Source code for experimental_experiment.torch_interpreter.onnx_export

import inspect
import os
import pprint
import time
import warnings
from typing import Any, Callable, Dict, List, Optional, Sequence, Set, Tuple, Union
from onnx import ModelProto, save_model
from onnx.defs import onnx_opset_version
from onnx.model_container import ModelContainer
from ..helpers import string_type
from ..xbuilder.graph_builder import GraphBuilder, OptimizationOptions, FunctionOptions
from .export_options import ExportOptions


[docs] def match_input_parameters( model: Any, names: List[str], args: Optional[Tuple[Any, ...]] = None ) -> Dict[str, Any]: """ Maps the given names with the parameter names in the model. :param model: model :param names: names to retrieve :param args: available inputs :return: dictionary with values Example: .. runpython:: :showcode: import torch from torch._subclasses.fake_tensor import FakeTensorMode from experimental_experiment.reference import ExtendedReferenceEvaluator from experimental_experiment.torch_interpreter import to_onnx, match_input_parameters class Neuron(torch.nn.Module): def __init__(self, n_dims: int, n_targets: int): super(Neuron, self).__init__() self.linear = torch.nn.Linear(n_dims, n_targets) def forward(self, x): return torch.relu(self.linear(x)) fake_mode = FakeTensorMode() converter = fake_mode.fake_tensor_converter fake_x = converter.from_real_tensor(fake_mode, torch.rand(2, 5)) with fake_mode: model = Neuron(5, 3) onx = to_onnx(model, (fake_x,)) # expected values with a different model not_fake_model = Neuron(5, 3) x = torch.rand(2, 5) expected = not_fake_model(x) print(expected) # converts the model, fill inputs with the weights names = [i.name for i in onx.graph.input] pfeeds = match_input_parameters(not_fake_model, names, (x,)) nfeeds = {k:v.detach().numpy() for k,v in pfeeds.items()} ref = ExtendedReferenceEvaluator(onx) got = ref.run(None, nfeeds) print(got) """ def cl(s): s = s.replace(".", "_") return s weights = dict(model.named_parameters()) buffers = dict(model.named_buffers()) constants = model.state_dict() mapping = {} for k in weights: mapping[f"p_{cl(k)}"] = (k, weights[k], 0) for k in buffers: mapping[f"L__self__{cl(k)}"] = (k, buffers[k], 1) for k in constants: mapping[k] = (k, constants[k], 2) feeds = {} pos = 0 for name in names: if name in mapping: t = mapping[name] feeds[name] = t[1] elif args is not None: # We assume it is an input. assert pos < len( args ), f"Unable to find argument at position {pos} in args (len(args)={len(args)}" feeds[name] = args[pos] pos += 1 assert len(names) == 0 or len(feeds) > 0, ( f"Unable to retrieve any name from {names!r}, " f"len(args)={len(args) if args else 0}, " f"mapping={sorted(mapping)}" ) return feeds
def _retrieve( name: str, value: Any, weights: Dict[str, "torch.Tensor"], # noqa: F821 buffers: Dict[str, "torch.Tensor"], # noqa: F821 constants: Dict[str, "torch.Tensor"], # noqa: F821 mapping: Dict[str, Tuple[str, bool]], graph_builder: "GraphBuilder", # noqa: F821 debug: Optional[Any] = None, exc: bool = True, ) -> "torch.Tensor": # noqa: F821 """ Sent to the :class:`DynamoInterpreter <experimental_experiment.torch_interpreter.interpreter.DynamoInterpreter>`. It retrieves the weights. :param name: name to retrieve :param value: value :param weights: mapping name, weights :param buffers: mapping name, buffer :param constants: mapping name, constants :param mapping: mapping name, (new_name, is_weight) :param graph_builder: graph builder :param debug: any debug information when an issue is raised :param exc: raises an exception if not found """ if name not in mapping: import torch # This is not a weight but a constant. if isinstance(value, torch.Tensor) and "FakeTensor" not in str(type(value)): return value if len(weights) == 0 and len(buffers) == 0 and len(constants) == 0: # It has to be an input. return None if exc: raise RuntimeError( f"Unable to find {name!r}." f"\nAvailable weights: {list(sorted(weights))}. " f"\nAvailable buffers: {list(sorted(buffers))}. " f"\nAvailable constants: {list(sorted(constants))}. " f"\nmapping={mapping}" f"{graph_builder.get_debug_msg() if graph_builder else ''}" f"\nvalue={value.dtype}:{value.shape}\n{value}" ) return None new_name, is_weight = mapping[name] if is_weight: # weights if new_name not in weights: if new_name.startswith("L__self___") and new_name[len("L__self___") :] in weights: new_name = new_name[len("L__self___") :] assert new_name in weights, ( f"Unexpected name {name!r} for input " f"{name!r} mapped to weight {new_name!r}, " f"cannot be found in {', '.join(sorted(weights))}." ) import torch value = weights[new_name] assert isinstance(value, torch.Tensor), ( f"Unexpected type {type(value)} for input " f"{name!r} mapped to weight {new_name!r}." ) return value # buffers and constants or lieft tensors if new_name in buffers: value = buffers[new_name] import torch assert isinstance(value, torch.Tensor), ( f"Unexpected type {type(value)} for buffer " f"{name!r} mapped to buffer {new_name!r}." ) return value if new_name in constants: value = constants[new_name] import torch assert isinstance(value, torch.Tensor), ( f"Unexpected type {type(value)} for constant " f"{name!r} mapped to constant {new_name!r}." ) return value if new_name.startswith("L__self___") and new_name[len("L__self___") :] in buffers: new_name = new_name[len("L__self___") :] value = buffers[new_name] import torch assert isinstance(value, torch.Tensor), ( f"Unexpected type {type(value)} for buffer " f"{name!r} mapped to buffer {new_name!r}." ) return value if new_name.startswith("c_") and new_name[len("c_") :] in constants: new_name = new_name[len("c_") :] value = constants[new_name] import torch assert isinstance(value, torch.Tensor), ( f"Unexpected type {type(value)} for constant " f"{name!r} mapped to constant {new_name!r}." ) return value if exc: raise ValueError( f"Unexpected name {name!r} for input " f"{name!r} mapped to buffer or constant {new_name!r}, " f"cannot be found in {', '.join(sorted(buffers))} or " f"{', '.join(sorted(constants))}" ) return None
[docs] class SubModuleNaming: """ A class which maps class submodule name and local functions in order to give short but unique names. """ def __init__(self, mod: "torch.nn.Module"): # noqa: F821 self.mod = mod self._memo = {} self._names = {} def __call__(self, name: str, submod: "torch.nn.Module") -> str: # noqa: F821 if type(submod) in self._memo: self._names[type(submod)].append(name) return self._memo[type(submod)] type_name = submod.__class__.__name__ ends = f"<locals>.{type_name}'>" if str(type(submod)).endswith(ends): type_name = ends[:-2] ends = f"__main__.{type_name}'>" if str(type(submod)).endswith(ends): type_name = ends[:-2] if type_name not in self._memo: self._memo[type(submod)] = type_name self._memo[type_name] = type(submod) self._names[type(submod)] = [name] return type_name raise NotImplementedError( f"Unable to give a unique name to submodule {name!r}, " f"module={submod.__module__!r}, " f"type_name={type_name!r}, type(submod)={type(submod)}, " f"already given:\n{pprint.pformat(self._memo)}" f"\nnames:\n{pprint.pformat(self._names)}" )
[docs] class ParameterNaming: """ A class which maps parameters name in the original module and the different they have in the fx.graph. """ def __init__(self, mod: "torch.nn.Module"): # noqa: F821 self.mod = mod self._idmap = {} self._id_modules = {} self.display = {} self._unable_to_map = set() for name, p in mod.named_parameters(): self._idmap[name] = p self.display[name] = name new_key = name.replace(".", "_") if new_key != name: assert ( new_key not in self._id_modules ), f"Two parameters have similar names {name!r} mapped into {new_key!r}" self._idmap[new_key] = name self.display[new_key] = name else: self._idmap[new_key] = name for name, submod in mod.named_modules(): if not name: continue self._id_modules[name] = submod new_key = name.replace(".", "_") if new_key != name: assert ( new_key not in self._id_modules ), f"Two modules have similar names {name!r} mapped into {new_key!r}" self._id_modules[new_key] = name else: self._id_modules[new_key] = name updates = {} for k in self._idmap: kl = k.lower() if kl == k: continue assert ( kl not in self._idmap ), f"Ambiguities for weights {kl!r} and {k!r} in {pprint.pformat(self._idmap)}" updates[kl] = self._idmap[k] self._idmap.update(updates) def __call__( self, name: str, value: "torch.nn.Parameter", # noqa: F821 node: "torch.fx.Node", # noqa: F821 prefix: Optional[str] = None, ) -> str: assert isinstance( name, str ), f"Unexpected type {type(name)} for name{self.get_debug_msg()}" if "from_node" in node.meta: from_node = node.meta["from_node"] assert ( len(from_node) == 1 ), f"Parameter {name!r} seems shared accross multiple objects{from_node}" key = None if name.startswith("p_") and name[2:] in self._idmap: key = name[2:] elif name.startswith("p_fn_"): key = name[len("p_fn_") :] elif "from_node" in node.meta: key = f"{from_node[0][1]}_{name}" if key.startswith("L__self___"): key = key[len("L__self___") :] elif name in self._idmap: key = name if key is None: assert prefix is not None, ( f"Unable to find parameter {name!r} from node {node!r} " f"with a null prefix, " f"with node.meta={pprint.pformat(node.meta)}\n" f"{pprint.pformat(self.display)}" ) key = f"{prefix}.{name}" if key not in self._idmap: # There may be unknown name if the module dynamically creates name. self._unable_to_map.add(name) return name res = self._idmap[key] if not isinstance(res, str): return key assert isinstance( res, str ), f"Unexpected type for key={key!r}, name={name!r}, type(res)={type(res)!r}" return res
def _make_builder_interpreter( mod: Union["torch.nn.Module", "torch.fx.GraphModule"], # noqa: F821 args: Optional[Sequence["torch.Tensor"]] = None, # noqa: F821 kwargs: Optional[Dict[str, "torch.Tensor"]] = None, # noqa: F821 input_names: Optional[Sequence[str]] = None, target_opset: Union[int, Dict[str, int]] = 18, as_function: bool = False, optimization_options: Optional[OptimizationOptions] = None, verbose: int = 0, raise_list: Optional[Set[str]] = None, dynamic_shapes: Optional[Union[Dict[str, Any], Tuple[Any]]] = None, tracing_mode: str = "symbolic", same_signature: bool = True, dispatcher: Optional["Dispatcher"] = None, # noqa: F821 export_options: Optional[Union[str, ExportOptions]] = None, optimize_submodules: bool = False, function_options: Optional[FunctionOptions] = None, local_domain: str = "local_functions", submodule_naming: Optional[Callable] = None, parameter_naming: Optional[Callable] = None, module_name: Optional[str] = None, ) -> Tuple[ Union["torch.export.ExportedProgram", "torch.fx.GraphModule"], # noqa: F821 GraphBuilder, "DynamoInterpreter", # noqa: F821 ]: """ Exports a torch model into ONNX using `dynamo export <https://pytorch.org/tutorials/intermediate/torch_export_tutorial.html>`_. :param mod: torch module :param args: input arguments :param kwargs: keyword attributes :param input_names: input names :param target_opset: targeted opset or targeted opsets as a dictionary :param as_function: export as a ModelProto or a FunctionProto :param optimization_options: optimization options :param verbose: verbosity level :param raise_list: the builder stops any time a name falls into that list, this is a debbuging tool :param dynamic_shapes: see :epkg:`torch.export.export` or ``torch._dynamo.export`` :param same_signature: same signature :param tracing_mode: tracing model :param dispatcher: see :class:`experimental_experiment.torch_interpreter.Dispatcher` :param export_options: Optional[Union[str, ExportOptions]] = None, :param optimize_submodules: optimizes submodules, this is done while building the model, and not at the end :param function_options: how to deal with local functions :param local_domain: domain name to use for local functions if not specified :param submodule_naming: a function which returns a submodule name in the onnx graph :param parameter_naming: a function which returns a parameter name in the onnx graph :param module_name: name of the module, to help retrieve the parameter name :return: onnx model """ def _get(x, att=None): if att is None: if isinstance(x, dict): return list(sorted(x)) if isinstance(x, list): return x return [x] if hasattr(x, att): return _get(getattr(x, att)) return ["?"] with warnings.catch_warnings(): warnings.simplefilter("ignore") import torch import torch.export if export_options is None: export_options = ExportOptions() if isinstance(mod, torch.fx.GraphModule): if verbose > 0: print(f"[_make_builder_interpreter] use existing {type(mod)}") graph_module = mod weights = dict(graph_module.named_parameters()) buffers = dict(graph_module.named_buffers()) constants = mod.state_dict() mapping = {} if os.environ.get("PRINT_GRAPH_MODULE", "0") in (1, "1"): print("-- GIVEN GRAPH MODULE") print(graph_module.graph) exported_program = None elif isinstance(mod, torch.nn.Module) and mod.__class__.__name__ == "InterpreterModule": # comes from unflatten function if verbose > 0: print(f"[_make_builder_interpreter] use existing submodule {type(mod)}") graph_module = mod weights = dict(graph_module.named_parameters()) buffers = dict(graph_module.named_buffers()) constants = mod.state_dict() mapping = {} if os.environ.get("PRINT_GRAPH_MODULE", "0") in (1, "1"): print("-- GIVEN GRAPH MODULE") print(graph_module.graph) exported_program = None else: if verbose > 0: print(f"[_make_builder_interpreter] export_options={export_options!r}") print(f"[_make_builder_interpreter] input args={string_type(args)}") print(f"[_make_builder_interpreter] input kwargs={string_type(kwargs)}") print(f"[_make_builder_interpreter] dynamic_shapes={dynamic_shapes}") print( f"[_make_builder_interpreter] same_signature={same_signature}, " f"tracing_mode={tracing_mode}" ) # If this step fails, try bypass_export_some_errors. exported_program = export_options.export( mod, args if isinstance(args, tuple) else (tuple() if args is None else args), kwargs, tracing_mode=tracing_mode, dynamic_shapes=dynamic_shapes, same_signature=same_signature, input_names=input_names, verbose=verbose, ) graph_module = exported_program.graph_module if os.environ.get("PRINT_GRAPH_MODULE", "0") in (1, "1"): print("-- EXPORTED GRAPH MODULE") print(graph_module.graph) try: weights = dict(exported_program.named_parameters()) except AttributeError: weights = dict(mod.named_parameters()) try: buffers = dict(exported_program.named_buffers()) except AttributeError: buffers = dict(mod.named_buffers()) if hasattr(exported_program, "tensor_constants"): constants = exported_program.tensor_constants or {} else: # A bug may appear later. constants = {} if hasattr(exported_program, "graph_signature"): sig_mismatch_constants = set(k.replace(".", "_") for k in constants) signature = exported_program.graph_signature mapping = {} for k, v in signature.inputs_to_parameters.items(): mapping[k] = v, True for k, v in signature.inputs_to_buffers.items(): mapping[k] = v, False for k, v in signature.inputs_to_lifted_tensor_constants.items(): mapping[k] = v, False assert ( k in constants or k[2:] in constants or k[2:] in sig_mismatch_constants or k[2:].replace("getattr_l__self", "getattr_L__self") in constants ), ( f"export_options={export_options!r}" f"A constant {k!r}, k[2:]={k[2:]!r}, v={v!r} was detected " f"in the signature was not retrieved from the model. " f"k in constants={k in constants}, " f"k[2:] in constants={k[2:] in constants}, " f"type(constants)={type(constants)}, " f"\nlist(constants)={pprint.pformat(list(sorted(constants)))}" f"\nexported_mod.tensor_constants=" f"{pprint.pformat(_get(exported_program, 'tensor_constants'))}" f"\nexported_mod._constants=" f"{pprint.pformat(_get(exported_program, '_constants'))}" f"\nsig_mismatch_constants=" f"{pprint.pformat(_get(sig_mismatch_constants))}" f"\ndir(export_mod)={dir(exported_program)}" f"\ndir(mod)={dir(mod)}" ) else: mapping = {} for k in weights: mapping[k] = k, True for k in buffers: mapping[k] = k, False for k in constants: mapping[k] = k, False builder = GraphBuilder( target_opset, input_names=input_names, as_function=as_function, optimization_options=optimization_options, args=args, verbose=verbose, raise_list=raise_list, dynamic_shapes=dynamic_shapes, local_domain=local_domain, signature=inspect.signature(mod.forward), ) def retrieve( name, value, debug=None, weights=weights, buffers=buffers, mapping=mapping, constants=constants, builder=builder, exc=True, ): return _retrieve( name, value, weights, buffers, constants, mapping, builder, debug, exc=exc ) from .interpreter import DynamoInterpreter interpreter = DynamoInterpreter( builder, retrieve, dispatcher=dispatcher, example_inputs=args, export_options=export_options, optimize_submodules=optimize_submodules, function_options=function_options, submodule_naming=submodule_naming or SubModuleNaming(mod), parameter_naming=parameter_naming or ParameterNaming(mod), module_name=module_name, ) return (exported_program or graph_module), builder, interpreter def _model_signature( model: Union["torch.nn.Module", Callable], # noqa: F821 ) -> inspect.Signature: import torch return inspect.signature(model.forward if isinstance(model, torch.nn.Module) else model) def _replacements_dynamic_shapes( mod: Any, args: Tuple[Any, ...], kwargs: Optional[Dict[str, Any]] = None, dict_dynamic_shapes: Optional[Dict[str, Any]] = None, input_names: Optional[List[str]] = None, verbose: int = 0, ): assert dict_dynamic_shapes is not None, "dict_dynamic_shapes is missing" if verbose > 2: print(f"[_replacements_dynamic_shapes] type(mod)={type(mod)}") print(f"[_replacements_dynamic_shapes] args={string_type(args)}") print(f"[_replacements_dynamic_shapes] kwargs={string_type(kwargs)}") print(f"[_replacements_dynamic_shapes] dict_dynamic_shapes={dict_dynamic_shapes}") print(f"[_replacements_dynamic_shapes] input_names={input_names}") new_dynamic_shapes = {} sig = _model_signature(mod) true_input_names = [] has_args = None n_args = None if input_names is None else len(input_names) for name, p in sig.parameters.items(): if verbose > 3: print( f"[_replacements_dynamic_shapes] -- {name}: {p.kind} - " f"has_args={has_args} - n_args={n_args}" ) if n_args is not None and n_args <= 0: break if p.kind in ( p.VAR_POSITIONAL, p.VAR_KEYWORD, p.POSITIONAL_OR_KEYWORD, p.POSITIONAL_ONLY, ): assert not has_args, ( f"has_args={has_args} is already specified, " f"input_names={input_names}, dynamic_shapes=" f"{dict_dynamic_shapes}" ) assert input_names is None or len(input_names) == len( args ), f"Mismatch number between args={string_type(args)}, input_names={input_names}" true_input_names.append(p.name) if p.kind == p.VAR_POSITIONAL: if verbose > 3: print(f"[_replacements_dynamic_shapes] + {p.name}, has_args={has_args}") has_args = (p.name, len(args), len(true_input_names)) if n_args is not None: n_args -= len(args) if verbose > 3: print(f"[_replacements_dynamic_shapes] + {p.name}, n_args={n_args}") elif p.default in (None, inspect.Parameter.empty): true_input_names.append(name) if verbose > 3: print(f"[_replacements_dynamic_shapes] + {p.name}") if has_args is None: replacements = {} if input_names is None else dict(zip(input_names, true_input_names)) for k, v in dict_dynamic_shapes.items(): r = replacements.get(k, k) new_dynamic_shapes[r] = v if not has_args or has_args[0] != r else (v,) if verbose > 2: print(f"[_replacements_dynamic_shapes] 1> input_names={input_names}") print(f"[_replacements_dynamic_shapes] 1> input_names={true_input_names}") print(f"[_replacements_dynamic_shapes] 1> new_dynamic_shapes={new_dynamic_shapes}") return new_dynamic_shapes if has_args: # has_args is supposed to be used when *args is used. assert input_names is not None, ( f"Not implemented for has_args={has_args}, dynamic_shapes={dict_dynamic_shapes}" f", input_names={input_names}" ) assert len(dict_dynamic_shapes) == len(input_names) == has_args[1], ( f"Mismatch for has_args={has_args}, dynamic_shapes={dict_dynamic_shapes}" f", input_names={input_names}" ) new_dynamic_shapes = {has_args[0]: tuple(dict_dynamic_shapes[n] for n in input_names)} if verbose > 2: print(f"[_replacements_dynamic_shapes] 2> has_args={has_args}") print(f"[_replacements_dynamic_shapes] 2> input_names={input_names}") print( f"[_replacements_dynamic_shapes] 2> dict_dynamic_shapes={dict_dynamic_shapes}" ) print(f"[_replacements_dynamic_shapes] 2> new_dynamic_shapes={new_dynamic_shapes}") return new_dynamic_shapes if verbose > 2: print(f"[_replacements_dynamic_shapes] 3> new_dynamic_shapes={new_dynamic_shapes}") return new_dynamic_shapes
[docs] def is_wrapped(model: Any, dynamic_shapes: Optional[Any] = None) -> bool: """ Tells if a model is wrapped. """ if len(dynamic_shapes) != 1 or not isinstance(dynamic_shapes[0], tuple): return False raise AssertionError(f"Unable to tell for type {type(model)}")
[docs] def to_onnx( mod: Union["torch.nn.Module", "torch.fx.GraphModule"], # noqa: F821 args: Optional[Sequence["torch.Tensor"]] = None, # noqa: F821 kwargs: Optional[Dict[str, "torch.Tensor"]] = None, # noqa: F821 input_names: Optional[Sequence[str]] = None, target_opset: Optional[Union[int, Dict[str, int]]] = None, as_function: bool = False, options: Optional[OptimizationOptions] = None, verbose: int = 0, return_builder: bool = False, raise_list: Optional[Set[str]] = None, dynamic_shapes: Optional[Union[Dict[str, Any], Tuple[Any]]] = None, optimize: bool = True, dispatcher: Optional["Dispatcher"] = None, # noqa: F821 large_model: bool = False, external_threshold: int = 1024, export_options: Optional[Union[str, ExportOptions]] = None, return_optimize_report: bool = False, filename: Optional[str] = None, inline: bool = False, export_modules_as_functions: Union[ bool, Set[type["torch.nn.Module"]] # noqa: F821 ] = False, function_options: Optional[FunctionOptions] = None, ) -> Union[ Union[ModelProto, ModelContainer], Tuple[Union[ModelProto, ModelContainer], GraphBuilder], ]: """ Exports a torch model into ONNX using `dynamo export <https://pytorch.org/tutorials/intermediate/torch_export_tutorial.html>`_. :param mod: torch module :param args: input arguments :param kwargs: keyword attributes :param input_names: input names :param target_opset: targeted opset or targeted opsets as a dictionary :param as_function: export as a ModelProto or a FunctionProto :param options: optimization options :param verbose: verbosity level :param return_builder: returns the builder as well :param raise_list: the builder stops any time a name falls into that list, this is a debbuging tool :param dynamic_shapes: see :epkg:`torch.export.export` :param optimize: optimize the model before exporting into onnx :param dispatcher: see :class:`experimental_experiment.torch_interpreter.Dispatcher` :param large_model: if True returns a :class:`onnx.model_container.ModelContainer`, it lets the user to decide later if the weights should be part of the model or saved as external weights :param external_threshold: if large_model is True, every tensor above this limit is stored as external :param return_optimize_report: returns statistics on the optimization as well :param filename: if specified, stores the model into that file :param inline: inline the model before converting to onnx, this is done before any optimization takes place :param export_options: to apply differents options before to get the exported program :param export_modules_as_functions: export submodules as local functions, this parameter can be filled with a set of class to preserve, all this other will be exported as usual :param function_options: to specify what to do with the initializers in local functions, add them as constants or inputs :return: onnx model If environment variable ``PRINT_GRAPH_MODULE`` is set to one, information about the graph module is printed out. Environment variable ``TO_ONNX_VERBOSE=1`` can be used to increase verbosity in this function. Environment variable ``ONNX_BUILDER_PROGRESS=1`` can be used to show a progress bar on big models. """ if target_opset is None: target_opset = min(18, onnx_opset_version() - 1) if options is None: options = OptimizationOptions() begin = time.perf_counter() verbose = max(verbose, int(os.environ.get("TO_ONNX_VERBOSE", verbose))) if verbose: print(f"[to_onnx] build the graph module from {type(mod)}, type(args)={type(args)}") if input_names: print(f"[to_onnx] build the graph module with input_names={input_names}") if dynamic_shapes: print(f"[to_onnx] dynamic_shapes={dynamic_shapes}") graph_module, builder, interpreter = _make_builder_interpreter( mod=mod, args=args, kwargs=kwargs, input_names=input_names, target_opset=target_opset, as_function=as_function, optimization_options=options, verbose=verbose, raise_list=raise_list, dynamic_shapes=dynamic_shapes, dispatcher=dispatcher, export_options=export_options, optimize_submodules=optimize, function_options=function_options, module_name="", ) add_stats = {} t = time.perf_counter() add_stats["time_export_graph_module"] = t - begin if verbose: print(f"[to_onnx] graph module done in {t - begin} s") if export_modules_as_functions: import torch.export assert isinstance( graph_module, torch.export.ExportedProgram ), f"Unexpected type {type(graph_module)} for graph_module" if export_modules_as_functions is True: export_modules_as_functions = set(type(m) for m in mod.modules()) interpreter.register_named_modules( None, export_modules_as_functions, dict(mod.named_modules()) ) if verbose > 1: print( f"[to_onnx] unflatten the graph_module, " f"preserve {sorted(c.__name__ for c in export_modules_as_functions)}" ) a = time.perf_counter() new_graph_module = torch.export.unflatten(graph_module) add_stats["time_export_unflatten"] = t - a graph_module = new_graph_module if verbose > 4: print(f"[to_onnx] -- fx graph --\n{graph_module.graph}") if verbose: print("[to_onnx] start creating the onnx nodes") print(f"[to_onnx] interpreter.function_options={interpreter.function_options!r}") begin = t builder.process(graph_module, interpreter) t = time.perf_counter() add_stats["time_export_builder_process"] = t - begin if verbose: print(f"[to_onnx] {len(builder.nodes)} onnx nodes done in {t - begin} s") print("[to_onnx] start conversion to onnx (before optimization)") begin = t onx, stats = builder.to_onnx( optimize=optimize, large_model=large_model, external_threshold=external_threshold, return_optimize_report=True, inline=inline, function_options=function_options, ) all_stats = dict(builder=builder.statistics_) if stats: add_stats["optimization"] = stats t = time.perf_counter() add_stats["time_export_to_onnx"] = t - begin if verbose: proto = onx if isinstance(onx, ModelProto) else onx.model_proto print( f"[to_onnx] to_onnx done in {t - begin}s " f"and {len(proto.graph.node)} nodes, " f"{len(proto.graph.initializer)} initializers, " f"{len(proto.graph.input)} inputs, " f"{len(proto.graph.output)} outputs" ) if verbose >= 10: print(builder.get_debug_msg()) if filename: if isinstance(onx, ModelProto): save_model(onx, filename) else: onx.save(filename, all_tensors_to_one_file=True) all_stats.update(add_stats) if return_builder: return (onx, builder, all_stats) if return_optimize_report else (onx, builder) return (onx, all_stats) if return_optimize_report else onx