Note
Go to the end to download the full example code.
Compares matrix multiplication implementations with timeit¶
numpy has a very fast implementation of
matrix multiplication. There are many ways to be slower.
The following uses timeit to compare implementations.
Compared implementations:
Preparation¶
import timeit
import numpy
from teachcompute.validation.cython.td_mul_cython import (
multiply_matrix,
c_multiply_matrix,
c_multiply_matrix_parallel,
c_multiply_matrix_parallel_transposed as cmulparamtr,
)
va = numpy.random.randn(150, 100).astype(numpy.float64)
vb = numpy.random.randn(100, 100).astype(numpy.float64)
ctx = {
"va": va,
"vb": vb,
"c_multiply_matrix": c_multiply_matrix,
"multiply_matrix": multiply_matrix,
"c_multiply_matrix_parallel": c_multiply_matrix_parallel,
"c_multiply_matrix_parallel_transposed": cmulparamtr,
}
Measures¶
numpy
res0 = timeit.timeit("va @ vb", number=100, globals=ctx)
print("numpy time", res0)
numpy time 0.01842639899950882
python implementation
res1 = timeit.timeit("multiply_matrix(va, vb)", number=10, globals=ctx)
print("python implementation", res1)
python implementation 7.716383171000416
cython implementation
res2 = timeit.timeit("c_multiply_matrix(va, vb)", number=100, globals=ctx)
print("cython implementation", res2)
cython implementation 0.12932565300070564
cython implementation parallelized
res3 = timeit.timeit("c_multiply_matrix_parallel(va, vb)", number=100, globals=ctx)
print("cython implementation parallelized", res3)
cython implementation parallelized 0.0375761989998864
cython implementation parallelized, AVX + transposed
res4 = timeit.timeit(
"c_multiply_matrix_parallel_transposed(va, vb)", number=100, globals=ctx
)
print("cython implementation parallelized avx", res4)
cython implementation parallelized avx 0.013369381998927565
Speed up…
numpy is 418.767833 faster than pure python.
numpy is 7.018498 faster than cython.
numpy is 2.039259 faster than parallelized cython.
numpy is 0.725556 faster than avx parallelized cython.
Total running time of the script: (0 minutes 8.050 seconds)