamo.reset()
        begin = time.perf_counter()
        v(model, input_tensor)
        duration = time.perf_counter() - begin
        times.append(duration)
        del model
        gc.collect()
        time.sleep(1)

    print(f"done: {times[-1]}")
    data.append(
        dict(
            export=k,
            time=np.mean(times),
            min=min(times),
            max=max(times),
            first=times[0],
            last=times[-1],
            std=np.std(times),
            p="cuda",
        )
    )
run dort cpu torch_eager: 1
done: 0.047091833999729715
run dort cuda torch_eager: 1
done: 0.07029420699836919
run dort cpu torch_default: 1
done: 0.2517179459973704
skip dort cuda torch_default: 1
run dort cpu torch_dort: 1
done: 0.3630555009949603
skip dort cuda torch_dort: 1

The result.

df1 = pandas.DataFrame(data)
df1.to_csv("plot_torch_dort_1_time.csv", index=False)
df1.to_excel("plot_torch_dort_1_time.xlsx", index=False)
print(df1)

fig, ax = plt.subplots(1, 1)
dfi = df1[["export", "p", "time", "std"]].set_index(["export", "p"])
dfi["time"].plot.bar(ax=ax, title="Compilation time", yerr=dfi["std"], rot=30)
fig.tight_layout()
fig.savefig("plot_torch_dort_1_time.png")
Compilation time
          export      time       min       max     first      last  std     p
0    torch_eager  0.047092  0.047092  0.047092  0.047092  0.047092  0.0   cpu
1    torch_eager  0.070294  0.070294  0.070294  0.070294  0.070294  0.0  cuda
2  torch_default  0.251718  0.251718  0.251718  0.251718  0.251718  0.0   cpu
3     torch_dort  0.363056  0.363056  0.363056  0.363056  0.363056  0.0   cpu

Compilation Profiling

def clean_text(text):
    pathes = [
        os.path.abspath(os.path.normpath(os.path.join(os.path.dirname(torch.__file__), ".."))),
        os.path.abspath(os.path.normpath(os.path.join(os.path.dirname(onnx.__file__), ".."))),
        os.path.abspath(
            os.path.normpath(
                os.path.join(os.path.dirname(experimental_experiment.__file__), "..")
            )
        ),
    ]
    for p in pathes:
        text = text.replace(p, "")
    text = text.replace("experimental_experiment", "experimental_experiment".upper())
    return text


def profile_function(name, export_function, with_args=True, verbose=False, suffix="export"):
    if verbose:
        print(f"profile {name}: {export_function}")
    if with_args:
        model, input_tensor = create_model_and_input()
        pr = cProfile.Profile()
        pr.enable()
        for _ in range(int(script_args.repeat1)):
            export_function(model, input_tensor)
        pr.disable()
    else:
        pr = cProfile.Profile()
        pr.enable()
        for _ in range(int(script_args.repeat1)):
            export_function()
        pr.disable()
    s = io.StringIO()
    sortby = SortKey.CUMULATIVE
    ps = pstats.Stats(pr, stream=s).sort_stats(sortby)
    ps.print_stats()
    # with open(f"plot_torch_dort_profile_{name}_{suffix}.pickle", "wb") as f:
    #     pickle.dump(ps, f)

    raw = s.getvalue()
    text = "\n".join(raw.split("\n")[:200])
    if verbose:
        print(text)
    with open(f"plot_torch_dort_profile_{name}_{suffix}.txt", "w") as f:
        f.write(raw)

    root, nodes = profile2graph(ps, clean_text=clean_text)
    text = root.to_text()
    with open(f"plot_torch_dort_profile_{name}_{suffix}_h.txt", "w") as f:
        f.write(text)
    if verbose:
        print("done.")


model, input_tensor = create_model_and_input()


def function_to_profile(model=model, input_tensor=input_tensor):
    return get_torch_dort(model, input_tensor)


profile_function("dort", function_to_profile, verbose=True, suffix="1")
profile dort: <function function_to_profile at 0x7f622b732b60>
         1375777 function calls (1344911 primitive calls) in 0.830 seconds

   Ordered by: cumulative time

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
     16/5    0.000    0.000    0.517    0.103 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/lazy.py:166(realize_and_forward)
   103/35    0.000    0.000    0.486    0.014 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py:935(step)
        1    0.000    0.000    0.419    0.419 /home/xadupre/github/experimental-experiment/experimental_experiment/torch_models/training_helper.py:7(make_aot_ort)
        1    0.000    0.000    0.418    0.418 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/onnxruntime.py:763(__init__)
        1    0.000    0.000    0.363    0.363 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/_exporter_legacy.py:297(__init__)
        1    0.000    0.000    0.244    0.244 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/_exporter_legacy.py:90(__init__)
        1    0.001    0.001    0.244    0.244 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/_exporter_legacy.py:114(_initiate_registry_from_torchlib)
        1    0.004    0.004    0.239    0.239 /home/xadupre/github/onnxscript/onnxscript/_framework_apis/torch_2_5.py:99(get_torchlib_ops)
      184    0.001    0.000    0.234    0.001 /home/xadupre/github/onnxscript/onnxscript/values.py:640(function_ir)
        1    0.001    0.001    0.119    0.119 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/fx/decomposition_table.py:73(create_onnx_friendly_decomposition_table)
      128    0.018    0.000    0.102    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/functional_tensor.py:352(__torch_dispatch__)
        2    0.020    0.010    0.099    0.050 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/fx/decomposition_table.py:14(_create_onnx_supports_op_overload_table)
      184    0.001    0.000    0.091    0.000 /home/xadupre/github/onnxscript/onnxscript/_internal/ast_utils.py:16(get_src_and_ast)
      184    0.000    0.000    0.073    0.000 /home/xadupre/github/onnxscript/onnxscript/converter.py:1463(translate_function_signature)
      184    0.005    0.000    0.073    0.000 /home/xadupre/github/onnxscript/onnxscript/converter.py:1378(_translate_function_signature_common)
        1    0.000    0.000    0.070    0.070 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/export/decomp_utils.py:125(items)
        1    0.000    0.000    0.070    0.070 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/export/decomp_utils.py:142(_materialize_if_needed)
        1    0.000    0.000    0.070    0.070 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/export/decomp_utils.py:129(materialize)
        1    0.000    0.000    0.069    0.069 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_export/utils.py:1088(_collect_all_valid_cia_ops)
       23    0.001    0.000    0.069    0.003 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_export/utils.py:1071(_collect_all_valid_cia_ops_for_namespace)
      184    0.005    0.000    0.065    0.000 /usr/lib/python3.12/inspect.py:1606(getclosurevars)
      185    0.000    0.000    0.065    0.000 /usr/lib/python3.12/inspect.py:1279(getsource)
      185    0.005    0.000    0.064    0.000 /usr/lib/python3.12/inspect.py:1258(getsourcelines)
       23    0.024    0.001    0.063    0.003 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_export/utils.py:1006(_materialize_cpp_cia_ops)
     12/6    0.000    0.000    0.061    0.010 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py:653(wrapper)
  297/276    0.001    0.000    0.060    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:1329(__torch_dispatch__)
     12/6    0.000    0.000    0.060    0.010 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py:2341(CALL)
     12/6    0.000    0.000    0.060    0.010 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py:2300(_call)
     12/6    0.000    0.000    0.059    0.010 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py:878(call_function)
     8459    0.023    0.000    0.059    0.000 /usr/lib/python3.12/dis.py:434(_get_instructions_bytes)
        1    0.000    0.000    0.057    0.057 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_functorch/partitioners.py:1702(min_cut_rematerialization_partition)
156757/151855    0.024    0.000    0.055    0.000 {built-in method builtins.isinstance}
    69/54    0.002    0.000    0.053    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:762(proxy_call)
      184    0.014    0.000    0.051    0.000 /usr/lib/python3.12/inspect.py:1239(getblock)
  516/511    0.003    0.000    0.050    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:1788(dispatch)
    16630    0.006    0.000    0.047    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/_exporter_legacy.py:199(is_registered_op)
      150    0.001    0.000    0.046    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:1348(_cached_dispatch_impl)
       28    0.000    0.000    0.043    0.002 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py:1799(LOAD_ATTR)
7569/1816    0.009    0.000    0.043    0.000 /home/xadupre/github/onnxscript/onnxscript/type_annotation.py:131(is_value_type)
       35    0.000    0.000    0.042    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/interpreter.py:290(call_function)
    16645    0.009    0.000    0.041    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/_exporter_legacy.py:177(get_op_functions)
       28    0.000    0.000    0.041    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py:1792(_load_attr)
        4    0.000    0.000    0.041    0.010 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/nn_module.py:851(call_function)
      5/4    0.000    0.000    0.039    0.010 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/functions.py:293(call_function)
      5/4    0.000    0.000    0.039    0.010 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/functions.py:112(call_function)
      5/4    0.000    0.000    0.037    0.009 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py:900(inline_user_function_return)
      5/4    0.000    0.000    0.037    0.009 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py:3071(inline_call)
      5/4    0.000    0.000    0.037    0.009 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py:3108(inline_call_)
       14    0.000    0.000    0.035    0.002 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:2594(from_tensor)
  533/436    0.000    0.000    0.034    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_ops.py:721(__call__)
    27/14    0.000    0.000    0.032    0.002 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:331(from_real_tensor)
     1565    0.032    0.000    0.032    0.000 {built-in method builtins.compile}
    26790    0.017    0.000    0.032    0.000 /usr/lib/python3.12/tokenize.py:569(_generate_tokens_from_c_tokenizer)
       13    0.000    0.000    0.030    0.002 {built-in method torch._to_functional_tensor}
     1022    0.001    0.000    0.028    0.000 /home/xadupre/github/onnxscript/onnxscript/type_annotation.py:172(is_valid_type)
  420/380    0.001    0.000    0.027    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:1231(__torch_function__)
      314    0.001    0.000    0.026    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/utils/_pytree.py:1152(tree_map_only)
        8    0.000    0.000    0.026    0.003 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph.py:1569(python_code)
      486    0.002    0.000    0.026    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph.py:1111(create_node)
      141    0.000    0.000    0.026    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/lazy.py:61(realize)
       75    0.000    0.000    0.026    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/base.py:445(build)
      4/2    0.000    0.000    0.025    0.013 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/fx/fx_onnx_interpreter.py:393(run_node)
        2    0.000    0.000    0.025    0.013 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/fx/fx_onnx_interpreter.py:556(placeholder)
        2    0.000    0.000    0.025    0.013 /home/xadupre/github/onnxscript/onnxscript/function_libs/torch_lib/graph_building/_graph_building_torch.py:613(add_input)
    31/29    0.000    0.000    0.025    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/builtin.py:987(call_function)
       75    0.000    0.000    0.025    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/builder.py:369(__call__)
1308/1164    0.001    0.000    0.025    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/base.py:184(__instancecheck__)
       29    0.000    0.000    0.025    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/builtin.py:850(builtin_dispatch)
       28    0.000    0.000    0.025    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/builtin.py:770(call_self_handler)
       28    0.000    0.000    0.024    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/builtin.py:1632(call_getattr)
        4    0.001    0.000    0.024    0.006 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_functorch/partitioners.py:157(_extract_graph_with_inputs_outputs)
       40    0.001    0.000    0.024    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/builder.py:528(_wrap)
    90903    0.023    0.000    0.024    0.000 {built-in method builtins.getattr}
     20/2    0.000    0.000    0.024    0.012 /home/xadupre/github/onnxscript/onnxscript/function_libs/torch_lib/graph_building/_graph_building_torch.py:270(_wrap_torch_value_to_tensor)
        2    0.024    0.012    0.024    0.012 /home/xadupre/github/onnxscript/onnxscript/function_libs/torch_lib/graph_building/_graph_building_torch.py:199(dtype)
        2    0.024    0.012    0.024    0.012 /home/xadupre/github/onnxscript/onnxscript/function_libs/torch_lib/graph_building/_graph_building_torch.py:170(shape)
    51/35    0.000    0.000    0.023    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/nn_module.py:1015(var_getattr)
27292/27100    0.007    0.000    0.023    0.000 {built-in method builtins.next}
       36    0.000    0.000    0.023    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/lazy.py:20(realize)
    35/19    0.000    0.000    0.023    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/user_defined.py:1019(var_getattr)
        8    0.000    0.000    0.023    0.003 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph.py:1646(_python_code)
        8    0.002    0.000    0.022    0.003 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph.py:408(_gen_python_code)
      327    0.001    0.000    0.022    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph.py:1500(node_copy)
      184    0.000    0.000    0.021    0.000 /usr/lib/python3.12/ast.py:34(parse)
    36326    0.012    0.000    0.021    0.000 {method 'get' of 'dict' objects}
       31    0.000    0.000    0.020    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/meta_utils.py:1794(__call__)
     9949    0.010    0.000    0.020    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/fx/registration.py:55(from_qualified_name)
       31    0.000    0.000    0.020    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/meta_utils.py:836(meta_tensor)
        1    0.000    0.000    0.020    0.020 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_functorch/partitioners.py:289(_extract_fwd_bwd_modules)
      136    0.000    0.000    0.019    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:1722(_output_from_cache_entry)
        9    0.000    0.000    0.019    0.002 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/builder.py:1533(wrap_tensor)
       18    0.000    0.000    0.019    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/utils.py:2072(wrap_fake_exception)
      140    0.002    0.000    0.019    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:1656(_get_output_tensor_from_cache_entry)
      150    0.001    0.000    0.018    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:1391(_cache_key)
     7569    0.005    0.000    0.018    0.000 /home/xadupre/github/onnxscript/onnxscript/type_annotation.py:123(_is_tensor_type)
     12/9    0.000    0.000    0.018    0.002 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/nn/functional.py:1693(relu)
8979/4158    0.010    0.000    0.017    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/node.py:899(map_aggregate)
     4938    0.006    0.000    0.017    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/node.py:869(__setattr__)
        9    0.000    0.000    0.017    0.002 {built-in method torch.relu}
  565/153    0.002    0.000    0.017    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:1467(_prep_args_for_hash)
        3    0.000    0.000    0.016    0.005 /home/xadupre/github/onnxscript/onnxscript/rewriter/__init__.py:28(rewrite)
      794    0.000    0.000    0.016    0.000 /home/xadupre/github/onnxscript/onnxscript/type_annotation.py:168(is_attr_type)
       31    0.001    0.000    0.016    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/autograd/grad_mode.py:273(__exit__)
    16645    0.007    0.000    0.016    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/fx/registration.py:45(from_name_parts)
     1377    0.003    0.000    0.016    0.000 /home/xadupre/github/onnxscript/onnxscript/converter.py:451(_eval_constant_expr)
      102    0.001    0.000    0.016    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/proxy.py:209(create_proxy)
    26607    0.008    0.000    0.015    0.000 /usr/lib/python3.12/collections/__init__.py:447(_make)
        4    0.000    0.000    0.015    0.004 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph_module.py:908(print_readable)
        4    0.000    0.000    0.015    0.004 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph_module.py:297(_print_readable)
     12/9    0.000    0.000    0.015    0.002 {built-in method torch._C._nn.linear}
     2917    0.002    0.000    0.015    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/node.py:890(map_arg)
        4    0.000    0.000    0.014    0.003 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_functorch/aot_autograd.py:500(convert)
      539    0.001    0.000    0.014    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/utils/_pytree.py:874(tree_flatten)
        9    0.000    0.000    0.014    0.002 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/torch.py:876(call_function)
    64175    0.014    0.000    0.014    0.000 {method 'split' of 'str' objects}
        9    0.000    0.000    0.013    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/builder.py:2833(wrap_to_fake_tensor_and_record)
  2434/12    0.001    0.000    0.013    0.001 /home/xadupre/github/onnxscript/onnxscript/ir/serde.py:94(wrapper)
    17035    0.011    0.000    0.013    0.000 /usr/lib/python3.12/dis.py:623(_unpack_opargs)
      301    0.003    0.000    0.013    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph.py:634(emit_node)
        4    0.000    0.000    0.013    0.003 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph_module.py:792(recompile)
 1860/539    0.003    0.000    0.013    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/utils/_pytree.py:882(helper)
        9    0.000    0.000    0.013    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/builder.py:2870(<lambda>)
        7    0.000    0.000    0.013    0.002 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph_module.py:437(__init__)
       61    0.000    0.000    0.012    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:594(track_tensor_tree)
    87/71    0.000    0.000    0.012    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/nn/modules/module.py:1932(__setattr__)
     8045    0.004    0.000    0.012    0.000 /home/xadupre/github/onnxscript/onnxscript/type_annotation.py:70(_remove_annotation)
        4    0.000    0.000    0.012    0.003 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/overrides.py:1669(handle_torch_function)
      495    0.002    0.000    0.012    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/node.py:380(prepend)
        9    0.000    0.000    0.012    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph_module.py:548(graph)
    76/61    0.000    0.000    0.012    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:616(wrap_with_proxy)
1643/1548    0.001    0.000    0.012    0.000 /usr/lib/python3.12/contextlib.py:132(__enter__)
        1    0.000    0.000    0.011    0.011 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/onnxruntime.py:1099(compile)
      191    0.004    0.000    0.011    0.000 /usr/lib/python3.12/dis.py:647(findlabels)
        1    0.000    0.000    0.011    0.011 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/passes/infra/partitioner.py:384(partition_and_fuse)
      104    0.001    0.000    0.011    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/proxy.py:143(create_node)
        1    0.000    0.000    0.011    0.011 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_functorch/partitioners.py:1465(choose_saved_values_set)
        1    0.001    0.001    0.011    0.011 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_functorch/partitioners.py:814(solve_min_cut)
        1    0.000    0.000    0.010    0.010 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_functorch/partitioners.py:545(reordering_to_mimic_autograd_engine)
        1    0.000    0.000    0.010    0.010 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/passes/infra/partitioner.py:297(fuse_partitions)
        1    0.000    0.000    0.010    0.010 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/passes/utils/fuser_utils.py:250(fuse_by_partitions)
     62/2    0.001    0.000    0.010    0.005 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/diagnostics/infra/decorator.py:66(wrapper)
        2    0.000    0.000    0.010    0.005 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/fx/_pass.py:240(run)
      448    0.000    0.000    0.010    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/utils/_pytree.py:1101(wrapped)
       23    0.010    0.000    0.010    0.000 {built-in method torch._C._dispatch_get_registrations_for_dispatch_key}
        1    0.000    0.000    0.010    0.010 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/fx/passes/type_promotion.py:1696(_run)
99867/99754    0.009    0.000    0.009    0.000 {built-in method builtins.len}
        7    0.000    0.000    0.009    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph.py:1815(eliminate_dead_code)
       18    0.000    0.000    0.009    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/builder.py:2151(wrap_fx_proxy)
    10045    0.005    0.000    0.009    0.000 /usr/lib/python3.12/typing.py:2340(get_origin)
       31    0.001    0.000    0.009    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/autograd/grad_mode.py:269(__enter__)
       18    0.000    0.000    0.009    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/builder.py:2224(wrap_fx_proxy_cls)
    45/40    0.001    0.000    0.009    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_logging/_internal.py:1156(trace_structured)
    69/54    0.000    0.000    0.008    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:2248(maybe_handle_decomp)
        1    0.001    0.001    0.008    0.008 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_functorch/compile_utils.py:42(fx_graph_cse)
      182    0.002    0.000    0.008    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:954(_flatten_into)
       12    0.002    0.000    0.008    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/graph.py:1706(lint)
        5    0.000    0.000    0.008    0.002 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_prims_common/wrappers.py:270(_fn)
       27    0.000    0.000    0.008    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/fx/passes/type_promotion.py:1601(run_node)
        3    0.000    0.000    0.008    0.003 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_decomp/__init__.py:155(_fn)
        3    0.000    0.000    0.008    0.003 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_decomp/decompositions.py:220(threshold_backward)
    55/13    0.000    0.000    0.008    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/interpreter.py:212(run_node)
      185    0.001    0.000    0.008    0.000 /usr/lib/python3.12/inspect.py:1070(findsource)
        5    0.000    0.000    0.008    0.002 /home/xadupre/github/onnxscript/onnxscript/ir/serde.py:461(deserialize_model)
        9    0.000    0.000    0.008    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/builder.py:2308(_wrap_fx_proxy)
40536/39468    0.007    0.000    0.008    0.000 {built-in method builtins.hash}
1643/1548    0.001    0.000    0.008    0.000 /usr/lib/python3.12/contextlib.py:141(__exit__)
        5    0.000    0.000    0.008    0.002 /home/xadupre/github/onnxscript/onnxscript/ir/serde.py:551(_deserialize_graph)
   143/29    0.000    0.000    0.008    0.000 /home/xadupre/github/onnxscript/onnxscript/_legacy_ir/visitor.py:799(visit_node)
       74    0.000    0.000    0.007    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:487(set_meta)
      249    0.002    0.000    0.007    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:678(__new__)
    43757    0.007    0.000    0.007    0.000 {built-in method __new__ of type object at 0xa20960}
   812/42    0.001    0.000    0.007    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/utils/_stats.py:15(wrapper)
      496    0.002    0.000    0.007    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/node.py:243(__init__)
       14    0.000    0.000    0.007    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:1974(_dispatch_impl)
        1    0.000    0.000    0.007    0.007 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/variables/functions.py:336(call_function)
       64    0.000    0.000    0.007    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/guards.py:1252(get_guard_manager)
        1    0.000    0.000    0.007    0.007 <class 'networkx.utils.decorators.argmap'> compilation 4:1(argmap_minimum_cut_1)
      6/1    0.000    0.000    0.007    0.007 /home/xadupre/vv/this312/lib/python3.12/site-packages/networkx/utils/backends.py:959(__call__)
   512/42    0.001    0.000    0.007    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/fake_tensor.py:1263(__torch_dispatch__)
       31    0.001    0.000    0.007    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_subclasses/meta_utils.py:260(describe_tensor)
        1    0.000    0.000    0.007    0.007 /home/xadupre/vv/this312/lib/python3.12/site-packages/networkx/algorithms/flow/maxflow.py:307(minimum_cut)
        3    0.000    0.000    0.007    0.002 /home/xadupre/github/onnxscript/onnxscript/rewriter/pattern.py:1500(apply_to_model)
1513/1507    0.001    0.000    0.007    0.000 {built-in method builtins.any}
        9    0.000    0.000    0.007    0.001 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_dynamo/utils.py:2468(get_fake_value)
      625    0.001    0.000    0.007    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/node.py:576(__update_args_kwargs)
    17063    0.004    0.000    0.007    0.000 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/_ops.py:729(__hash__)
     1722    0.006    0.000    0.007    0.000 {built-in method builtins.eval}
       46    0.000    0.000    0.007    0.000 /home/xadupre/github/onnxscript/onnxscript/optimizer/_legacy/constant_folding.py:165(process_node)
    30947    0.006    0.000    0.006    0.000 {built-in method builtins.hasattr}
        3    0.000    0.000    0.006    0.002 /home/xadupre/github/onnxscript/onnxscript/rewriter/pattern.py:1467(_apply_to_graph_or_function)
        5    0.000    0.000    0.006    0.001 /home/xadupre/github/onnxscript/onnxscript/optimizer/_remove_unused_function.py:64(remove_unused_functions)
        1    0.000    0.000    0.006    0.006 <class 'networkx.utils.decorators.argmap'> compilation 8:1(argmap_preflow_push_5)
        1    0.000    0.000    0.006    0.006 /home/xadupre/vv/this312/lib/python3.12/site-packages/networkx/algorithms/flow/preflowpush.py:291(preflow_push)
        1    0.000    0.000    0.006    0.006 /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/fx/passes/utils/fuser_utils.py:95(fuse_as_graphmodule)
        1    0.001    0.001    0.006    0.006 /home/xadupre/vv/this312/lib/python3.12/site-packages/networkx/algorithms/flow/preflowpush.py:22(preflow_push_impl)
done.

Benchmark exported models with ORT

def benchmark(shape):
    data = []
    data_mem_first_run = []
    data_mem_run = []
    confs = list(
        itertools.product(
            export_functions,
            ["CPU", "CUDA"],
        )
    )
    loop = tqdm(confs)
    print(f"number of experiments: {len(loop)}")
    for export_fct, p in loop:
        name = export_fct.__name__.replace("get_torch_", "")
        obs = {}  # system_info()
        obs["name"] = name
        obs["compute"] = p
        obs["export"] = name

        model, input_tensor = create_model_and_input()
        if p == "CUDA":
            if not has_cuda:
                continue
            model = model.cuda()
            input_tensor = input_tensor.cuda()
        try:
            exported_model = export_fct(model, input_tensor)
        except torch._dynamo.exc.BackendCompilerFailed as e:
            # Triton only supports devices of CUDA Capability >= 7.0,
            # but your device is of CUDA capability 6.1
            obs["error"] = str(e)
            data.append(obs)
            continue

        def call_model(
            export_fct=export_fct,
            exported_model=exported_model,
            input_tensor=input_tensor,
        ):
            res = exported_model(input_tensor).sum()
            return res

        stat = start_spying_on(cuda=1 if has_cuda else 0)
        try:
            call_model()
        except Exception as e:
            loop.set_description(f"ERROR-run: {name} {e}")
            obs.update({"error": e, "step": "load"})
            data.append(obs)
            stat.stop()
            continue
        memobs = flatten(stat.stop())
        memobs.update(obs)
        data_mem_first_run.append(memobs)

        # memory consumption
        stat = start_spying_on(cuda=1 if has_cuda else 0)
        for _ in range(0, script_args.warmup):
            call_model()
        memobs = flatten(stat.stop())
        memobs.update(obs)
        data_mem_run.append(memobs)

        obs.update(
            measure_time(
                call_model,
                max_time=script_args.maxtime,
                repeat=script_args.repeat,
                number=1,
            )
        )

        profile_function(name, call_model, with_args=False, suffix=f"run_{p}")

        loop.set_description(f"{obs['average']} {name} {p}")
        data.append(obs)
        del model
        del exported_model
        gc.collect()
        time.sleep(1)

    df = pandas.DataFrame(data)
    df.to_csv("plot_torch_dort_ort_time.csv", index=False)
    df.to_excel("plot_torch_dort_ort_time.xlsx", index=False)
    dfmemr = pandas.DataFrame(data_mem_run)
    dfmemr.to_csv("plot_torch_dort_ort_run_mem.csv", index=False)
    dfmemr.to_excel("plot_torch_dort_ort_run_mem.xlsx", index=False)
    dfmemfr = pandas.DataFrame(data_mem_first_run)
    dfmemfr.to_csv("plot_torch_dort_ort_first_run_mem.csv", index=False)
    dfmemfr.to_excel("plot_torch_dort_ort_first_run_mem.xlsx", index=False)
    return df, dfmemfr, dfmemr


df, dfmemfr, dfmemr = benchmark(list(input_tensor.shape))
print(df)
  0%|          | 0/6 [00:00<?, ?it/s]number of experiments: 6

0.003408030238157759 eager CPU:   0%|          | 0/6 [00:00<?, ?it/s]
0.003408030238157759 eager CPU:  17%|█▋        | 1/6 [00:01<00:09,  1.89s/it]
0.000306338890255371 eager CUDA:  17%|█▋        | 1/6 [00:02<00:09,  1.89s/it]
0.000306338890255371 eager CUDA:  33%|███▎      | 2/6 [00:03<00:07,  1.81s/it]
0.003683345764561547 default CPU:  33%|███▎      | 2/6 [00:04<00:07,  1.81s/it]
0.003683345764561547 default CPU:  50%|█████     | 3/6 [00:05<00:05,  1.99s/it]
0.00023473138890428664 default CUDA:  50%|█████     | 3/6 [00:07<00:05,  1.99s/it]
0.00023473138890428664 default CUDA:  67%|██████▋   | 4/6 [00:08<00:04,  2.30s/it]
0.0005048716431847082 dort CPU:  67%|██████▋   | 4/6 [00:09<00:04,  2.30s/it]
0.0005048716431847082 dort CPU:  83%|████████▎ | 5/6 [00:10<00:02,  2.21s/it]
0.0006035198889305784 dort CUDA:  83%|████████▎ | 5/6 [00:11<00:02,  2.21s/it]
0.0006035198889305784 dort CUDA: 100%|██████████| 6/6 [00:12<00:00,  2.21s/it]
0.0006035198889305784 dort CUDA: 100%|██████████| 6/6 [00:12<00:00,  2.15s/it]
      name compute   export   average  deviation  min_exec  max_exec  repeat  number     ttime  context_size  warmup_time
0    eager     CPU    eager  0.003408   0.000387  0.002068  0.003851       1    42.0  0.143137            64     0.001769
1    eager    CUDA    eager  0.000306   0.000016  0.000294  0.000450       1   483.0  0.147962            64     0.000975
2  default     CPU  default  0.003683   0.000530  0.001074  0.003976       1    51.0  0.187851            64     0.001776
3  default    CUDA  default  0.000235   0.000042  0.000207  0.000635       1   468.0  0.109854            64     0.001223
4     dort     CPU     dort  0.000505   0.000238  0.000335  0.001100       1   213.0  0.107538            64     0.001846
5     dort    CUDA     dort  0.000604   0.000027  0.000568  0.000868       1   243.0  0.146655            64     0.001559

Other view

def view_time(df, title, suffix="time"):
    piv = pandas.pivot_table(df, index="export", columns=["compute"], values="average")
    print(piv)
    piv.to_csv(f"plot_torch_dort_{suffix}_compute.csv")
    piv.to_excel(f"plot_torch_dort_{suffix}_compute.xlsx")

    piv_cpu = pandas.pivot_table(
        df[df.compute == "CPU"],
        index="export",
        columns=["compute"],
        values="average",
    )

    fig, ax = plt.subplots(1, 2, figsize=(12, 4))
    fig.suptitle(title)
    piv_cpu.plot.barh(ax=ax[0], title="CPU", logx=True)

    if has_cuda:
        piv_gpu = pandas.pivot_table(
            df[df.compute == "CUDA"],
            index="export",
            columns=["compute"],
            values="average",
        )
        piv_gpu.plot.barh(ax=ax[1], title="CUDA", logx=True)

    fig.tight_layout()
    fig.savefig(f"plot_torch_dort_{suffix}.png")
    return ax


view_time(df, "Compares processing time on backends")
Compares processing time on backends, CPU, CUDA
compute       CPU      CUDA
export
default  0.003683  0.000235
dort     0.000505  0.000604
eager    0.003408  0.000306

array([<Axes: title={'center': 'CPU'}, ylabel='export'>,
       <Axes: title={'center': 'CUDA'}, ylabel='export'>], dtype=object)

Memory First Running Time (ORT)

for compute in ["CPU", "CUDA"]:
    if not has_cuda and compute == "CUDA":
        continue
    ax = memory_peak_plot(
        dfmemfr[dfmemfr.compute == compute],
        ("export",),
        suptitle=f"Memory Consumption of backend, first running time"
        f"\nrunning on {compute}",
        bars=[model_size * i / 2**20 for i in range(1, 3)],
        figsize=(18, 6),
    )
    get_figure(ax).savefig(f"plot_torch_dort_first_run_mem_{compute}.png")
  • Memory Consumption of backend, first running time running on CPU, Memory peak (Mb), Memory peak - memory begin (Mb), Memory average - memory begin (Mb), GPU Memory peak (Mb), GPU Memory peak - memory begin (Mb), GPU Memory average - memory begin (Mb)
  • Memory Consumption of backend, first running time running on CUDA, Memory peak (Mb), Memory peak - memory begin (Mb), Memory average - memory begin (Mb), GPU Memory peak (Mb), GPU Memory peak - memory begin (Mb), GPU Memory average - memory begin (Mb)

Memory Running Time (ORT)

for compute in ["CPU", "CUDA"]:
    if not has_cuda and compute == "CUDA":
        continue
    ax = memory_peak_plot(
        dfmemr[dfmemr.compute == compute],
        ("export",),
        suptitle=f"Memory Consumption of backens, running time\nrunning on {compute}",
        bars=[model_size * i / 2**20 for i in range(1, 3)],
        figsize=(18, 6),
    )
    get_figure(ax).savefig(f"plot_torch_dort_run_mem_{compute}.png")
  • Memory Consumption of backens, running time running on CPU, Memory peak (Mb), Memory peak - memory begin (Mb), Memory average - memory begin (Mb), GPU Memory peak (Mb), GPU Memory peak - memory begin (Mb), GPU Memory average - memory begin (Mb)
  • Memory Consumption of backens, running time running on CUDA, Memory peak (Mb), Memory peak - memory begin (Mb), Memory average - memory begin (Mb), GPU Memory peak (Mb), GPU Memory peak - memory begin (Mb), GPU Memory average - memory begin (Mb)

Total running time of the script: (0 minutes 49.816 seconds)

Related examples

201: Evaluate DORT Training

201: Evaluate DORT Training

201: Evaluate different ways to export a torch model to ONNX

201: Evaluate different ways to export a torch model to ONNX

101: Profile an existing model with onnxruntime

101: Profile an existing model with onnxruntime

Gallery generated by Sphinx-Gallery