import contextlib
import os
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
from onnx import ModelProto, load
from onnx.numpy_helper import to_array
from ..helpers import tensor_dtype_to_np_dtype
[docs]
@contextlib.contextmanager
def dump_onnx(prefix: str, folder: Optional[str] = None, clean: bool = False):
"""
context enabling the dump of models generated by
:epkg:`onnxrt backend`.
:param prefix: prefix for all files
:param folder: sub folder (created if it does not exist)
:param clean: if True, cleans the folder
See :ref:`l-plot-onnxrt-diff` for an example.
"""
if folder:
if not os.path.exists(folder):
os.makedirs(folder)
if clean:
for f in os.listdir(folder):
ff = os.path.join(folder, f)
if os.path.isfile(ff):
os.remove(ff)
else:
assert not clean, "cleaning can only happen if folder is specified"
value = os.environ.get("ONNXRT_DUMP_PATH", None)
os.environ["ONNXRT_DUMP_PATH"] = os.path.join(folder, f"{prefix}_")
try:
yield
finally:
os.environ["ONNXRT_DUMP_PATH"] = value or ""
[docs]
def assert_all_close(
v1: Any,
v2: Any,
atol: Union[float, Tuple[float, float]] = 1e-5,
rtol: float = 1e-5,
msg: str = "",
):
"""
Checks that the expected outputs and new outputs are the same.
:param v1: tensor or tuple of tensors
:param v2: tensor or tuple of tensors
:param atol: absolute error or (absolute error, quantile), if quantile is specified,
the function checks the error is < atol for quantile %
:param rtol: relative error
:param msg: more complex message
See :ref:`l-plot-onnxrt-diff` for an example.
"""
if msg:
try:
assert_all_close(v1, v2, atol=atol, rtol=rtol)
except AssertionError as e:
raise AssertionError(f"ERROR: {msg}") from e
return
import torch
aatol = atol
if isinstance(atol, tuple):
atol, quantile = atol
else:
atol, quantile = atol, None
if isinstance(v1, torch.Tensor):
assert isinstance(v2, torch.Tensor), f"v2 is not a tensor but {type(v2)}"
assert_all_close(
v1.detach().cpu().numpy(), v2.detach().cpu().numpy(), atol=aatol, rtol=rtol
)
# assert torch.allclose(v1.cpu(), v2.cpu(), atol=atol, rtol=rtol, equal_nan=True)
elif isinstance(v1, np.ndarray):
assert isinstance(v2, np.ndarray), f"v2 is not an array but {type(v2)}"
try:
# desired is the second input
np.testing.assert_allclose(v2, v1, atol=atol, rtol=rtol)
except AssertionError as e:
if quantile is None:
if v1.size <= 10:
raise AssertionError(
f"Discrepancies between\nv1={v1}\nv2={v2}\nratio={v2/v1}"
) from e
raise
maxdiff = np.abs(v1 - v2)
th = np.quantile(maxdiff, quantile)
ind = maxdiff <= th
r = maxdiff[ind]
rmax = r.max()
if rmax > atol:
li = r.ravel().tolist()
li.sort()
msg = (
f"quantile={quantile} th={th} rmax={rmax} atol={atol} "
f"dtypes={v1.dtype} {v2.dtype}, shapes={v1.shape} {v2.shape}, "
f"means={v1.mean()} median={np.median(v1)} {np.median(v2)}, "
f"{v2.mean()}, min={v1.min()} {v2.min()}, "
f"max={v1.max()} {v2.max()}, ..... {li[:10]} ..... {li[-10:]}"
)
raise AssertionError(msg) from e
elif isinstance(v1, (tuple, list)):
assert isinstance(v2, type(v1)), f"v2 is not a {type(v1)} but {type(v2)}"
v1 = tuple(_ for _ in v1 if _ is not None)
v2 = tuple(_ for _ in v2 if _ is not None)
assert len(v1) == len(v2), f"tuple have different lengths {len(v1)} != {len(v2)}"
for a, b in zip(v1, v2):
assert_all_close(a, b, atol=aatol, rtol=rtol)
elif isinstance(v1, int):
assert isinstance(v2, type(v1)), f"v2 is not a {type(v1)} but {type(v2)}"
assert v1 == v2
else:
raise AssertionError(f"Unexpected type for v1 and v2 {type(v1)}, {type(v2)}")
[docs]
def reorder_functions_in_proto(proto: Union[str, ModelProto]) -> Union[str, ModelProto]:
"""
The reference implementation expects function to be defined.
So rank function has to be placed in the first position
:param proto: a model
:return: modified model inplace
See :ref:`l-plot-onnxrt-diff` for an example.
"""
if isinstance(proto, str):
p = load(proto)
p2 = reorder_functions_in_proto(p)
with open(proto, "wb") as f:
f.write(p2.SerializeToString())
return proto
def _order(name):
if name == "Rank":
return 0
if name == "IsScalar":
return 1
return 10
names = [(_order(f.name), f.name, f) for f in proto.functions]
names.sort()
del proto.functions[:]
proto.functions.extend([_[-1] for _ in names])
return proto
[docs]
def results_to_string(results: Any, indent: str = "") -> str:
"""
Builds a string showing the type and shape of every tensor in it.
"""
import torch
if isinstance(results, torch.Tensor):
return f"{indent}{results.dtype} {tuple(results.shape)} [sum={results.sum():1.3g}]"
if isinstance(results, tuple):
return f"{indent}{len(results)} results\n" + "\n".join(
results_to_string(r, indent=indent + " ") for r in results
)
raise RuntimeError(f"Unexpected type {type(results)} for results")