Source code for experimental_experiment.xoptim.patterns.onnx_reduce

import inspect
from typing import List, Optional
from onnx import NodeProto
from ..patterns_api import MatchResult, PatternOptimization


[docs] class ReduceSumNormalizePattern(PatternOptimization): """ Nodes equivalent to a reduction. Model with nodes to be fused: .. gdot:: :script: DOT-SECTION :process: from experimental_experiment.doc import to_dot import numpy as np import ml_dtypes import onnx import onnx.helper as oh import onnx.numpy_helper as onh opset_imports = [ oh.make_opsetid("", 26), ] inputs = [] outputs = [] nodes = [] initializers = [] sparse_initializers = [] functions = [] inputs.append(oh.make_tensor_value_info("Y", onnx.TensorProto.FLOAT, shape=("a", "b"))) inputs.append( oh.make_tensor_value_info("X", onnx.TensorProto.FLOAT16, shape=("a", "b")) ) inputs.append(oh.make_tensor_value_info("axis", onnx.TensorProto.INT64, shape=[])) nodes.append( oh.make_node( "Constant", [], ["axis"], value=onh.from_array(np.array(-1, dtype=np.int64), name="value"), ) ) nodes.append(oh.make_node("Cast", ["X"], ["xc"], to=1)) nodes.append(oh.make_node("ReduceSum", ["xc", "axis"], ["red"], keepdims=1)) nodes.append(oh.make_node("Mul", ["red", "Y"], ["mul"])) nodes.append(oh.make_node("Sub", ["xc", "mul"], ["subc"])) nodes.append(oh.make_node("Cast", ["subc"], ["Z"], to=10)) outputs.append( oh.make_tensor_value_info("Z", onnx.TensorProto.FLOAT16, shape=("a", "b")) ) graph = oh.make_graph( nodes, "pattern", inputs, outputs, initializers, sparse_initializer=sparse_initializers, ) model = oh.make_model(graph, functions=functions, opset_imports=opset_imports) print("DOT-SECTION", to_dot(model)) Outcome of the fusion: .. gdot:: :script: DOT-SECTION :process: from experimental_experiment.doc import to_dot import numpy as np import ml_dtypes import onnx import onnx.helper as oh import onnx.numpy_helper as onh opset_imports = [ oh.make_opsetid("", 26), ] inputs = [] outputs = [] nodes = [] initializers = [] sparse_initializers = [] functions = [] inputs.append(oh.make_tensor_value_info("Y", onnx.TensorProto.FLOAT, shape=("a", "b"))) inputs.append( oh.make_tensor_value_info("X", onnx.TensorProto.FLOAT16, shape=("a", "b")) ) inputs.append(oh.make_tensor_value_info("axis", onnx.TensorProto.INT64, shape=[])) nodes.append( oh.make_node( "ReduceSum", ["X", "axis"], ["ReduceSumNormalizePattern_red"], keepdims=1 ) ) nodes.append(oh.make_node("Cast", ["Y"], ["ReduceSumNormalizePattern_Y"], to=10)) nodes.append( oh.make_node( "Mul", ["ReduceSumNormalizePattern_red", "ReduceSumNormalizePattern_Y"], ["ReduceSumNormalizePattern_mul"], ) ) nodes.append(oh.make_node("Sub", ["X", "ReduceSumNormalizePattern_mul"], ["Z"])) outputs.append( oh.make_tensor_value_info("Z", onnx.TensorProto.FLOAT16, shape=("a", "b")) ) graph = oh.make_graph( nodes, "pattern", inputs, outputs, initializers, sparse_initializer=sparse_initializers, ) model = oh.make_model(graph, functions=functions, opset_imports=opset_imports) print("DOT-SECTION", to_dot(model)) """
[docs] def match( self, g: "GraphBuilderPatternOptimization", # noqa: F821 node: NodeProto, matched: List[MatchResult], ) -> Optional[MatchResult]: if node.op_type != "ReduceSum" or node.domain != "": return self.none() cast_node = g.node_before(node.input[0]) if cast_node is None or cast_node.op_type != "Cast": return self.none(node, inspect.currentframe().f_lineno) mul_node = g.next_nodes(node.output[0]) if len(mul_node) != 1 or mul_node[0].op_type != "Mul": return self.none(node, inspect.currentframe().f_lineno) sub_node = g.next_nodes(mul_node[0].output[0]) if len(sub_node) != 1 or sub_node[0].op_type != "Sub": return self.none(node, inspect.currentframe().f_lineno) cast2_node = g.next_nodes(sub_node[0].output[0]) if len(cast2_node) != 1 or cast2_node[0].op_type != "Cast": return self.none(node, inspect.currentframe().f_lineno) if not (set(sub_node[0].input) & set(node.input)): return self.none(node, inspect.currentframe().f_lineno) if g.get_type(cast_node.input[0]) != g.get_type(cast2_node[0].output[0]): return self.none(node, inspect.currentframe().f_lineno) return MatchResult( self, [cast_node, node, mul_node[0], sub_node[0], cast2_node[0]], self.apply )
[docs] def apply( self, g: "GraphBuilder", # noqa: F821 cast_node: NodeProto, node: NodeProto, mul_node: NodeProto, sub_node: NodeProto, cast2_node: NodeProto, ) -> List[NodeProto]: new_name = g.unique_name(f"{self.__class__.__name__}_{node.output[0]}") new_red = g.make_node( node.op_type, [cast_node.input[0], node.input[1]], [new_name], name=f"{self.__class__.__name__}--{node.name}", ) new_red.attribute.extend(node.attribute) other_name = [n for n in mul_node.input if n != node.output[0]] assert len(other_name) == 1, f"Unexpected name {other_name!r}" new_name2 = g.unique_name(f"{self.__class__.__name__}_{other_name[0]}") new_cast = g.make_node( "Cast", other_name, [new_name2], to=g.get_attribute(cast2_node, "to").i, name=f"{self.__class__.__name__}--{cast_node.name}", ) new_m = g.unique_name(f"{self.__class__.__name__}_{mul_node.output[0]}") new_mul = g.make_node( mul_node.op_type, [new_name, new_name2], [new_m], name=f"{self.__class__.__name__}--{mul_node.name}", ) if mul_node.output[0] == sub_node.input[0]: inputs = [new_m, new_red.input[0]] else: inputs = [new_red.input[0], new_m] new_sub = g.make_node( sub_node.op_type, inputs, cast2_node.output, name=f"{self.__class__.__name__}--{sub_node.name}", ) return [new_red, new_cast, new_mul, new_sub]