Source code for experimental_experiment.bench_run

import itertools
import multiprocessing
import os
import platform
import re
import subprocess
import sys
import time
import warnings
from argparse import Namespace
from datetime import datetime
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union
import numpy as np

_DEFAULT_STRING_LIMIT = 2000


[docs] class BenchmarkError(RuntimeError): pass
def _clean_string(s: str) -> str: cleaned = [c for c in s if 32 <= ord(c) < 127 and c not in {","}] return "".join(cleaned)
[docs] def get_processor_name(): """Returns the processor name.""" if platform.system() in ("Windows", "Darwin"): return platform.processor() if platform.system() == "Linux": command = "cat /proc/cpuinfo" all_info = subprocess.check_output(command, shell=True).decode().strip() for line in all_info.split("\n"): if "model name" in line: return re.sub(".*model name.*:", "", line, count=1, flags=0).strip() # fails # if platform.system() == "Darwin": # os.environ["PATH"] = os.environ["PATH"] + os.pathsep + "/usr/sbin" # command = "sysctl -n machdep.cpu.brand_string" # return subprocess.check_output(command).strip() raise AssertionError("get_process_name not implemented on this platform.")
[docs] def get_machine( capability_as_str: bool = True, ) -> Dict[str, Union[str, int, float, Tuple[int, int]]]: """Returns the machine specifications.""" arch = platform.architecture() config: Dict[str, Union[str, int, float, Tuple[int, int]]] = dict( machine=str(platform.machine()), architecture=( "/".join(str(_) for _ in arch) if isinstance(arch, (list, tuple)) else str(arch) ), processor=str(platform.processor()), version=str(sys.version).split()[0], cpu=int(multiprocessing.cpu_count()), executable=str(sys.executable), processor_name=get_processor_name(), system=str(platform.system()), ) try: import torch.cuda except ImportError: return config config["has_cuda"] = bool(torch.cuda.is_available()) if config["has_cuda"]: config["capability"] = ( ".".join(map(str, torch.cuda.get_device_capability(0))) if capability_as_str else torch.cuda.get_device_capability(0) ) config["device_name"] = str(torch.cuda.get_device_name(0)) return config
def _cmd_line(script_name: str, **kwargs: Dict[str, Union[str, int, float]]) -> List[str]: args = [sys.executable, "-m", script_name] for k, v in kwargs.items(): if v is None: continue args.append(f"--{k}") args.append(str(v)) return args def _extract_metrics(text: str) -> Dict[str, str]: reg = re.compile(":(.*?),(.*.?);") res = reg.findall(text) if len(res) == 0: return {} kw = dict(res) new_kw = {} for k, w in kw.items(): assert isinstance(k, str) and isinstance( w, str ), f"Unexpected type for k={k!r}, types={type(k)}, {type(w)})." assert "\n" not in w, f"Unexpected multi-line value for k={k!r}, value is\n{w}" if not ( "err" in k.lower() or k in { "onnx_output_names", "onnx_input_names", "filename", "time_latency_t_detail", "time_latency_t_qu", "time_latency_t_qu_10t", "time_latency_eager_t_detail", "time_latency_eager_t_qu", "time_latency_eager_t_qu_10t", } or len(w) < 500 ): warnings.warn( f"Unexpected long value for model={kw.get('model_name', '?')}, " f"k={k!r}, value has length {len(w)} is\n{w}", stacklevel=2, ) continue try: wi = int(w) new_kw[k] = wi continue except ValueError: pass try: wf = float(w) new_kw[k] = wf continue except ValueError: pass new_kw[k] = w return new_kw def _make_prefix(script_name: str, index: int) -> str: name = os.path.splitext(script_name)[0] return f"{name}_dort_c{index}_" def _cmd_string(s: str) -> str: if s == "": return '""' return s.replace('"', '\\"')
[docs] def run_benchmark( script_name: str, configs: List[Dict[str, Union[str, int, float]]], verbose: int = 0, stop_if_exception: bool = True, dump: bool = False, temp_output_data: Optional[str] = None, dump_std: Optional[str] = None, start: int = 0, summary: Optional[Callable] = None, timeout: int = 600, missing: Optional[Dict[str, Union[str, Callable]]] = None, ) -> List[Dict[str, Union[str, int, float, Tuple[int, int]]]]: """ Runs a script multiple times and extract information from the output following the pattern ``:<metric>,<value>;``. :param script_name: python script to run :param configs: list of execution to do :param stop_if_exception: stop if one experiment failed, otherwise continue :param verbose: use tqdm to follow the progress :param dump: dump onnx file, sets variable ONNXRT_DUMP_PATH :param temp_output_data: to save the data after every run to avoid losing data :param dump_std: dumps stdout and stderr in this folder :param start: start at this iteration :param summary: function to call on the temporary data and the final data :param timeout: timeout for the subprocesses :param missing: populate with this missing value if not found :return: values """ assert ( temp_output_data is None or "temp" in temp_output_data ), f"Unexpected value for {temp_output_data!r}" assert configs, f"No configuration was given (script_name={script_name!r})" if verbose: from tqdm import tqdm loop = tqdm(configs) else: loop = configs data: List[Dict[str, Union[str, int, float, Tuple[int, int]]]] = [] for iter_loop, config in enumerate(loop): if iter_loop < start: continue if hasattr(loop, "set_description"): for c in ["name", "model"]: if c not in config: continue loop.set_description(f"[{config[c]}]") break cmd = _cmd_line(script_name, **config) begin = time.perf_counter() if dump: os.environ["ONNXRT_DUMP_PATH"] = _make_prefix(script_name, iter_loop) else: os.environ["ONNXRT_DUMP_PATH"] = "" if verbose > 3: print(f"[run_benchmark] cmd={cmd if isinstance(cmd, str) else ' '.join(cmd)}") p = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) timeout_error = "" try: res = p.communicate(timeout=timeout) except subprocess.TimeoutExpired as e: # see https://docs.python.org/3/library/subprocess.html#subprocess.Popen.communicate timeout_error = str(e) if verbose: print(f"[run_benchmark] timeout {e} for cmd={cmd}") p.terminate() try: # Use communicate with a timeout to prevent hanging res = p.communicate(timeout=10) except subprocess.TimeoutExpired: # Force kill if terminate doesn't work if verbose: print(f"[run_benchmark] force killing cmd={cmd}") p.kill() res = p.communicate() out, err = res sout = out.decode("utf-8", errors="ignore") serr = err.decode("utf-8", errors="ignore") if dump_std: if dump_std and not os.path.exists(dump_std): os.makedirs(dump_std) root = os.path.split(script_name)[-1].split(".")[-1] filename = os.path.join(dump_std, f"{root}.{iter_loop}") filename_out = f"{filename}.stdout" filename_err = f"{filename}.stderr" if out.strip(b"\n \r\t"): with open(filename_out, "w") as f: f.write(sout) if err.strip(b"\n \r\t"): with open(filename_err, "w") as f: f.write(serr) else: filename_out, filename_err = None, None if "ONNXRuntimeError" in serr or "ONNXRuntimeError" in sout: if stop_if_exception: raise RuntimeError( f"Unable to continue with config {config} due to the " f"following error\n{serr}" f"\n----OUTPUT--\n{sout}" ) metrics = _extract_metrics(sout) if len(metrics) == 0: if stop_if_exception: raise BenchmarkError( f"Unable (2) to continue with config {config}, no metric was " f"collected.\n--ERROR--\n{serr}\n--OUTPUT--\n{sout}" ) else: metrics = {} metrics.update(config) if filename_out and os.path.exists(filename_out): if "model_name" in metrics: new_name = f"{filename_out}.{_clean_string(metrics['model_name'])}" os.rename(filename_out, new_name) filename_out = new_name metrics["file.stdout"] = filename_out if filename_err and os.path.exists(filename_err): if "model_name" in metrics: new_name = f"{filename_err}.{_clean_string(metrics['model_name'])}" os.rename(filename_err, new_name) filename_err = new_name metrics["file.stderr"] = filename_err metrics["DATE"] = f"{datetime.now():%Y-%m-%d}" metrics["ITER"] = iter_loop metrics["TIME_ITER"] = time.perf_counter() - begin metrics["ERROR"] = _clean_string(serr) metrics["ERR_stdout"] = _clean_string(sout) if metrics["ERROR"]: metrics["ERR_std"] = metrics["ERROR"] if timeout_error: metrics["ERR_timeout"] = _clean_string(timeout_error) metrics["OUTPUT"] = _clean_string(sout) for k, v in config.items(): metrics[f"config_{k}"] = str(v).replace("\n", " ") if missing: update_missing = {} for k, v in missing.items(): if k not in metrics: if isinstance(v, str): update_missing[k] = v continue if callable(v): update_missing.update(v(missing, config)) continue raise AssertionError( f"Unable to interpret {type(v)} for k={k!r}, config={config!r}" ) if update_missing: metrics.update(update_missing) metrics["CMD"] = f"[{' '.join(map(_cmd_string, cmd))}]" data.append(metrics) if verbose > 5: print(f"--------------- ITER={iter_loop} in {metrics['TIME_ITER']}") print("--------------- ERROR") print(serr) if verbose >= 10: print("--------------- OUTPUT") print(sout) if temp_output_data: df = make_dataframe_from_benchmark_data(data, detailed=False) if verbose > 2: print(f"Prints out the results into file {temp_output_data!r}") fold, _ = os.path.split(temp_output_data) # fold could be empty string if fold and not os.path.exists(fold): os.makedirs(fold) df.to_csv(temp_output_data, index=False, errors="ignore") try: df.to_excel(temp_output_data + ".xlsx", index=False) except Exception: continue if summary: fn = f"{temp_output_data}.summary-partial.xlsx" if verbose > 2: print(f"Prints out the results into file {fn!r}") summary(df, excel_output=fn, exc=False) return data
[docs] def multi_run(kwargs: Namespace) -> bool: """Checks if multiple values were sent for one argument.""" return any(isinstance(v, str) and "," in v for v in kwargs.__dict__.values())
[docs] def make_configs( kwargs: Union[Namespace, Dict[str, Any]], drop: Optional[Set[str]] = None, replace: Optional[Dict[str, str]] = None, last: Optional[List[str]] = None, filter_function: Optional[Callable[Dict[str, Any], bool]] = None, ) -> List[Dict[str, Any]]: """ Creates all the configurations based on the command line arguments. :param kwargs: parameters the command line, every value having a comma means multiple values, it multiplies the number of configurations to try by the number of comma separated values :param drop: keys to drop in kwargs if specified :param replace: values to replace for a particular key :param last: to change the order of the loop created the configuration, if ``last == ["part"]`` and ``kwargs[part] == "0,1"``, then configuration where ``part==0`` is always followed by a configuration having ``part==1`` :param filter_function: function taking a configuration and returning True if it is must be kept :return: list of configurations """ kwargs_ = kwargs if isinstance(kwargs, dict) else kwargs.__dict__ args = [] slast = set(last) if last else set() for k, v in kwargs_.items(): if (drop and k in drop) or k in slast: continue if replace and k in replace: v = replace[k] if isinstance(v, str): args.append([(k, s) for s in v.split(",")]) else: args.append([(k, v)]) if last: for k in last: if k not in kwargs_: continue v = kwargs[k] if isinstance(v, str): args.append([(k, s) for s in v.split(",")]) else: args.append([(k, v)]) configs = list(itertools.product(*args)) confs = [dict(c) for c in configs] if filter_function: confs = [c for c in confs if filter_function(c)] return confs
[docs] def make_dataframe_from_benchmark_data( data: List[Dict], detailed: bool = True, string_limit: int = _DEFAULT_STRING_LIMIT ) -> Any: """ Creates a dataframe from the received data. :param data: list of dictionaries for every run :param detailed: remove multi line and long values :param string_limit: truncate the strings :return: dataframe """ import pandas if detailed: return pandas.DataFrame(data) new_data = [] for d in data: g = {} for k, v in d.items(): if not isinstance(v, str): g[k] = v continue v = v.replace("\n", " -- ").replace(",", "_") if len(v) > string_limit: v = v[:string_limit] + "..." g[k] = v new_data.append(g) df = pandas.DataFrame(new_data) sorted_columns = sorted(df.columns) if "_index" in sorted_columns: set_cols = set(df.columns) addition = {"_index", "CMD", "OUTPUT", "ERROR"} & set_cols new_columns = [] if "_index" in addition: new_columns.append("_index") new_columns.extend([i for i in sorted_columns if i not in addition]) for c in ["ERROR", "OUTPUT", "CMD"]: if c in addition: new_columns.append(c) sorted_columns = new_columns return df[sorted_columns].copy()
[docs] def measure_discrepancies( expected: List[Tuple["torch.Tensor", ...]], # noqa: F821 outputs: List[Tuple["torch.Tensor", ...]], # noqa: F821 ) -> Dict[str, float]: """ Computes the discrepancies. :param expected: list of outputs coming from a torch model :param outputs: list of outputs coming from an onnx model :return: dictionary with max absolute errors, max relative errors, sum of absolute error, the number of elements contributing to it """ def _flatten(outputs): flat = [] for tensor in outputs: if isinstance(tensor, tuple): flat.extend(_flatten(tensor)) else: flat.append(tensor) return tuple(flat) abs_errs = [] rel_errs = [] for torch_outputs_mixed_types, onnx_outputs in zip(expected, outputs): torch_outputs = _flatten(torch_outputs_mixed_types) assert len(torch_outputs) == len( onnx_outputs ), f"Length mismatch {len(torch_outputs)} != {len(onnx_outputs)}" for torch_tensor, onnx_tensor in zip(torch_outputs, onnx_outputs): assert ( torch_tensor.dtype == onnx_tensor.dtype ), f"Type mismatch {torch_tensor.dtype} != {onnx_tensor.dtype}" assert ( torch_tensor.shape == onnx_tensor.shape ), f"Type mismatch {torch_tensor.shape} != {onnx_tensor.shape}" diff = torch_tensor.astype(float) - onnx_tensor.astype(float) if hasattr(diff, "abs"): abs_err = float(diff.abs().max()) rel_err = float((diff.abs() / torch_tensor).max()) else: abs_err = float(np.abs(diff).max()) rel_err = float((np.abs(diff) / torch_tensor).max()) abs_errs.append(abs_err) rel_errs.append(rel_err) return dict(abs=max(abs_errs), rel=max(rel_errs), sum=sum(rel_errs), n=len(abs_errs))
[docs] def max_diff( expected: Any, got: Any, verbose: int = 0, level: int = 0, flatten: bool = False, debug_info: Optional[List[str]] = None, begin: int = 0, end: int = -1, _index: int = 0, ) -> Dict[str, float]: """ Returns the maximum discrepancy. :param expected: expected values :param got: values :param verbose: verbosity level :param level: for embedded outputs, used for debug purpposes :param flatten: flatten outputs :param debug_info: debug information :param begin: first output to considered :param end: last output to considered (-1 for the last one) :param _index: used with begin and end :return: dictionary with many values * abs: max abolute error * rel: max relative error * sum: sum of the errors * n: number of outputs values, if there is one output, this number will be the number of elements of this output """ if hasattr(expected, "to_tuple"): return max_diff( expected.to_tuple(), got, verbose=verbose, level=level + 1, debug_info=( debug_info if verbose < 10 else ( [f"{' ' * level}to_tupleA"] if not debug_info else ([*debug_info, f"{' ' * level}to_tupleA"]) ) ), begin=begin, end=end, _index=_index, ) if hasattr(got, "to_tuple"): return max_diff( expected, got.to_tuple(), verbose=verbose, level=level + 1, debug_info=( debug_info if verbose < 10 else ( [f"{' ' * level}to_tupleB"] if not debug_info else ([*debug_info, f"{' ' * level}to_tupleB"]) ) ), begin=begin, end=end, _index=_index, ) import torch if isinstance(expected, torch.Tensor): if isinstance(got, torch.Tensor): if _index < begin or (end != -1 and _index >= end): # out of boundary return dict(abs=0.0, rel=0.0, sum=0.0, n=0.0) diff = (got.to(torch.float64) - expected.to(torch.float64)).abs() rdiff = diff / (expected.abs() + 1e-3) abs_diff, rel_diff, sum_diff, n_diff = ( float(diff.max()), float(rdiff.max()), float(diff.sum()), float(diff.numel()), ) if verbose >= 10 and (abs_diff >= 10 or rel_diff >= 10): # To understand the value it comes from. if debug_info: print("\n".join(debug_info)) print( f"[max_diff-1] abs_diff={abs_diff}, rel_diff={rel_diff}, " f"dtype={expected.dtype}, shape={expected.shape}, level={level}, " f"_index={_index}" ) if abs_diff >= 10: idiff = torch.argmax(diff.reshape((-1,))) x = expected.reshape((-1,))[idiff] y = got.reshape((-1,))[idiff] print( f" [max_diff-2] abs diff={abs_diff}, " f"x={x}, y={y}, level={level}, " f"_index={_index}" ) print(y) if rel_diff >= 10: idiff = torch.argmax(rdiff.reshape((-1,))) x = expected.reshape((-1,))[idiff] y = got.reshape((-1,))[idiff] print( f" [max_diff-3] rel diff={rel_diff}, " f"x={x}, y={y}, level={level}, " f"_index={_index}" ) return dict(abs=abs_diff, rel=rel_diff, sum=sum_diff, n=n_diff) if isinstance(got, (list, tuple)): if len(got) != 1: if verbose > 2: print( f"[max_diff] (a) inf because len(expected)={len(expected)}!=1, " f"len(got)={len(got)}, level={level}, _index={_index}" ) for i, (a, b) in enumerate(zip(expected, got)): if isinstance(a, torch.Tensor) and isinstance(b, torch.Tensor): print( f" i={i} expected {a.dtype}:{a.shape}, " f"has {b.dtype}:{b.shape}, _index={_index}" ) else: print( f" i={i} a is {type(a)}, " f"b is {type(b)}, _index={_index}" ) return dict(abs=np.inf, rel=np.inf, sum=np.inf, n=np.inf) return max_diff( expected, got[0], verbose=verbose, level=level + 1, begin=begin, end=end, _index=_index, debug_info=debug_info, ) if isinstance(expected, (tuple, list)): if len(expected) == 1: return max_diff( expected[0], got, verbose=verbose, level=level + 1, begin=begin, end=end, _index=_index, debug_info=debug_info, ) if not isinstance(got, (tuple, list)): if verbose > 2: print( f"[max_diff] inf because type(expected)={type(expected)}, " f"type(got)={type(got)}, level={level}, _index={_index}" ) return dict(abs=np.inf, rel=np.inf, sum=np.inf, n=np.inf) if len(got) != len(expected): if verbose > 2: print( f"[max_diff] (b) inf because len(expected)={len(expected)}, " f"len(got)={len(got)}, level={level}, _index={_index}" ) for i, (a, b) in enumerate(zip(expected, got)): if isinstance(a, torch.Tensor) and isinstance(b, torch.Tensor): print( f" i={i} expected {a.dtype}:{a.shape}, " f"has {b.dtype}:{b.shape}, _index={_index}" ) else: print(f" i={i} a is {type(a)}, b is {type(b)}") return dict(abs=np.inf, rel=np.inf, sum=np.inf, n=np.inf) am, rm, sm, n = 0, 0, 0.0, 0.0 for ip, (e, g) in enumerate(zip(expected, got)): d = max_diff( e, g, verbose=verbose, level=level + 1, debug_info=( debug_info if verbose < 10 else ( [f"{' ' * level}[{ip}] so far abs {am} - rel {rm}"] if not debug_info else ( [ *debug_info, f"{' ' * level}[{ip}] so far abs {am} - rel {rm}", ] ) ) ), begin=begin, end=end, _index=_index + ip, ) am = max(am, d["abs"]) rm = max(rm, d["rel"]) sm += d["sum"] n += d["n"] return dict(abs=am, rel=rm, sum=sm, n=n) if isinstance(expected, dict): assert ( begin == 0 and end == -1 ), f"begin={begin}, end={end} not compatible with dictionaries" if isinstance(got, dict): if len(expected) != len(got): return dict(abs=np.inf, rel=np.inf, sum=np.inf, n=np.inf) if set(expected) != set(got): return dict(abs=np.inf, rel=np.inf, sum=np.inf, n=np.inf) keys = list(sorted(expected)) return max_diff( [expected[k] for k in keys], [got[k] for k in keys], level=level, flatten=flatten, debug_info=debug_info, begin=begin, end=end, _index=_index, ) if not isinstance(got, (tuple, list)): return dict(abs=np.inf, rel=np.inf, sum=np.inf, n=np.inf) if len(expected) != len(got): return dict(abs=np.inf, rel=np.inf, sum=np.inf, n=np.inf) return max_diff( list(expected.values()), got, level=level, flatten=flatten, debug_info=debug_info, begin=begin, end=end, _index=_index, ) if "SquashedNormal" in expected.__class__.__name__: values = ( expected.mean.detach().to("cpu"), expected.scale.detach().to("cpu"), ) return max_diff( values, got, verbose=verbose, level=level + 1, begin=begin, end=end, _index=_index, ) if expected.__class__.__name__ in ("transformers.cache_utils.MambaCache", "MambaCache"): if got.__class__.__name__ != expected.__class__.__name__: # This case happens with onnx where the outputs are flattened. return dict(abs=np.inf, rel=np.inf, sum=np.inf, n=np.inf) atts = [] for k in ["conv_states", "ssm_states"]: if hasattr(expected, k) and not hasattr(got, k): return dict(abs=np.inf, rel=np.inf, sum=np.inf, n=np.inf) atts.append(k) return max_diff( [getattr(expected, k) for k in atts], [getattr(got, k) for k in atts], level=level, flatten=flatten, debug_info=debug_info, begin=begin, end=end, _index=_index, ) if isinstance(expected, np.ndarray): return max_diff(torch.from_numpy(expected), got) if isinstance(got, np.ndarray): return max_diff(expected, torch.from_numpy(got)) raise AssertionError( f"Not implemented with type(expected)={type(expected)}, " f"type(results)={type(got)},\n" f"dir(expected)={dir(expected)}, level={level}\n" f"expected={expected}\n" f"got={got}" )