Note
Go to the end to download the full example code.
Compares matrix multiplication implementations with timeit¶
numpy has a very fast implementation of
matrix multiplication. There are many ways to be slower.
The following uses timeit
to compare implementations.
Compared implementations:
Preparation¶
import timeit
import numpy
from teachcompute.validation.cython.td_mul_cython import (
multiply_matrix,
c_multiply_matrix,
c_multiply_matrix_parallel,
c_multiply_matrix_parallel_transposed as cmulparamtr,
)
va = numpy.random.randn(150, 100).astype(numpy.float64)
vb = numpy.random.randn(100, 100).astype(numpy.float64)
ctx = {
"va": va,
"vb": vb,
"c_multiply_matrix": c_multiply_matrix,
"multiply_matrix": multiply_matrix,
"c_multiply_matrix_parallel": c_multiply_matrix_parallel,
"c_multiply_matrix_parallel_transposed": cmulparamtr,
}
Measures¶
numpy
res0 = timeit.timeit("va @ vb", number=100, globals=ctx)
print("numpy time", res0)
numpy time 0.067679797000892
python implementation
res1 = timeit.timeit("multiply_matrix(va, vb)", number=10, globals=ctx)
print("python implementation", res1)
python implementation 7.336435834993608
cython implementation
res2 = timeit.timeit("c_multiply_matrix(va, vb)", number=100, globals=ctx)
print("cython implementation", res2)
cython implementation 0.12964998700044816
cython implementation parallelized
res3 = timeit.timeit("c_multiply_matrix_parallel(va, vb)", number=100, globals=ctx)
print("cython implementation parallelized", res3)
cython implementation parallelized 0.5565220380012761
cython implementation parallelized, AVX + transposed
res4 = timeit.timeit(
"c_multiply_matrix_parallel_transposed(va, vb)", number=100, globals=ctx
)
print("cython implementation parallelized avx", res4)
cython implementation parallelized avx 0.014571653002349194
Speed up…
numpy is 108.399200 faster than pure python.
numpy is 1.915638 faster than cython.
numpy is 8.222868 faster than parallelized cython.
numpy is 0.215303 faster than avx parallelized cython.
Total running time of the script: (0 minutes 8.139 seconds)