experimental_experiment.torch_bench.export_model_helper¶
- class experimental_experiment.torch_bench.export_model_helper.WrapExecutorchForTorch(model: Any, forward_method: Callable)[source]¶
Wraps a executorch model.
- class experimental_experiment.torch_bench.export_model_helper.WrapForTorch(torch_model: Any)[source]¶
Wraps a torch model.
- class experimental_experiment.torch_bench.export_model_helper.WrapInferenceSessionForTorch(sess: Any, nvtx: bool = False)[source]¶
Wraps an onnxruntime.InferenceSession to overload method run to support
torch.Tensor
.
- experimental_experiment.torch_bench.export_model_helper.common_export(model: Any, inputs: List[Any], exporter: str = 'custom', target_opset: int = 18, folder: str = '', filename: str = 'model.onnx', dynamic_shapes: Any | None = None, verbose: int = 0, optimize_oxs: str = '', ort_optimize: bool = False, large_model: bool = False, order: bool = False, enable_pattern: str | List[str] | None = None, disable_pattern: str | List[str] | None = None, stats: Dict[str, Any] | None = None)[source]¶
Exports a model into a folder.
- Parameters:
model – model
exporter – torchscript, onnx_dynamo, dynamo_export, custom, …
folder – folder to export into
filename – onnx filename
inputs – inputs
dynamic_shapes – dynamic shapes
target_opset – target opset
optimize_oxs – run optimization with onnxscript
enable_pattern – patterns to apply
disable_pattern – patterns not to apply
verbose – verbosity
stats – if not None, populates this dictionary with statistics about time
optimize_oxs – optimize
ort_optimize – produces a file showing onnxruntime optimizations
large_model – save weights as external
order – optimize order
- Returns:
onnx proto
- experimental_experiment.torch_bench.export_model_helper.compute_weight_size(model: Any) int [source]¶
Returns the model size for a torch model or an onnx model. That includes the weights.
- experimental_experiment.torch_bench.export_model_helper.run_inference(model: Any, example_inputs: List[Any], warmup: int = 5, repeat: int = 5, verbose: int = 0) dict[str, Any] [source]¶
Runs multiple times the same inference.
- Args:
model: torch model to run example_inputs: dummy inputs warmup: number of iterations to warmup repeat: number of iterations to repeat verbose: verbosity
- Returns:
statistcs
- experimental_experiment.torch_bench.export_model_helper.run_onnx_inference(model: ModelProto, example_inputs: List[Any], warmup: int = 5, repeat: int = 5, verbose: int = 0, ort_optimize: bool = True, torch_model: Any | None = None) Dict[str, Any] | None [source]¶
Runs multiple times the same inference with onnxruntime.
- Args:
model: torch model to run example_inputs: dummy inputs warmup: number of iterations to warmup repeat: number of iterations to repeat verbose: verbosity ort_optimize: enable, disable onnxruntime optimizations torch_model: if not empty, measure the discrepancies
- Returns:
statistcs