import random
from typing import Any, Sequence, Tuple
def ids_tensor(shape, vocab_size, rng=None, name=None):
# Creates a random int32 tensor of the shape within the vocab size
import torch
if rng is None:
rng = random.Random()
total_dims = 1
for dim in shape:
total_dims *= dim
values = []
for _ in range(total_dims):
values.append(rng.randint(0, vocab_size - 1))
return torch.tensor(data=values, dtype=torch.long).view(shape).contiguous()
def _prepare_config_and_inputs(
batch_size: int,
seq_length: int,
vocab_size: int,
type_sequence_label_size: int = 2,
type_vocab_size: int = 16,
num_labels: int = 3,
num_choices: int = 4,
use_input_mask: bool = False,
use_token_type_ids: bool = False,
use_labels: bool = False,
) -> Tuple[Any]:
import torch
input_ids = ids_tensor([batch_size, seq_length], vocab_size)
input_mask = None
if use_input_mask:
input_mask = torch.tril(torch.ones(batch_size, seq_length))
token_type_ids = None
if use_token_type_ids:
assert type_vocab_size > 0, "type_vocab_size is null"
token_type_ids = ids_tensor([batch_size, seq_length], type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if use_labels:
assert type_sequence_label_size > 0, "type_sequence_label_size is null"
assert num_labels > 0, "num_labels is null"
assert num_choices > 0, "num_choices is null"
sequence_labels = ids_tensor([batch_size], type_sequence_label_size)
token_labels = ids_tensor([batch_size, seq_length], num_labels)
choice_labels = ids_tensor([batch_size], num_choices)
return (
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
)
[docs]
def get_phi_model(
input_dims: Sequence[Tuple[int, int]] = ((13, 7), (14, 7), (15, 8)),
hidden_size=32,
num_hidden_layers=2,
vocab_size=99,
intermediate_size=16,
max_position_embeddings=512,
num_attention_heads=4,
num_key_value_heads=2,
_attn_implementation="eager", # needed value to remove graph breaks
with_mask: bool = True,
):
"""
Returns a model.
See `PhiConfig
<https://huggingface.co/docs/transformers/main/en/model_doc/phi#transformers.PhiConfig>`_.
The parameters are chosen for a unit test configuration from `test_modeling_phi.py
<https://github.com/huggingface/transformers/blob/main/tests/models/phi/test_modeling_phi.py>`_.
"""
import torch
from transformers import PhiConfig
from transformers.models.phi.modeling_phi import PhiModel
config = PhiConfig(
hidden_size=hidden_size,
num_hidden_layers=num_hidden_layers,
vocab_size=vocab_size,
intermediate_size=intermediate_size,
max_position_embeddings=max_position_embeddings,
num_attention_heads=num_attention_heads,
num_key_value_heads=num_key_value_heads,
)
if _attn_implementation:
config._attn_implementation = _attn_implementation
if with_mask:
class PhiModelWrapper(torch.nn.Module):
def __init__(self, config):
super().__init__()
self.model = PhiModel(config)
def forward(self, input_ids, attention_mask):
model_output = self.model(
input_ids, attention_mask=attention_mask, use_cache=False
)
return model_output.to_tuple()
def generate_example_inputs(batch: int, seq: int, vocab_size: int):
(
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = _prepare_config_and_inputs(
batch_size=batch,
seq_length=seq,
vocab_size=vocab_size,
use_input_mask=True,
)
return input_ids, input_mask
example_args_collection = []
for b, s in input_dims:
example_args_collection.append(generate_example_inputs(b, s, vocab_size))
return PhiModelWrapper(config), example_args_collection
# no mask
class PhiModelWrapper(torch.nn.Module):
def __init__(self, config):
super().__init__()
self.model = PhiModel(config)
def forward(self, input_ids):
model_output = self.model(input_ids, use_cache=False)
return model_output.to_tuple()
def generate_example_inputs(batch: int, seq: int, vocab_size: int):
(
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = _prepare_config_and_inputs(
batch_size=batch,
seq_length=seq,
vocab_size=vocab_size,
use_input_mask=True,
)
return (input_ids,)
example_args_collection = []
for b, s in input_dims:
example_args_collection.append(generate_example_inputs(b, s, vocab_size))
return PhiModelWrapper(config), example_args_collection