Source code for onnx_extended.plotting.benchmark

from typing import Tuple, Union


[docs] def vhistograms( df: "pandas.DataFrame", # noqa: F821 metric: str = "time", name: str = "name", batch_size: str = "batch_size", voc_size: str = "voc_size", sup_title: str = "Compares Implementations of TfIdfVectorizer", ): """ Histograms with error bars. :param df: data :param metric: metric to show :param name: experiment name :param batch_size: first column for the variations :param voc_size: second column for the variations :param sup_title: figure title :return: axes .. runpython:: import pandas from onnx_extended.plotting.data import vhistograms_data df = pandas.DataFrame(vhistograms_data()) print(df.head()) .. plot:: import pandas from onnx_extended.plotting.data import vhistograms_data from onnx_extended.plotting.benchmark import vhistograms df = pandas.DataFrame(vhistograms_data()) vhistograms(df) """ import matplotlib.pyplot as plt batch_sizes = list(sorted(set(df[batch_size]))) voc_sizes = list(sorted(set(df[voc_size]))) B = len(batch_sizes) V = len(voc_sizes) fig, ax = plt.subplots(V, B, figsize=(B * 2, V * 2), sharex=True, sharey=True) fig.suptitle(sup_title) for b in range(B): for v in range(V): aa = ax[v, b] sub = df[ (df[batch_size] == batch_sizes[b]) & (df[voc_size] == voc_sizes[v]) ][[name, metric]].set_index(name) if 0 in sub.shape: continue sub[metric].plot.bar( ax=aa, logy=True, rot=0, color=["blue", "orange", "green"] ) if b == 0: aa.set_ylabel(f"vocabulary={voc_sizes[v]}") if v == V - 1: aa.set_xlabel(f"batch_size={batch_sizes[b]}") aa.grid(True) if ax is None: fig.tight_layout() return ax
[docs] def hhistograms( df: "pandas.DataFrame", # noqa: F821 keys: Union[str, Tuple[str, ...]] = "name", metric: str = "average", baseline: str = "baseline", title: str = "Benchmark", limit: int = 50, ax=None, ): """ Histograms with error bars. Shows the first best performances. :param df: data :param keys: columns to graph by :param metric: metric to display :param baseline: column `keys[-1]`, no matter what it should be displayed :param title: graph title :param limit: number of performances to display :param ax: existing axes :return: axes .. runpython:: import pandas from onnx_extended.plotting.data import hhistograms_data df = pandas.DataFrame(hhistograms_data()) print(df.head()) .. plot:: import pandas from onnx_extended.plotting.data import hhistograms_data from onnx_extended.plotting.benchmark import hhistograms df = pandas.DataFrame(hhistograms_data()) hhistograms(df, keys=("input", "name")) """ import pandas if not isinstance(keys, (tuple, list)): keys = (keys,) dfm = ( df[list(keys) + [metric]] .groupby(list(keys), as_index=False) .agg(["mean", "min", "max"]) .copy() ) if dfm.shape[1] == 3: dfm = dfm.reset_index(drop=False) dfm.columns = list(keys) + [metric] + ["min", "max"] dfi = dfm.sort_values(metric).reset_index(drop=True) base = dfi[dfi[keys[-1]].str.contains(baseline)] not_base = dfi[~dfi[keys[-1]].str.contains(baseline)].reset_index(drop=True) if not_base.shape[0] > limit: not_base = not_base[:limit] merged = pandas.concat([base, not_base], axis=0) merged = merged.sort_values(metric).reset_index(drop=True).set_index(list(keys)) if ax is None: import matplotlib.pyplot as plt fig, ax = plt.subplots(1, 1, figsize=(10, merged.shape[0] / 2)) err_min = merged[metric] - merged["min"] err_max = merged["max"] - merged[metric] merged[[metric]].plot.barh( ax=ax, title=title, xerr=[err_min, err_max], ) b = df.loc[df[keys[-1]] == baseline, metric].mean() ax.plot([b, b], [0, df.shape[0]], "r--") ax.set_xlim( [ (df["min_exec"].min() + df[metric].min()) / 2, (df[metric].max() + df[metric].max()) / 2, ] ) # ax.set_xscale("log") fig.tight_layout() return ax