Source code for experimental_experiment.xoptim.patterns.onnx_unsqueeze

import inspect
from typing import List, Optional
import numpy as np
from onnx import NodeProto
from ..patterns_api import MatchResult, PatternOptimization


[docs] class UnsqueezeUnsqueezePattern(PatternOptimization): """ Replaces the sequence Unsqueeze, Unsqueeze by Unsqueeze. """ def __init__(self, verbose: int = 0, priority: int = 0): super().__init__(verbose, priority)
[docs] def match( self, g: "GraphBuilderPatternOptimization", # noqa: F821 node: NodeProto, matched: List[MatchResult], ) -> Optional[MatchResult]: if node.op_type != "Unsqueeze" or node.domain != "": return self.none() if g.is_used_more_than_once(node.output[0]): return self.none(node, inspect.currentframe().f_lineno) next_nodes = g.next_nodes(node.output[0]) if len(next_nodes) != 1: return self.none(node, inspect.currentframe().f_lineno) next_node = next_nodes[0] if next_node.op_type != "Unsqueeze" or node.domain != "": return self.none(node, inspect.currentframe().f_lineno) if next_node.input[0] != node.output[0]: return self.none(node, inspect.currentframe().f_lineno) return MatchResult(self, [node, next_node], self.apply, insert_at=node)
[docs] def apply( self, g: "GraphBuilder", # noqa: F821 node: NodeProto, next_node: NodeProto, ) -> List[NodeProto]: axis1 = g.get_constant_or_attribute(node, "axis", 1) axis2 = g.get_constant_or_attribute(next_node, "axis", 1) new_axis = g.make_initializer( "", np.hstack([axis1, axis2]), source="UnsqueezeUnsqueezePattern.apply.new_axis" ) new_node = g.make_node( "Unsqueeze", [node.input[0], new_axis], next_node.output, name=f"{self.__class__.__name__}--{node.name}", doc_string=next_node.doc_string, ) return [new_node]