experimental_experiment.torch_models.llm_model_helper¶
- experimental_experiment.torch_models.llm_model_helper.get_ai21_jamba_15_mini(inputs_as_tuple: bool = False, input_cache: bool = True, batch_size: int = 1, common_dynamic_shapes: bool = False, **kwargs) Dict[str, Any] [source]¶
Gets a non initialized model.
- Parameters:
inputs_as_tuple – returns dummy inputs as a dictionary or not
kwargs – to overwrite the configuration, example
num_hidden_layers=1
batch_size – batch size
common_dynamic_shapes – if True returns dynamic shapes as well
- Returns:
dictionary
- experimental_experiment.torch_models.llm_model_helper.get_all_mini_ml_l6_v1(inputs_as_tuple: bool = False, input_cache: bool = True, batch_size: int = 1, common_dynamic_shapes: bool = False, **kwargs) Dict[str, Any] [source]¶
Gets a non initialized model.
- Parameters:
inputs_as_tuple – returns dummy inputs as a dictionary or not
kwargs – to overwrite the configuration, example
num_hidden_layers=1
batch_size – batch size
common_dynamic_shapes – if True returns dynamic shapes as well
- Returns:
dicionary
See all-MiniLM-L6-v1.
Model forward signature:
def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
- experimental_experiment.torch_models.llm_model_helper.get_falcon_mamba_7b(batch_size: int = 2, input_cache: bool = True, inputs_as_tuple: bool = False, common_dynamic_shapes: bool = False, **kwargs) Tuple[Any, Tuple[Any, ...] | Dict[str, Any]] [source]¶
Gets a non initialized model.
- Parameters:
inputs_as_tuple – returns dummy inputs as a dictionary or not
batch_size – batch size
input_cache – generate data for this iteration with or without cache
kwargs – to overwrite the configuration, example
num_hidden_layers=1
common_dynamic_shapes – if True returns dynamic shapes as well
- Returns:
dictionary
- experimental_experiment.torch_models.llm_model_helper.get_llama32_9b_vision(inputs_as_tuple: bool = False, common_dynamic_shapes: bool = False, **kwargs) Tuple[Any, Tuple[Any, ...] | Dict[str, Any]] [source]¶
Gets a non initialized model.
- Parameters:
inputs_as_tuple – returns dummy inputs as a dictionary or not
kwargs – to overwrite the configuration, example
num_hidden_layers=1
common_dynamic_shapes – if True returns dynamic shapes as well
- Returns:
model, inputs
See MLlama.
- experimental_experiment.torch_models.llm_model_helper.get_phi2(inputs_as_tuple: bool = False, input_cache: bool = True, batch_size: int = 1, common_dynamic_shapes: bool = False, **kwargs) Dict[str, Any] [source]¶
Gets a non initialized model.
- Parameters:
inputs_as_tuple – returns dummy inputs as a dictionary or not
input_cache – generate data for this iteration with or without cache
batch_size – batch size
common_dynamic_shapes – if True returns dynamic shapes as well
kwargs – to overwrite the configuration, example
num_hidden_layers=1
- Returns:
dict
See Phi-2/config.json.
- experimental_experiment.torch_models.llm_model_helper.get_phi35_mini_instruct(inputs_as_tuple: bool = False, input_cache: bool = True, batch_size: int = 1, common_dynamic_shapes: bool = False, **kwargs) Dict[str, Any] [source]¶
Gets a non initialized model.
- Parameters:
inputs_as_tuple – returns dummy inputs as a dictionary or not
batch_size – batch size
input_cache – generate data for this iteration with or without cache
common_dynamic_shapes – if True returns dynamic shapes as well
kwargs – to overwrite the configuration, example
num_hidden_layers=1
- Returns:
dictionary
- experimental_experiment.torch_models.llm_model_helper.get_phi35_vision_instruct(inputs_as_tuple: bool = False, batch_size: int = 2, input_kind: LLMInputKind = LLMInputKind.input_ids, device: str = 'cpu', common_dynamic_shapes: bool = False, **kwargs) Tuple[Any, Tuple[Any, ...] | Dict[str, Any], Any | None] [source]¶
Gets a non initialized model.
- Parameters:
batch_size – batch size to use
inputs_as_tuple – returns dummy inputs as a dictionary or not
kwargs – to overwrite the configuration, example
num_hidden_layers=1
common_dynamic_shapes – if True returns dynamic shapes as well
- Returns:
model, inputs, dynamic shapes
- experimental_experiment.torch_models.llm_model_helper.get_phi3_vision_128k_instruct(inputs_as_tuple: bool = False, batch_size: int = 2, input_kind: LLMInputKind = LLMInputKind.input_ids, device: str = 'cpu', common_dynamic_shapes: bool = False, **kwargs) Tuple[Any, Tuple[Any, ...] | Dict[str, Any], Any | None] [source]¶
Gets a non initialized model.
- Parameters:
batch_size – batch size to use
inputs_as_tuple – returns dummy inputs as a dictionary or not
kwargs – to overwrite the configuration, example
num_hidden_layers=1
common_dynamic_shapes – if True returns dynamic shapes as well
- Returns:
model, inputs, dynamic shapes
- experimental_experiment.torch_models.llm_model_helper.get_smollm_1_7b(batch_size: int = 2, input_cache: bool = True, inputs_as_tuple: bool = False, common_dynamic_shapes: bool = False, **kwargs) Tuple[Any, Tuple[Any, ...] | Dict[str, Any]] [source]¶
Gets a non initialized model.
- Parameters:
inputs_as_tuple – returns dummy inputs as a dictionary or not
batch_size – batch size
input_cache – generate data for this iteration with or without cache
kwargs – to overwrite the configuration, example
num_hidden_layers=1
common_dynamic_shapes – if True returns dynamic shapes as well
- Returns:
dictionary
See SmolLM-1.7B.