Source code for experimental_experiment.torch_models.phi_helper

import random
from typing import Any, Sequence, Tuple


def ids_tensor(shape, vocab_size, rng=None, name=None):
    #  Creates a random int32 tensor of the shape within the vocab size
    import torch

    if rng is None:
        rng = random.Random()

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))

    return torch.tensor(data=values, dtype=torch.long).view(shape).contiguous()


def _prepare_config_and_inputs(
    batch_size: int,
    seq_length: int,
    vocab_size: int,
    type_sequence_label_size: int = 2,
    type_vocab_size: int = 16,
    num_labels: int = 3,
    num_choices: int = 4,
    use_input_mask: bool = False,
    use_token_type_ids: bool = False,
    use_labels: bool = False,
) -> Tuple[Any]:
    import torch

    input_ids = ids_tensor([batch_size, seq_length], vocab_size)

    input_mask = None
    if use_input_mask:
        input_mask = torch.tril(torch.ones(batch_size, seq_length))

    token_type_ids = None
    if use_token_type_ids:
        assert type_vocab_size > 0, "type_vocab_size is null"
        token_type_ids = ids_tensor([batch_size, seq_length], type_vocab_size)

    sequence_labels = None
    token_labels = None
    choice_labels = None
    if use_labels:
        assert type_sequence_label_size > 0, "type_sequence_label_size is null"
        assert num_labels > 0, "num_labels is null"
        assert num_choices > 0, "num_choices is null"
        sequence_labels = ids_tensor([batch_size], type_sequence_label_size)
        token_labels = ids_tensor([batch_size, seq_length], num_labels)
        choice_labels = ids_tensor([batch_size], num_choices)

    return (
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
    )


[docs] def get_phi_model( input_dims: Sequence[Tuple[int, int]] = ((13, 7), (14, 7), (15, 8)), hidden_size=32, num_hidden_layers=2, vocab_size=99, intermediate_size=16, max_position_embeddings=512, num_attention_heads=4, num_key_value_heads=2, _attn_implementation="eager", # needed value to remove graph breaks with_mask: bool = True, ): """ Returns a model. See `PhiConfig <https://huggingface.co/docs/transformers/main/en/model_doc/phi#transformers.PhiConfig>`_. The parameters are chosen for a unit test configuration from `test_modeling_phi.py <https://github.com/huggingface/transformers/blob/main/tests/models/phi/test_modeling_phi.py>`_. """ import torch from transformers import PhiConfig from transformers.models.phi.modeling_phi import PhiModel config = PhiConfig( hidden_size=hidden_size, num_hidden_layers=num_hidden_layers, vocab_size=vocab_size, intermediate_size=intermediate_size, max_position_embeddings=max_position_embeddings, num_attention_heads=num_attention_heads, num_key_value_heads=num_key_value_heads, ) if _attn_implementation: config._attn_implementation = _attn_implementation if with_mask: class PhiModelWrapper(torch.nn.Module): def __init__(self, config): super().__init__() self.model = PhiModel(config) def forward(self, input_ids, attention_mask): model_output = self.model( input_ids, attention_mask=attention_mask, use_cache=False ) return model_output.to_tuple() def generate_example_inputs(batch: int, seq: int, vocab_size: int): ( input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = _prepare_config_and_inputs( batch_size=batch, seq_length=seq, vocab_size=vocab_size, use_input_mask=True, ) return input_ids, input_mask example_args_collection = [] for b, s in input_dims: example_args_collection.append(generate_example_inputs(b, s, vocab_size)) return PhiModelWrapper(config), example_args_collection # no mask class PhiModelWrapper(torch.nn.Module): def __init__(self, config): super().__init__() self.model = PhiModel(config) def forward(self, input_ids): model_output = self.model(input_ids, use_cache=False) return model_output.to_tuple() def generate_example_inputs(batch: int, seq: int, vocab_size: int): ( input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = _prepare_config_and_inputs( batch_size=batch, seq_length=seq, vocab_size=vocab_size, use_input_mask=True, ) return (input_ids,) example_args_collection = [] for b, s in input_dims: example_args_collection.append(generate_example_inputs(b, s, vocab_size)) return PhiModelWrapper(config), example_args_collection