Source code for experimental_experiment.xoptim.patterns.onnx_conv

import inspect
from typing import List, Optional
from onnx import NodeProto
from ..patterns_api import MatchResult, PatternOptimization


[docs] class ConvBiasNullPattern(PatternOptimization): """ Checks that a Conv has a null bias. """ def __init__(self, verbose: int = 0, priority: int = 0): super().__init__(verbose, priority)
[docs] def match( self, g: "GraphBuilderPatternOptimization", # noqa: F821 node: NodeProto, matched: List[MatchResult], ) -> Optional[MatchResult]: if node.op_type != "Conv" or node.domain != "": return self.none() if len(node.input) < 3: return self.none(node, inspect.currentframe().f_lineno) if not g.is_constant(node.input[2]): return self.none(node, inspect.currentframe().f_lineno) cst = g.get_computed_constant(node.input[2]) if cst is None or cst.min() != 0 or cst.max() != 0: return self.none(node, inspect.currentframe().f_lineno) return MatchResult(self, [node], self.apply, insert_at=node)
[docs] def apply( self, g: "GraphBuilder", # noqa: F821 node: NodeProto, ) -> List[NodeProto]: new_node = g.make_node( "Conv", node.input[:2], node.output, name=f"{self.__class__.__name__}--{node.name}", doc_string=node.doc_string, ) new_node.attribute.extend(node.attribute) return [new_node]