PhiΒΆ

Phi

<<<

import numpy as np
import torch
from transformers import PhiConfig
from transformers.models.phi.modeling_phi import PhiModel
from experimental_experiment.helpers import pretty_onnx
from experimental_experiment.torch_interpreter import to_onnx, ExportOptions


def ids_tensor(shape, vocab_size):
    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(np.random.randint(0, vocab_size - 1))

    return torch.tensor(data=values, dtype=torch.long).view(shape).contiguous()


config = PhiConfig(
    hidden_size=32,
    num_hidden_layers=2,
    vocab_size=1024,
    intermediate_size=16,
    max_position_embeddings=512,
    num_attention_heads=2,
    num_key_value_heads=2,
)
config._attn_implementation = "eager"

with torch.no_grad():

    model = PhiModel(config)

    batch, seq, vocab_size = 2, 1024, 1024

    input_ids = ids_tensor([batch, seq], vocab_size)
    input_mask = torch.tril(torch.ones(batch, seq, dtype=torch.float32))

    model(input_ids, input_mask)

    onx = to_onnx(
        model,
        (input_ids, input_mask),
        export_options=ExportOptions(decomposition_table="default"),
    )
    print(pretty_onnx(onx))

>>>

    opset: domain='' version=18
    doc_string: large_model=False, inline=False, external_threshold=102...
    input: name='input_ids' type=dtype('int64') shape=[2, 1024]
    input: name='attention_mask' type=dtype('float32') shape=[2, 1024]
    init: name='b_rotary_emb_inv_freq' type=float32 shape=(4,) -- array([1.   , 0.1  , 0.01 , 0.001], dtype=float32)-- DynamoInterpret.placeholder.0
    init: name='init7_s_0' type=int64 shape=() -- array([0])              -- Opset.make_node.1/Shape##Opset.make_node.1/Shape
    init: name='init7_s_1024' type=int64 shape=() -- array([1024])        -- Opset.make_node.1/Shape##Opset.make_node.1/Shape
    init: name='init7_s_1' type=int64 shape=() -- array([1])              -- Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape
    init: name='init7_s2_1024_1024' type=int64 shape=(2,) -- array([1024, 1024])-- Opset.make_node.1/Shape
    init: name='init7_s2_-1_1' type=int64 shape=(2,) -- array([-1,  1])   -- Opset.make_node.1/Shape
    init: name='init7_s1_1' type=int64 shape=(1,) -- array([1])           -- Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape
    init: name='init7_s4_2_1_1024_1024' type=int64 shape=(4,) -- array([   2,    1, 1024, 1024])-- GraphBuilder.make_shape_from_results.shape
    init: name='init1_s_' type=float32 shape=() -- array([0.], dtype=float32)-- shape_type_compute._cast_inputs.0
    init: name='init1_s1_' type=float32 shape=(1,) -- array([-3.403e+38], dtype=float32)-- Opset.make_node.1/Small
    init: name='init1_s_2' type=float32 shape=() -- array([1.], dtype=float32)-- shape_type_compute._cast_inputs.1(mul_Tensor)##shape_type_compute._cast_inputs.1(mul_Tensor)##shape_type_compute._cast_inputs.0##shape_type_compute._cast_inputs.0
    init: name='init7_s4_2_1024_2_16' type=int64 shape=(4,) -- array([   2, 1024,    2,   16])-- Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape##Opset.make_node.1/Shape
    init: name='init1_s_3' type=float32 shape=() -- array([4.], dtype=float32)-- shape_type_compute._cast_inputs.0##shape_type_compute._cast_inputs.0
    init: name='init1_s_4' type=float32 shape=() -- array([0.5], dtype=float32)-- shape_type_compute._cast_inputs.1(mul_Tensor)##shape_type_compute._cast_inputs.1(mul_Tensor)
    init: name='init1_s1_4' type=float32 shape=(1,) -- array([3.], dtype=float32)-- Opset.make_node.1/Small##Opset.make_node.1/Small
    init: name='init1_s_5' type=float32 shape=() -- array([0.045], dtype=float32)-- shape_type_compute._cast_inputs.1(mul_Tensor)##shape_type_compute._cast_inputs.1(mul_Tensor)
    init: name='init1_s_6' type=float32 shape=() -- array([0.798], dtype=float32)-- shape_type_compute._cast_inputs.1(mul_Tensor)##shape_type_compute._cast_inputs.1(mul_Tensor)
    init: name='init7_s2_0_1' type=int64 shape=(2,) -- array([0, 1])      -- UnsqueezeUnsqueezePattern.apply.new_axis##UnsqueezeUnsqueezePattern.apply.new_axis
    init: name='init7_s2_1_2' type=int64 shape=(2,) -- array([1, 2])      -- UnsqueezeUnsqueezePattern.apply.new_axis
    init: name='init7_s2_0_2' type=int64 shape=(2,) -- array([0, 2])      -- UnsqueezeUnsqueezePattern.apply.new_axis
    init: name='init1_s32_' type=float32 shape=(32,)                      -- LayerNormalizationPattern.apply.scale##LayerNormalizationPattern.apply.scale##LayerNormalizationPattern.apply.scale
    init: name='init1_s32_2' type=float32 shape=(32,)                     -- LayerNormalizationPattern.apply.bias##LayerNormalizationPattern.apply.bias##LayerNormalizationPattern.apply.bias
    init: name='init7_s2_-1_32' type=int64 shape=(2,) -- array([-1, 32])  -- MatMulAddPattern.new_shape.1##MatMulAddPattern.new_shape.3##MatMulAddPattern.new_shape.1##MatMulAddPattern.new_shape.3
    init: name='init7_s3_2_1024_-1' type=int64 shape=(3,) -- array([   2, 1024,   -1])-- MatMulAddPattern.new_shape.2##MatMulAddPattern.new_shape.2
    init: name='init7_s2_8_8' type=int64 shape=(2,) -- array([8, 8])      -- SlicesSplitPattern.apply.splits##SlicesSplitPattern.apply.splits##SlicesSplitPattern.apply.splits##SlicesSplitPattern.apply.splits
    init: name='init7_s2_4_4' type=int64 shape=(2,) -- array([4, 4])      -- SlicesSplitPattern.apply.splits##SlicesSplitPattern.apply.splits##SlicesSplitPattern.apply.splits##SlicesSplitPattern.apply.splits
    init: name='embed_tokens.weight' type=float32 shape=(1024, 32)        -- DynamoInterpret.placeholder.1/P(embed_tokens.weight)
    init: name='layers.0.self_attn.q_proj.weight' type=float32 shape=(32, 32)-- DynamoInterpret.placeholder.1/P(layers.0.self_attn.q_proj.weight)
    init: name='layers.0.self_attn.k_proj.weight' type=float32 shape=(32, 32)-- DynamoInterpret.placeholder.1/P(layers.0.self_attn.k_proj.weight)
    init: name='layers.0.self_attn.v_proj.weight' type=float32 shape=(32, 32)-- DynamoInterpret.placeholder.1/P(layers.0.self_attn.v_proj.weight)
    init: name='layers.0.self_attn.dense.weight' type=float32 shape=(32, 32)-- DynamoInterpret.placeholder.1/P(layers.0.self_attn.dense.weight)
    init: name='layers.0.mlp.fc1.weight' type=float32 shape=(16, 32)      -- DynamoInterpret.placeholder.1/P(layers.0.mlp.fc1.weight)
    init: name='layers.0.mlp.fc2.weight' type=float32 shape=(32, 16)      -- DynamoInterpret.placeholder.1/P(layers.0.mlp.fc2.weight)
    init: name='layers.1.self_attn.q_proj.weight' type=float32 shape=(32, 32)-- DynamoInterpret.placeholder.1/P(layers.1.self_attn.q_proj.weight)
    init: name='layers.1.self_attn.k_proj.weight' type=float32 shape=(32, 32)-- DynamoInterpret.placeholder.1/P(layers.1.self_attn.k_proj.weight)
    init: name='layers.1.self_attn.v_proj.weight' type=float32 shape=(32, 32)-- DynamoInterpret.placeholder.1/P(layers.1.self_attn.v_proj.weight)
    init: name='layers.1.self_attn.dense.weight' type=float32 shape=(32, 32)-- DynamoInterpret.placeholder.1/P(layers.1.self_attn.dense.weight)
    init: name='layers.1.mlp.fc1.weight' type=float32 shape=(16, 32)      -- DynamoInterpret.placeholder.1/P(layers.1.mlp.fc1.weight)
    init: name='layers.1.mlp.fc2.weight' type=float32 shape=(32, 16)      -- DynamoInterpret.placeholder.1/P(layers.1.mlp.fc2.weight)
    ConstantOfShape(init7_s2_1024_1024, value=[-3.402823...) -> full
      Trilu(full, init7_s_1, upper=1) -> triu
    Gather(embed_tokens.weight, input_ids) -> embedding
      LayerNormalization(embedding, init1_s32_, init1_s32_2, axis=-1, epsilon=0.00, stash_type=1) -> _onx_div0
    Range(init7_s_0, init7_s_1024, init7_s_1) -> arange
      Unsqueeze(arange, init7_s2_0_1) -> unsqueeze_9
        Cast(unsqueeze_9, to=1) -> _to_copy_1
    Range(init7_s_0, init7_s_1024, init7_s_1) -> arange_1
    Reshape(arange, init7_s2_-1_1) -> view
      Greater(arange_1, view) -> gt
        Cast(gt, to=1) -> _onx_cast0
        Mul(triu, _onx_cast0) -> _onx_mul0
          Unsqueeze(_onx_mul0, init7_s2_0_1) -> unsqueeze_4
            Expand(unsqueeze_4, init7_s4_2_1_1024_1024) -> expand_1
    Unsqueeze(attention_mask, init7_s2_1_2) -> unsqueeze_6
      Add(expand_1, unsqueeze_6) -> add
    Reshape(init1_s_, init7_s1_1) -> _onx_reshape0
      Equal(add, _onx_reshape0) -> eq
        Where(eq, init1_s1_, expand_1) -> masked_fill
    Unsqueeze(b_rotary_emb_inv_freq, init7_s2_0_2) -> unsqueeze_8
      MatMul(unsqueeze_8, _to_copy_1) -> matmul
        Transpose(matmul, perm=[0,2,1]) -> transpose
          Concat(transpose, transpose, axis=-1) -> cat
            Cos(cat) -> cos
              Unsqueeze(cos, init7_s1_1) -> unsqueeze_10
            Sin(cat) -> sin
              Unsqueeze(sin, init7_s1_1) -> unsqueeze_11
    Transpose(layers.0.self_attn.q_proj.weight, perm=[1,0]) -> _onx_transpose0
      MatMul(_onx_div0, _onx_transpose0) -> _onx_matmul0
        Reshape(_onx_matmul0, init7_s4_2_1024_2_16) -> view_1
          Transpose(view_1, perm=[0,2,1,3]) -> transpose_1
            Split(transpose_1, init7_s2_8_8, axis=3) -> slice_24, slice_25
              Split(slice_24, init7_s2_4_4, axis=3) -> slice_28, slice_29
                Neg(slice_29) -> neg
                Concat(neg, slice_28, axis=-1) -> cat_1
                Mul(cat_1, unsqueeze_11) -> mul_4
    Transpose(layers.0.self_attn.k_proj.weight, perm=[1,0]) -> _onx_transpose02
      MatMul(_onx_div0, _onx_transpose02) -> _onx_matmul02
        Reshape(_onx_matmul02, init7_s4_2_1024_2_16) -> view_2
          Transpose(view_2, perm=[0,2,1,3]) -> transpose_2
            Split(transpose_2, init7_s2_8_8, axis=3) -> slice_26, slice_27
              Split(slice_26, init7_s2_4_4, axis=3) -> slice_30, slice_31
                Neg(slice_31) -> neg_1
                Concat(neg_1, slice_30, axis=-1) -> cat_2
                Mul(cat_2, unsqueeze_11) -> mul_6
    Transpose(layers.0.self_attn.v_proj.weight, perm=[1,0]) -> _onx_transpose03
      MatMul(_onx_div0, _onx_transpose03) -> _onx_matmul03
        Reshape(_onx_matmul03, init7_s4_2_1024_2_16) -> view_3
          Transpose(view_3, perm=[0,2,1,3]) -> output_2
    Mul(slice_24, unsqueeze_10) -> mul_3
      Add(mul_3, mul_4) -> add_1
        Concat(add_1, slice_25, axis=-1) -> cat_3
    Mul(slice_26, unsqueeze_10) -> mul_5
      Add(mul_5, mul_6) -> add_2
        Concat(add_2, slice_27, axis=-1) -> output_1
          Transpose(output_1, perm=[0,1,3,2]) -> transpose_4
          MatMul(cat_3, transpose_4) -> matmul_1
    Reshape(init1_s_3, init7_s1_1) -> _onx_reshape04
      Div(matmul_1, _onx_reshape04) -> div
        Add(div, masked_fill) -> add_3
          Softmax(add_3, axis=-1) -> softmax
            MatMul(softmax, output_2) -> matmul_2
              Transpose(matmul_2, perm=[0,2,1,3]) -> transpose_5
                Reshape(transpose_5, init7_s2_-1_32) -> MatMulAddPattern--view_4
    Transpose(layers.0.mlp.fc1.weight, perm=[1,0]) -> _onx_transpose05
      MatMul(_onx_div0, _onx_transpose05) -> _onx_matmul05
        Pow(_onx_matmul05, init1_s1_4) -> pow_1
    Reshape(init1_s_4, init7_s1_1) -> _onx_reshape05
      Mul(_onx_matmul05, _onx_reshape05) -> _onx_mul05
    Reshape(init1_s_5, init7_s1_1) -> _onx_reshape06
      Mul(pow_1, _onx_reshape06) -> _onx_mul06
        Add(_onx_matmul05, _onx_mul06) -> add_4
    Reshape(init1_s_6, init7_s1_1) -> _onx_reshape07
      Mul(add_4, _onx_reshape07) -> _onx_mul07
        Tanh(_onx_mul07) -> tanh
    Reshape(init1_s_2, init7_s1_1) -> _onx_reshape08
      Add(tanh, _onx_reshape08) -> add_5
        Mul(_onx_mul05, add_5) -> mul_10
    Transpose(layers.0.mlp.fc2.weight, perm=[1,0]) -> _onx_transpose06
      MatMul(mul_10, _onx_transpose06) -> _onx_matmul06
        Reshape(_onx_matmul06, init7_s2_-1_32) -> MatMulAddPattern--view_42
          Gemm(MatMulAddPattern--view_4, layers.0.self_attn.dense.weight, MatMulAddPattern--view_42, transB=1) -> MatMulAddPattern--view_43
            Reshape(MatMulAddPattern--view_43, init7_s3_2_1024_-1) -> add_6
      Add(add_6, embedding) -> add_7
        LayerNormalization(add_7, init1_s32_, init1_s32_2, axis=-1, epsilon=0.00, stash_type=1) -> _onx_div02
    Transpose(layers.1.self_attn.q_proj.weight, perm=[1,0]) -> _onx_transpose07
      MatMul(_onx_div02, _onx_transpose07) -> _onx_matmul07
        Reshape(_onx_matmul07, init7_s4_2_1024_2_16) -> view_5
          Transpose(view_5, perm=[0,2,1,3]) -> transpose_6
            Split(transpose_6, init7_s2_8_8, axis=3) -> slice_38, slice_39
              Split(slice_38, init7_s2_4_4, axis=3) -> slice_42, slice_43
                Neg(slice_43) -> neg_2
                Concat(neg_2, slice_42, axis=-1) -> cat_5
                Mul(cat_5, unsqueeze_11) -> mul_12
    Transpose(layers.1.self_attn.k_proj.weight, perm=[1,0]) -> _onx_transpose08
      MatMul(_onx_div02, _onx_transpose08) -> _onx_matmul08
        Reshape(_onx_matmul08, init7_s4_2_1024_2_16) -> view_6
          Transpose(view_6, perm=[0,2,1,3]) -> transpose_7
            Split(transpose_7, init7_s2_8_8, axis=3) -> slice_40, slice_41
              Split(slice_40, init7_s2_4_4, axis=3) -> slice_44, slice_45
                Neg(slice_45) -> neg_3
                Concat(neg_3, slice_44, axis=-1) -> cat_6
                Mul(cat_6, unsqueeze_11) -> mul_14
    Transpose(layers.1.self_attn.v_proj.weight, perm=[1,0]) -> _onx_transpose09
      MatMul(_onx_div02, _onx_transpose09) -> _onx_matmul09
        Reshape(_onx_matmul09, init7_s4_2_1024_2_16) -> view_7
          Transpose(view_7, perm=[0,2,1,3]) -> output_4
    Mul(slice_38, unsqueeze_10) -> mul_11
      Add(mul_11, mul_12) -> add_8
        Concat(add_8, slice_39, axis=-1) -> cat_7
    Mul(slice_40, unsqueeze_10) -> mul_13
      Add(mul_13, mul_14) -> add_9
        Concat(add_9, slice_41, axis=-1) -> output_3
          Transpose(output_3, perm=[0,1,3,2]) -> transpose_9
          MatMul(cat_7, transpose_9) -> matmul_3
    Reshape(init1_s_3, init7_s1_1) -> _onx_reshape09
      Div(matmul_3, _onx_reshape09) -> div_1
        Add(div_1, masked_fill) -> add_10
          Softmax(add_10, axis=-1) -> softmax_1
            MatMul(softmax_1, output_4) -> matmul_4
              Transpose(matmul_4, perm=[0,2,1,3]) -> transpose_10
                Reshape(transpose_10, init7_s2_-1_32) -> MatMulAddPattern--view_8
    Transpose(layers.1.mlp.fc1.weight, perm=[1,0]) -> _onx_transpose011
      MatMul(_onx_div02, _onx_transpose011) -> _onx_matmul011
        Pow(_onx_matmul011, init1_s1_4) -> pow_2
    Reshape(init1_s_4, init7_s1_1) -> _onx_reshape010
      Mul(_onx_matmul011, _onx_reshape010) -> _onx_mul09
    Reshape(init1_s_5, init7_s1_1) -> _onx_reshape011
      Mul(pow_2, _onx_reshape011) -> _onx_mul010
        Add(_onx_matmul011, _onx_mul010) -> add_11
    Reshape(init1_s_6, init7_s1_1) -> _onx_reshape012
      Mul(add_11, _onx_reshape012) -> _onx_mul011
        Tanh(_onx_mul011) -> tanh_1
    Reshape(init1_s_2, init7_s1_1) -> _onx_reshape013
      Add(tanh_1, _onx_reshape013) -> add_12
        Mul(_onx_mul09, add_12) -> mul_18
    Transpose(layers.1.mlp.fc2.weight, perm=[1,0]) -> _onx_transpose012
      MatMul(mul_18, _onx_transpose012) -> _onx_matmul012
        Reshape(_onx_matmul012, init7_s2_-1_32) -> MatMulAddPattern--view_82
          Gemm(MatMulAddPattern--view_8, layers.1.self_attn.dense.weight, MatMulAddPattern--view_82, transB=1) -> MatMulAddPattern--view_83
            Reshape(MatMulAddPattern--view_83, init7_s3_2_1024_-1) -> add_13
        Add(add_13, add_7) -> add_14
          LayerNormalization(add_14, init1_s32_, init1_s32_2, axis=-1, epsilon=0.00, stash_type=1) -> output_0
    output: name='output_0' type=dtype('float32') shape=[2, 1024, 32]
    output: name='output_1' type=dtype('float32') shape=[2, 2, 1024, 16]
    output: name='output_2' type=dtype('float32') shape=[2, 2, 1024, 16]
    output: name='output_3' type=dtype('float32') shape=[2, 2, 1024, 16]
    output: name='output_4' type=dtype('float32') shape=[2, 2, 1024, 16]