Source code for experimental_experiment.xoptim.patterns_ort.activation

import inspect
from typing import List, Optional
from onnx import NodeProto
from ..patterns_api import MatchResult, PatternOptimization, EasyPatternOptimization
from ..patterns.onnx_functions import GeluPattern


[docs] class BiasGeluPattern(PatternOptimization): """ Replaces by ``y = BiasGelu(x, B)``:: t = x + B y = t ( Erf(1 / t) + 1) """
[docs] def match( self, g: "GraphBuilderPatternOptimization", # noqa: F821 node: NodeProto, matched: List[MatchResult], ) -> Optional[MatchResult]: if node.op_type != "Erf" or node.domain != "": return self.none() if g.is_used_more_than_once(node.input[0]): return self.none(node, inspect.currentframe().f_lineno) div = g.node_before(node.input[0]) if ( not g.is_constant_scalar(div.input[1]) or g.get_constant_scalar(div.input[1]) != 1.4140625 ): return self.none(node, inspect.currentframe().f_lineno) add = g.node_before(div.input[0]) if add.op_type != "Add" or add.domain != "": return self.none(node, inspect.currentframe().f_lineno) if not g.is_constant(add.input[1]): return self.none(node, inspect.currentframe().f_lineno) add1_nexts = g.next_nodes(add.output[0]) if len(add1_nexts) != 2: return self.none(node, inspect.currentframe().f_lineno) add_next = g.next_nodes(node.output[0]) if len(add_next) != 1: return self.none(node, inspect.currentframe().f_lineno) add_1 = add_next[0] if add_1.op_type != "Add" or add_1.domain != "": return self.none(node, inspect.currentframe().f_lineno) if ( not g.is_constant_scalar(add_1.input[1]) or g.get_constant_scalar(add_1.input[1]) != 1 ): return self.none(node, inspect.currentframe().f_lineno) muls = g.next_nodes(add_1.output[0]) if len(muls) != 1: return self.none(node, inspect.currentframe().f_lineno) mul = muls[0] if mul.op_type != "Mul" or mul.domain != "": return self.none(node, inspect.currentframe().f_lineno) if set(mul.input) != {add.output[0], add_1.output[0]}: return self.none(node, inspect.currentframe().f_lineno) halfs = g.next_nodes(mul.output[0]) if len(halfs) != 1: return self.none(node, inspect.currentframe().f_lineno) half = halfs[0] if half.op_type != "Mul" or half.domain != "": return self.none(node, inspect.currentframe().f_lineno) index = 1 if half.input[0] == mul.output[0] else 0 if ( not g.is_constant_scalar(half.input[index]) or g.get_constant_scalar(half.input[index]) != 0.5 ): return self.none(node, inspect.currentframe().f_lineno) return MatchResult( self, [add, div, node, add_1, mul, half], self.apply, insert_at=node )
[docs] def apply( self, g: "GraphBuilder", # noqa: F821 add_node: NodeProto, div_node: NodeProto, erf_node: NodeProto, add_1_node: NodeProto, mul_node: NodeProto, half_node: NodeProto, ) -> List[NodeProto]: return [ g.make_node( "BiasGelu", add_node.input, half_node.output, domain="com.microsoft", doc_string=erf_node.doc_string, name=f"{self.__class__.__name__}--{erf_node.name}", ) ]
[docs] class GeluOrtPattern(GeluPattern): """ Detects the decomposed version of Gelu with Tanh .. math:: y = \\frac{x}{2} \\left(1 + \\tanh\\left(\\sqrt{\\frac{2}{\\pi}} (x + 0.044715 * x^3)\\right)\\right) """ def __init__( self, verbose: int = 0, priority: int = 0, min_opset: int = 1, domain: str = "com.microsoft", ): super().__init__(verbose, priority, min_opset=min_opset) self.domain = domain
[docs] class GeluErfPattern(EasyPatternOptimization): """ Detects the decomposed version of Gelu with Erf. """ def __init__(self, verbose: int = 0, priority: int = 0, min_opset: int = 1): super().__init__(verbose, priority, min_opset=min_opset)
[docs] def match_pattern(self, g: "GraphBuilder", x, cst2, one, c05): # noqa: F821 xd = g.op.Div(x, cst2) # 1.4140625 exd = g.op.Erf(xd) aexd = g.op.Add(exd, one) # 1 mul = g.op.Mul(x, aexd) return g.op.Mul(c05, mul) # 0.5
[docs] def apply_pattern(self, g: "GraphBuilder", x, cst2, one, c05): # noqa: F821 return g.anyop.Gelu(x, domain="com.microsoft")
[docs] def validate_mapping( self, g: "GraphBuilderPatternOptimization", # noqa: F821 deleted_nodes: List[NodeProto], pattern_nodes: Optional[List[NodeProto]] = None, ) -> bool: assert len(deleted_nodes) == 5, f"Unexpected pattern length {len(deleted_nodes)}" assert deleted_nodes[0].op_type == "Div", f"-- {deleted_nodes[0]}" cst2 = deleted_nodes[0].input[1] assert deleted_nodes[2].op_type == "Add", f"-- {deleted_nodes[2]}" one = deleted_nodes[2].input[1] assert deleted_nodes[4].op_type == "Mul", f"-- {deleted_nodes[4]}" c05 = deleted_nodes[4].input[0] node = deleted_nodes[1] if not g.is_constant_scalar(cst2) or g.get_constant_scalar(cst2) != 1.4140625: return self.none(node, inspect.currentframe().f_lineno) if not g.is_constant_scalar(one) or g.get_constant_scalar(one) != 1: return self.none(node, inspect.currentframe().f_lineno) if not g.is_constant_scalar(c05) or g.get_constant_scalar(c05) != 0.5: return self.none(node, inspect.currentframe().f_lineno) return True
[docs] class FastGeluPattern(PatternOptimization): """ Replaces Gelu by FastGelu. """
[docs] def match( self, g: "GraphBuilderPatternOptimization", # noqa: F821 node: NodeProto, matched: List[MatchResult], ) -> Optional[MatchResult]: if node.op_type != "Gelu" or node.domain not in ("", "com.microsoft"): return self.none() return MatchResult(self, [node], self.apply, insert_at=node)
[docs] def apply( self, g: "GraphBuilder", # noqa: F821 gelu_node: NodeProto, ) -> List[NodeProto]: return [ g.make_node( "FastGelu", gelu_node.input, gelu_node.output, domain="com.microsoft", doc_string=gelu_node.doc_string, name=f"{self.__class__.__name__}--{gelu_node.name}", ) ]
[docs] class BiasSoftmaxPattern(PatternOptimization): """ Replaces Softmax(Add(x,y), axis=-1) by BiasSoftmax(x,y,axis=-1) """
[docs] def match( self, g: "GraphBuilderPatternOptimization", # noqa: F821 node: NodeProto, matched: List[MatchResult], ) -> Optional[MatchResult]: if not g.has_processor("CUDA"): return self.none() if node.op_type != "Softmax" or node.domain != "": return self.none() if g.is_used_more_than_once(node.input[0]): return self.none(node, inspect.currentframe().f_lineno) atts = g.get_attributes_with_default(node, axis=-1) if atts["axis"] != -1: return self.none(node, inspect.currentframe().f_lineno) before = g.node_before(node.input[0]) if before is None or before.op_type != "Add": return self.none(node, inspect.currentframe().f_lineno) return MatchResult(self, [before, node], self.apply, insert_at=node)
[docs] def apply( self, g: "GraphBuilder", # noqa: F821 add_node: NodeProto, softmax_node: NodeProto, ) -> List[NodeProto]: return [ g.make_node( "BiasSoftmax", add_node.input, softmax_node.output, axis=-1, is_inner_broadcast=0, domain="com.microsoft", doc_string=softmax_node.doc_string, name=f"{self.__class__.__name__}--{softmax_node.name}", ) ]
[docs] class QuickGeluPattern(PatternOptimization): """ Replaces Mul(x, Sigmoid(x)) by QuickGelu(x, alpha=1) """
[docs] def match( self, g: "GraphBuilderPatternOptimization", # noqa: F821 node: NodeProto, matched: List[MatchResult], ) -> Optional[MatchResult]: if node.op_type != "Sigmoid" or node.domain != "": return self.none() if g.is_used_more_than_once(node.output[0]): return self.none(node, inspect.currentframe().f_lineno) after = g.next_nodes(node.output[0]) if not after or after[0].op_type != "Mul": return self.none(node, inspect.currentframe().f_lineno) mul_node = after[0] if node.input[0] not in mul_node.input: return self.none(node, inspect.currentframe().f_lineno) return MatchResult(self, [node, mul_node], self.apply, insert_at=node)
[docs] def apply( self, g: "GraphBuilder", # noqa: F821 sigmoid: NodeProto, mul_node: NodeProto, ) -> List[NodeProto]: return [ g.make_node( "QuickGelu", sigmoid.input, mul_node.output, alpha=1.0, domain="com.microsoft", doc_string=sigmoid.doc_string, name=f"{self.__class__.__name__}--{sigmoid.name}", ) ]