experimental_experiment.ext_test_case¶
The module contains the main class ExtTestCase
which adds
specific functionalities to this project.
- class experimental_experiment.ext_test_case.ExtTestCase(methodName='runTest')[source]¶
Inherits from
unittest.TestCase
and adds specific comprison functions and other helpers.- assertAlmostEqual(expected: ndarray, value: ndarray, atol: float = 0, rtol: float = 0)[source]¶
In the name
- assertEqual(expected: Any, value: Any, msg: str = '')[source]¶
Overwrites the error message to get a more explicit message about what is what.
- assertEqualArray(expected: ndarray, value: ndarray, atol: float = 0, rtol: float = 0, msg: str | None = None)[source]¶
In the name
- assertEqualArrays(expected: Sequence[ndarray], value: Sequence[ndarray], atol: float = 0, rtol: float = 0, msg: str | None = None)[source]¶
In the name
- assertIn(tofind: str, text: str)[source]¶
Just like self.assertTrue(a in b), but with a nicer default message.
- capture(fct: Callable)[source]¶
Runs a function and capture standard output and error.
- Parameters:
fct – function to run
- Returns:
result of fct, output, error
- get_dump_file(name: str, folder: str | None = None) str [source]¶
Returns a filename to dump a model.
- classmethod setUpClass()[source]¶
Hook method for setting up class fixture before running tests in the class.
- classmethod tearDownClass()[source]¶
Hook method for deconstructing the class fixture after running all tests in the class.
- tryCall(fct: Callable, msg: str | None = None, none_if: str | None = None) Any | None [source]¶
Calls the function, catch any error.
- Parameters:
fct – function to call
msg – error message to display if failing
none_if – returns None if this substring is found in the error message
- Returns:
output of fct
- experimental_experiment.ext_test_case.dump_dort_onnx(fn)[source]¶
Context manager to dump onnx model created by dort.
- experimental_experiment.ext_test_case.get_figure(ax)[source]¶
Returns the figure of a matplotlib figure.
- experimental_experiment.ext_test_case.has_executorch(version: str = '', msg: str = '') Callable [source]¶
Tells if ExecuTorch is installed.
- experimental_experiment.ext_test_case.has_onnxruntime_training(push_back_batch: bool = False)[source]¶
Tells if onnxruntime_training is installed.
- experimental_experiment.ext_test_case.hide_stdout(f: Callable | None = None) Callable [source]¶
Catches warnings.
- Parameters:
f – the function is called with the stdout as an argument
- experimental_experiment.ext_test_case.ignore_warnings(warns: List[Warning]) Callable [source]¶
Catches warnings.
- Parameters:
warns – warnings to ignore
- experimental_experiment.ext_test_case.is_azure() bool [source]¶
Tells if the job is running on Azure DevOps.
- experimental_experiment.ext_test_case.long_test(msg: str = '') Callable [source]¶
Catches warnings.
- Parameters:
f – the function is called with the stdout as an argument
- experimental_experiment.ext_test_case.measure_time(stmt: str | Callable, context: Dict[str, Any] | None = None, repeat: int = 10, number: int = 50, warmup: int = 1, div_by_number: bool = True, max_time: float | None = None) Dict[str, str | int | float] [source]¶
Measures a statement and returns the results as a dictionary.
- Parameters:
stmt – string or callable
context – variable to know in a dictionary
repeat – average over repeat experiment
number – number of executions in one row
warmup – number of iteration to do before starting the real measurement
div_by_number – divide by the number of executions
max_time – execute the statement until the total goes beyond this time (approximatively), repeat is ignored, div_by_number must be set to True
- Returns:
dictionary
<<<
from pprint import pprint from math import cos from experimental_experiment.ext_test_case import measure_time res = measure_time(lambda: cos(0.5)) pprint(res)
>>>
{'average': np.float64(7.142600952647625e-08), 'context_size': 64, 'deviation': np.float64(5.676754166519193e-09), 'max_exec': np.float64(8.579998393543065e-08), 'min_exec': np.float64(6.724003469571471e-08), 'number': 50, 'repeat': 10, 'ttime': np.float64(7.142600952647626e-07), 'warmup_time': 1.513199822511524e-05}
See Timer.repeat for a better understanding of parameter repeat and number. The function returns a duration corresponding to number times the execution of the main statement.
- experimental_experiment.ext_test_case.require_diffusers(version: str, msg: str = '', or_older_than: str | None = None) Callable [source]¶
Skips a unit test if transformers is not recent enough.
- experimental_experiment.ext_test_case.requires_cuda(msg: str = '', version: str = '', memory: int = 0)[source]¶
Skips a test if cuda is not available.
- Parameters:
msg – to overwrite the message
version – minimum version
memory – minimun number of Gb to run the test
- experimental_experiment.ext_test_case.requires_executorch(version: str, msg: str = '') Callable [source]¶
Skips a unit test if executorch is not recent enough.
- experimental_experiment.ext_test_case.requires_monai(version: str = '', msg: str = '') Callable [source]¶
Skips a unit test if monai is not recent enough.
- experimental_experiment.ext_test_case.requires_numpy(version: str, msg: str = '') Callable [source]¶
Skips a unit test if numpy is not recent enough.
- experimental_experiment.ext_test_case.requires_onnx(version: str, msg: str = '') Callable [source]¶
Skips a unit test if onnx is not recent enough.
- experimental_experiment.ext_test_case.requires_onnxruntime(version: str, msg: str = '') Callable [source]¶
Skips a unit test if onnxruntime is not recent enough.
- experimental_experiment.ext_test_case.requires_onnxruntime_training(push_back_batch: bool = False, msg: str = '') Callable [source]¶
Skips a unit test if onnxruntime is not onnxruntime_training.
- experimental_experiment.ext_test_case.requires_onnxscript(version: str, msg: str = '') Callable [source]¶
Skips a unit test if onnxscript is not recent enough.
- experimental_experiment.ext_test_case.requires_pyinstrument(version: str = '', msg: str = '') Callable [source]¶
Skips a unit test if pyinstrument is not recent enough.
- experimental_experiment.ext_test_case.requires_sklearn(version: str, msg: str = '') Callable [source]¶
Skips a unit test if scikit-learn is not recent enough.
- experimental_experiment.ext_test_case.requires_torch(version: str, msg: str = '') Callable [source]¶
Skips a unit test if pytorch is not recent enough.
- experimental_experiment.ext_test_case.requires_transformers(version: str, msg: str = '', or_older_than: str | None = None) Callable [source]¶
Skips a unit test if transformers is not recent enough.
- experimental_experiment.ext_test_case.requires_vocos(version: str = '', msg: str = '') Callable [source]¶
Skips a unit test if vocos is not recent enough.
- experimental_experiment.ext_test_case.requires_zoo(msg: str = '') Callable [source]¶
Skips a unit test if environment variable ZOO is not equal to 1.
- experimental_experiment.ext_test_case.skipif_ci_apple(msg) Callable [source]¶
Skips a unit test if it runs on azure pipeline on Windows.
- experimental_experiment.ext_test_case.skipif_ci_linux(msg) Callable [source]¶
Skips a unit test if it runs on azure pipeline on Linux.
- experimental_experiment.ext_test_case.skipif_ci_windows(msg) Callable [source]¶
Skips a unit test if it runs on azure pipeline on Windows.
- experimental_experiment.ext_test_case.skipif_not_onnxrt(msg) Callable [source]¶
Skips a unit test if it runs on azure pipeline on Windows.
- experimental_experiment.ext_test_case.skipif_transformers(version_to_skip: str | Set[str], msg: str) Callable [source]¶
Skips a unit test if transformers has a specific version.
- experimental_experiment.ext_test_case.statistics_on_file(filename: str) Dict[str, str | int | float] [source]¶
Computes statistics on a file.
<<<
import pprint from experimental_experiment.ext_test_case import statistics_on_file, __file__ pprint.pprint(statistics_on_file(__file__))
>>>
{'chars': 21980, 'ext': '.py', 'lines': 750}
- experimental_experiment.ext_test_case.statistics_on_folder(folder: str | List[str], pattern: str = '.*[.]((py|rst))$', aggregation: int = 0) List[Dict[str, str | int | float]] [source]¶
Computes statistics on files in a folder.
- Parameters:
folder – folder or folders to investigate
pattern – file pattern
aggregation – show the first subfolders
- Returns:
list of dictionaries
<<<
import os import pprint from experimental_experiment.ext_test_case import statistics_on_folder, __file__ pprint.pprint(statistics_on_folder(os.path.dirname(__file__)))
>>>
[{'chars': 66, 'ext': '.py', 'lines': 3, 'name': '_bench_test.py'}, {'chars': 6190, 'ext': '.py', 'lines': 193, 'name': 'torch_test_helper.py'}, {'chars': 1807, 'ext': '.py', 'lines': 51, 'name': 'checks.py'}, {'chars': 8416, 'ext': '.py', 'lines': 335, 'name': '_command_lines_parser.py'}, {'chars': 21980, 'ext': '.py', 'lines': 750, 'name': 'ext_test_case.py'}, {'chars': 2725, 'ext': '.py', 'lines': 102, 'name': 'onnx_tools.py'}, {'chars': 18176, 'ext': '.py', 'lines': 672, 'name': 'bench_run.py'}, {'chars': 2876, 'ext': '.py', 'lines': 115, 'name': 'args.py'}, {'chars': 4593, 'ext': '.py', 'lines': 157, 'name': 'helpers.py'}, {'chars': 59, 'ext': '.py', 'lines': 3, 'name': '__init__.py'}, {'chars': 5300, 'ext': '.py', 'lines': 158, 'name': 'model_run.py'}, {'chars': 65, 'ext': '.py', 'lines': 3, 'name': '__main__.py'}, {'chars': 4329, 'ext': '.py', 'lines': 187, 'name': 'memory_peak.py'}, {'chars': 12052, 'ext': '.py', 'lines': 419, 'name': 'gradient/grad_helper.py'}, {'chars': 17619, 'ext': '.py', 'lines': 496, 'name': 'gradient/loss_helper.py'}, {'chars': 0, 'ext': '.py', 'lines': 0, 'name': 'gradient/__init__.py'}, {'chars': 89, 'ext': '.py', 'lines': 2, 'name': 'gradient/ops/__init__.py'}, {'chars': 671, 'ext': '.py', 'lines': 42, 'name': 'gradient/ops/op_broadcast_gradient_args.py'}, {'chars': 14210, 'ext': '.py', 'lines': 479, 'name': 'reference/ort_evaluator.py'}, {'chars': 5446, 'ext': '.py', 'lines': 196, 'name': 'reference/evaluator.py'}, {'chars': 1111, 'ext': '.py', 'lines': 39, 'name': 'reference/__init__.py'}, {'chars': 647, 'ext': '.py', 'lines': 27, 'name': 'reference/ops/op_fused_matmul.py'}, {'chars': 380, 'ext': '.py', 'lines': 14, 'name': 'reference/ops/op_tri_matrix.py'}, {'chars': 458, 'ext': '.py', 'lines': 17, 'name': 'reference/ops/op_quick_gelu.py'}, {'chars': 531, 'ext': '.py', 'lines': 15, 'name': 'reference/ops/op_slice.py'}, {'chars': 907, 'ext': '.py', 'lines': 48, 'name': 'reference/ops/op_constant_of_shape.py'}, {'chars': 667, 'ext': '.py', 'lines': 16, 'name': 'reference/ops/op_scatternd_of_shape.py'}, {'chars': 147, 'ext': '.py', 'lines': 5, 'name': 'reference/ops/op_negxplus1.py'}, {'chars': 220, 'ext': '.py', 'lines': 6, 'name': 'reference/ops/op_simplified_layer_normalization.py'}, {'chars': 295, 'ext': '.py', 'lines': 10, 'name': 'reference/ops/op_transpose_cast.py'}, {'chars': 140, 'ext': '.py', 'lines': 7, 'name': 'reference/ops/op_memcpy_host.py'}, {'chars': 1405, 'ext': '.py', 'lines': 51, 'name': 'reference/ops/op_average_pool_grad.py'}, {'chars': 317, 'ext': '.py', 'lines': 9, 'name': 'reference/ops/op_gather_grad.py'}, {'chars': 224, 'ext': '.py', 'lines': 10, 'name': 'reference/ops/op_replace_zero.py'}, {'chars': 455, 'ext': '.py', 'lines': 17, 'name': 'reference/ops/op_mul_sigmoid.py'}, {'chars': 0, 'ext': '.py', 'lines': 0, 'name': 'reference/ops/__init__.py'}, {'chars': 434, 'ext': '.py', 'lines': 16, 'name': 'reference/ops/op_rotary.py'}, {'chars': 383, 'ext': '.py', 'lines': 11, 'name': 'reference/ops/op_concat.py'}, {'chars': 1091, 'ext': '.py', 'lines': 44, 'name': 'reference/ops/op_add_add_mul_mul.py'}, {'chars': 2148, 'ext': '.py', 'lines': 79, 'name': 'reference/ops/op_scatter_elements.py'}, {'chars': 990, 'ext': '.py', 'lines': 31, 'name': 'reference/ops/op_cast_like.py'}, {'chars': 852, 'ext': '.py', 'lines': 23, 'name': 'convert/ort_helper.py'}, {'chars': 4887, 'ext': '.py', 'lines': 149, 'name': 'convert/convert_helper.py'}, {'chars': 0, 'ext': '.py', 'lines': 0, 'name': 'convert/__init__.py'}, {'chars': 6285, 'ext': '.py', 'lines': 377, 'name': 'plotting/data.py'}, {'chars': 1893, 'ext': '.py', 'lines': 54, 'name': 'plotting/memory.py'}, {'chars': 0, 'ext': '.py', 'lines': 0, 'name': 'plotting/__init__.py'}, {'chars': 152, 'ext': '.py', 'lines': 4, 'name': 'torch_interpreter/_doc_.py'}, {'chars': 8507, 'ext': '.py', 'lines': 322, 'name': 'torch_interpreter/_aten_methods.py'}, {'chars': 6826, 'ext': '.py', 'lines': 245, 'name': 'torch_interpreter/dispatcher.py'}, {'chars': 528, 'ext': '.py', 'lines': 21, 'name': 'torch_interpreter/aten_methods.py'}, {'chars': 44891, 'ext': '.py', 'lines': 1429, 'name': 'torch_interpreter/interpreter.py'}, {'chars': 24135, 'ext': '.py', 'lines': 745, 'name': 'torch_interpreter/onnx_export.py'}, {'chars': 793, 'ext': '.py', 'lines': 29, 'name': 'torch_interpreter/_torch_helper.py'}, {'chars': 87, 'ext': '.py', 'lines': 2, 'name': 'torch_interpreter/_exceptions.py'}, {'chars': 10212, 'ext': '.py', 'lines': 454, 'name': 'torch_interpreter/_prims_functions.py'}, {'chars': 179800, 'ext': '.py', 'lines': 7098, 'name': 'torch_interpreter/_aten_functions.py'}, {'chars': 8923, 'ext': '.py', 'lines': 293, 'name': 'torch_interpreter/_aten_functions_attention.py'}, {'chars': 1807, 'ext': '.py', 'lines': 59, 'name': 'torch_interpreter/aten_functions.py'}, {'chars': 382, 'ext': '.py', 'lines': 9, 'name': 'torch_interpreter/__init__.py'}, {'chars': 5675, 'ext': '.py', 'lines': 200, 'name': 'torch_interpreter/oxs_dispatcher.py'}, {'chars': 3927, 'ext': '.py', 'lines': 178, 'name': 'torch_interpreter/oxs_opset.py'}, {'chars': 3664, 'ext': '.py', 'lines': 120, 'name': 'torch_interpreter/onnx_export_errors.py'}, {'chars': 9132, 'ext': '.py', 'lines': 279, 'name': 'torch_interpreter/export_options.py'}, {'chars': 3970, 'ext': '.py', 'lines': 140, 'name': 'torch_models/phi3_helper.py'}, {'chars': 1651, 'ext': '.py', 'lines': 61, 'name': 'torch_models/diffusion_model_helper.py'}, {'chars': 5875, 'ext': '.py', 'lines': 204, 'name': 'torch_models/dump_helper.py'}, {'chars': 7525, 'ext': '.py', 'lines': 220, 'name': 'torch_models/training_helper.py'}, {'chars': 3414, 'ext': '.py', 'lines': 118, 'name': 'torch_models/mistral_helper.py'}, {'chars': 588, 'ext': '.py', 'lines': 19, 'name': 'torch_models/__init__.py'}, {'chars': 14320, 'ext': '.py', 'lines': 575, 'name': 'torch_models/llm_model_helper.py'}, {'chars': 6031, 'ext': '.py', 'lines': 165, 'name': 'torch_models/llama_helper.py'}, {'chars': 3802, 'ext': '.py', 'lines': 132, 'name': 'torch_models/phi_helper.py'}, {'chars': 4090, 'ext': '.py', 'lines': 144, 'name': 'xbuilder/type_inference.py'}, {'chars': 4788, 'ext': '.py', 'lines': 192, 'name': 'xbuilder/graph_builder_opset.py'}, {'chars': 25453, 'ext': '.py', 'lines': 827, 'name': 'xbuilder/shape_type_compute.py'}, {'chars': 6997, 'ext': '.py', 'lines': 231, 'name': 'xbuilder/model_container.py'}, {'chars': 1716, 'ext': '.py', 'lines': 63, 'name': 'xbuilder/expression_dimension.py'}, {'chars': 174319, 'ext': '.py', 'lines': 5749, 'name': 'xbuilder/graph_builder.py'}, {'chars': 3266, 'ext': '.py', 'lines': 106, 'name': 'xbuilder/_shape_helper.py'}, {'chars': 2143, 'ext': '.py', 'lines': 80, 'name': 'xbuilder/_dtype_helper.py'}, {'chars': 6347, 'ext': '.py', 'lines': 259, 'name': 'xbuilder/_onnx_helper.py'}, {'chars': 339, 'ext': '.py', 'lines': 10, 'name': 'xbuilder/__init__.py'}, {'chars': 11402, 'ext': '.py', 'lines': 399, 'name': 'xbuilder/_graph_builder_runtime.py'}, {'chars': 4045, 'ext': '.py', 'lines': 108, 'name': 'xbuilder/optimization_options.py'}, {'chars': 28881, 'ext': '.py', 'lines': 962, 'name': 'xoptim/patterns_api.py'}, {'chars': 4219, 'ext': '.py', 'lines': 170, 'name': 'xoptim/order_optim.py'}, {'chars': 2873, 'ext': '.py', 'lines': 105, 'name': 'xoptim/__init__.py'}, {'chars': 30042, 'ext': '.py', 'lines': 1047, 'name': 'xoptim/graph_builder_optim.py'}, {'chars': 459, 'ext': '.py', 'lines': 15, 'name': 'xoptim/patterns_investigation/__init__.py'}, {'chars': 1213, 'ext': '.py', 'lines': 44, 'name': 'xoptim/patterns_investigation/element_wise.py'}, {'chars': 9813, 'ext': '.py', 'lines': 319, 'name': 'xoptim/patterns_ml/tree_ensemble.py'}, {'chars': 522, 'ext': '.py', 'lines': 18, 'name': 'xoptim/patterns_ml/__init__.py'}, {'chars': 3969, 'ext': '.py', 'lines': 122, 'name': 'xoptim/patterns_exp/constant_of_shape_scatter_nd.py'}, {'chars': 3148, 'ext': '.py', 'lines': 93, 'name': 'xoptim/patterns_exp/constants.py'}, {'chars': 2528, 'ext': '.py', 'lines': 76, 'name': 'xoptim/patterns_exp/unary_operators.py'}, {'chars': 2470, 'ext': '.py', 'lines': 81, 'name': 'xoptim/patterns_exp/simple_rotary.py'}, {'chars': 1567, 'ext': '.py', 'lines': 49, 'name': 'xoptim/patterns_exp/__init__.py'}, {'chars': 1510, 'ext': '.py', 'lines': 47, 'name': 'xoptim/patterns_exp/where_replace.py'}, {'chars': 14628, 'ext': '.py', 'lines': 481, 'name': 'xoptim/patterns_exp/binary_operators.py'}, {'chars': 5007, 'ext': '.py', 'lines': 159, 'name': 'xoptim/patterns/onnx_functions.py'}, {'chars': 23482, 'ext': '.py', 'lines': 738, 'name': 'xoptim/patterns/onnx_matmul.py'}, {'chars': 5143, 'ext': '.py', 'lines': 183, 'name': 'xoptim/patterns/onnx_any.py'}, {'chars': 8928, 'ext': '.py', 'lines': 290, 'name': 'xoptim/patterns/onnx_mul.py'}, {'chars': 15883, 'ext': '.py', 'lines': 488, 'name': 'xoptim/patterns/onnx_layer_normalization.py'}, {'chars': 16531, 'ext': '.py', 'lines': 515, 'name': 'xoptim/patterns/onnx_rotary.py'}, {'chars': 11002, 'ext': '.py', 'lines': 341, 'name': 'xoptim/patterns/onnx_reshape.py'}, {'chars': 1609, 'ext': '.py', 'lines': 47, 'name': 'xoptim/patterns/onnx_equal.py'}, {'chars': 5496, 'ext': '.py', 'lines': 168, 'name': 'xoptim/patterns/onnx_expand.py'}, {'chars': 8901, 'ext': '.py', 'lines': 294, 'name': 'xoptim/patterns/onnx_cast.py'}, {'chars': 1426, 'ext': '.py', 'lines': 44, 'name': 'xoptim/patterns/onnx_unsqueeze.py'}, {'chars': 2571, 'ext': '.py', 'lines': 83, 'name': 'xoptim/patterns/onnx_sub.py'}, {'chars': 1077, 'ext': '.py', 'lines': 37, 'name': 'xoptim/patterns/onnx_conv.py'}, {'chars': 2432, 'ext': '.py', 'lines': 73, 'name': 'xoptim/patterns/onnx_reduce.py'}, {'chars': 3070, 'ext': '.py', 'lines': 102, 'name': 'xoptim/patterns/onnx_split.py'}, {'chars': 4061, 'ext': '.py', 'lines': 124, 'name': 'xoptim/patterns/__init__.py'}, {'chars': 6577, 'ext': '.py', 'lines': 244, 'name': 'xoptim/patterns/onnx_transpose.py'}, {'chars': 1136, 'ext': '.py', 'lines': 42, 'name': 'xoptim/patterns/onnx_dropout.py'}, {'chars': 4857, 'ext': '.py', 'lines': 151, 'name': 'xoptim/patterns_ort/activation.py'}, {'chars': 1456, 'ext': '.py', 'lines': 49, 'name': 'xoptim/patterns_ort/gather_grad.py'}, {'chars': 1929, 'ext': '.py', 'lines': 55, 'name': 'xoptim/patterns_ort/activation_grad.py'}, {'chars': 8732, 'ext': '.py', 'lines': 318, 'name': 'xoptim/patterns_ort/fused_matmul.py'}, {'chars': 4150, 'ext': '.py', 'lines': 117, 'name': 'xoptim/patterns_ort/simplified_layer_normalization.py'}, {'chars': 1127, 'ext': '.py', 'lines': 36, 'name': 'xoptim/patterns_ort/__init__.py'}, {'chars': 1283, 'ext': '.py', 'lines': 44, 'name': 'xoptim/patterns_fix/add_reduction_scatter_nd.py'}, {'chars': 429, 'ext': '.py', 'lines': 14, 'name': 'xoptim/patterns_fix/__init__.py'}, {'chars': 3533, 'ext': '.py', 'lines': 122, 'name': 'torch_dynamo/dynger_backend.py'}, {'chars': 9450, 'ext': '.py', 'lines': 326, 'name': 'torch_dynamo/debug_backend.py'}, {'chars': 19269, 'ext': '.py', 'lines': 636, 'name': 'torch_dynamo/fast_backend.py'}, {'chars': 2428, 'ext': '.py', 'lines': 72, 'name': 'torch_dynamo/_dynamo_exporter.py'}, {'chars': 4073, 'ext': '.py', 'lines': 128, 'name': 'torch_dynamo/partition.py'}, {'chars': 567, 'ext': '.py', 'lines': 18, 'name': 'torch_dynamo/backend_helper.py'}, {'chars': 6857, 'ext': '.py', 'lines': 225, 'name': 'torch_dynamo/__init__.py'}, {'chars': 5839, 'ext': '.py', 'lines': 165, 'name': 'torch_bench/dort_profile.py'}, {'chars': 976, 'ext': '.py', 'lines': 21, 'name': 'torch_bench/bash_bench_huggingface_big.py'}, {'chars': 17772, 'ext': '.py', 'lines': 607, 'name': 'torch_bench/export_model_helper.py'}, {'chars': 52587, 'ext': '.py', 'lines': 2033, 'name': 'torch_bench/_bash_bench_benchmark_runner_agg_helper.py'}, {'chars': 14125, 'ext': '.py', 'lines': 506, 'name': 'torch_bench/_bash_bench_set_huggingface.py'}, {'chars': 4087, 'ext': '.py', 'lines': 376, 'name': 'torch_bench/_bash_bench_models_helper.py'}, {'chars': 3068, 'ext': '.py', 'lines': 116, 'name': 'torch_bench/_bash_bench_suites.py'}, {'chars': 5466, 'ext': '.py', 'lines': 186, 'name': 'torch_bench/bash_bench_agg.py'}, {'chars': 31457, 'ext': '.py', 'lines': 1173, 'name': 'torch_bench/_bash_bench_benchmark_runner_agg.py'}, {'chars': 791, 'ext': '.py', 'lines': 19, 'name': 'torch_bench/bash_bench_explicit.py'}, {'chars': 5860, 'ext': '.py', 'lines': 164, 'name': 'torch_bench/_bash_bench_set_dummies.py'}, {'chars': 5975, 'ext': '.py', 'lines': 197, 'name': 'torch_bench/dort_bench_profile.py'}, {'chars': 16620, 'ext': '.py', 'lines': 526, 'name': 'torch_bench/_dort_cmd_common.py'}, {'chars': 892, 'ext': '.py', 'lines': 21, 'name': 'torch_bench/bash_bench_issues.py'}, {'chars': 2326, 'ext': '.py', 'lines': 89, 'name': 'torch_bench/_bash_bench_set_issues.py'}, {'chars': 972, 'ext': '.py', 'lines': 27, 'name': 'torch_bench/bash_bench_torchbench.py'}, {'chars': 2379, 'ext': '.py', 'lines': 91, 'name': 'torch_bench/_bash_bench_set_explicit.py'}, {'chars': 44847, 'ext': '.py', 'lines': 1469, 'name': 'torch_bench/_bash_bench_benchmark_runner.py'}, {'chars': 9819, 'ext': '.py', 'lines': 308, 'name': 'torch_bench/dort_bench.py'}, {'chars': 994, 'ext': '.py', 'lines': 27, 'name': 'torch_bench/bash_bench_torchbench_ado.py'}, {'chars': 44365, 'ext': '.py', 'lines': 1597, 'name': 'torch_bench/_bash_bench_model_runner.py'}, {'chars': 827, 'ext': '.py', 'lines': 19, 'name': 'torch_bench/bash_bench_timm.py'}, {'chars': 48, 'ext': '.py', 'lines': 1, 'name': 'torch_bench/__init__.py'}, {'chars': 2675, 'ext': '.py', 'lines': 97, 'name': 'torch_bench/_bash_bench_set_huggingface_big.py'}, {'chars': 10000, 'ext': '.py', 'lines': 314, 'name': 'torch_bench/_bash_bench_cmd.py'}, {'chars': 13484, 'ext': '.py', 'lines': 532, 'name': 'torch_bench/_bash_bench_set_timm.py'}, {'chars': 7617, 'ext': '.py', 'lines': 264, 'name': 'torch_bench/_dort_cmd_common_models.py'}, {'chars': 1319, 'ext': '.py', 'lines': 43, 'name': 'torch_bench/check_model.py'}, {'chars': 1062, 'ext': '.py', 'lines': 23, 'name': 'torch_bench/bash_bench_huggingface.py'}, {'chars': 20453, 'ext': '.py', 'lines': 820, 'name': 'torch_bench/_bash_bench_set_torchbench.py'}, {'chars': 5300, 'ext': '.py', 'lines': 174, 'name': 'torch_bench/export_model.py'}, {'chars': 897, 'ext': '.py', 'lines': 34, 'name': 'torch_bench/_bash_bench_set_torchbench_ado.py'}, {'chars': 801, 'ext': '.py', 'lines': 19, 'name': 'torch_bench/bash_bench_untrained.py'}, {'chars': 685, 'ext': '.py', 'lines': 27, 'name': 'torch_bench/big_models/try_minilm_test.py'}, {'chars': 3273, 'ext': '.py', 'lines': 109, 'name': 'torch_bench/big_models/try_minilm.py'}, {'chars': 1825, 'ext': '.py', 'lines': 60, 'name': 'torch_bench/big_models/try_falcon_mamba_test.py'}, {'chars': 686, 'ext': '.py', 'lines': 27, 'name': 'torch_bench/big_models/try_smollm_test.py'}, {'chars': 2448, 'ext': '.py', 'lines': 93, 'name': 'torch_bench/big_models/try_codellama.py'}, {'chars': 2620, 'ext': '.py', 'lines': 93, 'name': 'torch_bench/big_models/try_falcon_mamba.py'}, {'chars': 914, 'ext': '.py', 'lines': 31, 'name': 'torch_bench/big_models/try_flux_t5_test.py'}, {'chars': 3076, 'ext': '.py', 'lines': 78, 'name': 'torch_bench/big_models/main_phi_35_vision.py'}, {'chars': 2922, 'ext': '.py', 'lines': 96, 'name': 'torch_bench/big_models/try_stable_diffusion_3.py'}, {'chars': 4514, 'ext': '.py', 'lines': 844, 'name': 'torch_bench/big_models/try_phi_35_vision.py'}, {'chars': 2755, 'ext': '.py', 'lines': 88, 'name': 'torch_bench/big_models/try_phi_35_vision_test.py'}, {'chars': 935, 'ext': '.py', 'lines': 32, 'name': 'torch_bench/big_models/try_flux_transformer_test.py'}, {'chars': 2349, 'ext': '.py', 'lines': 71, 'name': 'torch_bench/big_models/try_phi_35_mini_instruct_test.py'}, {'chars': 2339, 'ext': '.py', 'lines': 87, 'name': 'torch_bench/big_models/try_smollm.py'}, {'chars': 1455, 'ext': '.py', 'lines': 49, 'name': 'torch_bench/big_models/try_phi_35_mini_instruct.py'}, {'chars': 1649, 'ext': '.py', 'lines': 53, 'name': 'torch_bench/big_models/__init__.py'}, {'chars': 1864, 'ext': '.py', 'lines': 67, 'name': 'torch_bench/big_models/try_flux_transformer.py'}, {'chars': 692, 'ext': '.py', 'lines': 27, 'name': 'torch_bench/big_models/try_codellama_test.py'}, {'chars': 688, 'ext': '.py', 'lines': 26, 'name': 'torch_bench/big_models/try_stable_diffusion_3_test.py'}, {'chars': 1205, 'ext': '.py', 'lines': 47, 'name': 'torch_bench/big_models/try_flux_t5.py'}]