Source code for experimental_experiment.xoptim.patterns.onnx_conv

import inspect
from typing import List, Optional
from onnx import NodeProto
from ..patterns_api import MatchResult, PatternOptimization


[docs] class ConvBiasNullPattern(PatternOptimization): """ Checks that a Conv has a null bias. Model with nodes to be fused: .. gdot:: :script: DOT-SECTION :process: from experimental_experiment.doc import to_dot import numpy as np import ml_dtypes import onnx import onnx.helper as oh import onnx.numpy_helper as onh opset_imports = [ oh.make_opsetid("", 18), ] inputs = [] outputs = [] nodes = [] initializers = [] sparse_initializers = [] functions = [] inputs.append( oh.make_tensor_value_info("X", onnx.TensorProto.FLOAT, shape=(512, 3, 64, 64)) ) inputs.append( oh.make_tensor_value_info("W", onnx.TensorProto.FLOAT, shape=(64, 3, 4, 4)) ) initializers.append(onh.from_array(np.zeros((64,), dtype=np.float32), name="B2")) nodes.append( oh.make_node( "Conv", ["X", "W", "B2"], ["Y"], dilations=[1, 1], group=1, kernel_shape=[4, 4], pads=[1, 1, 1, 1], strides=[2, 2], ) ) outputs.append( oh.make_tensor_value_info("Y", onnx.TensorProto.FLOAT, shape=(512, 64, 32, 32)) ) graph = oh.make_graph( nodes, "pattern", inputs, outputs, initializers, sparse_initializer=sparse_initializers, ) model = oh.make_model(graph, functions=functions, opset_imports=opset_imports) print("DOT-SECTION", to_dot(model)) Outcome of the fusion: .. gdot:: :script: DOT-SECTION :process: from experimental_experiment.doc import to_dot import numpy as np import ml_dtypes import onnx import onnx.helper as oh import onnx.numpy_helper as onh opset_imports = [ oh.make_opsetid("", 18), ] inputs = [] outputs = [] nodes = [] initializers = [] sparse_initializers = [] functions = [] inputs.append( oh.make_tensor_value_info("X", onnx.TensorProto.FLOAT, shape=(512, 3, 64, 64)) ) inputs.append( oh.make_tensor_value_info("W", onnx.TensorProto.FLOAT, shape=(64, 3, 4, 4)) ) nodes.append( oh.make_node( "Conv", ["X", "W"], ["Y"], dilations=[1, 1], group=1, kernel_shape=[4, 4], pads=[1, 1, 1, 1], strides=[2, 2], ) ) outputs.append( oh.make_tensor_value_info("Y", onnx.TensorProto.FLOAT, shape=(512, 64, 32, 32)) ) graph = oh.make_graph( nodes, "pattern", inputs, outputs, initializers, sparse_initializer=sparse_initializers, ) model = oh.make_model(graph, functions=functions, opset_imports=opset_imports) print("DOT-SECTION", to_dot(model)) """ def __init__(self, verbose: int = 0, priority: int = 0): super().__init__(verbose, priority)
[docs] def match( self, g: "GraphBuilderPatternOptimization", # noqa: F821 node: NodeProto, matched: List[MatchResult], ) -> Optional[MatchResult]: if node.op_type != "Conv" or node.domain != "": return self.none() if len(node.input) < 3: return self.none(node, inspect.currentframe().f_lineno) if not g.is_constant(node.input[2]): return self.none(node, inspect.currentframe().f_lineno) cst = g.get_computed_constant(node.input[2]) if cst is None or cst.min() != 0 or cst.max() != 0: return self.none(node, inspect.currentframe().f_lineno) return MatchResult(self, [node], self.apply, insert_at=node)
[docs] def apply( self, g: "GraphBuilder", # noqa: F821 node: NodeProto, ) -> List[NodeProto]: new_node = g.make_node( "Conv", node.input[:2], node.output, name=f"{self.__class__.__name__}--{node.name}", doc_string=node.doc_string, ) new_node.attribute.extend(node.attribute) return [new_node]