Measuring onnxruntime performance against a cython binding

The following code measures the performance of the python bindings against a cython binding. The time spent in it is not significant when the computation is huge but it may be for small matrices.

import numpy
from pandas import DataFrame
import matplotlib.pyplot as plt
from tqdm import tqdm
from onnx import numpy_helper, TensorProto
from onnx.helper import (
    make_model,
    make_node,
    make_graph,
    make_tensor_value_info,
    make_opsetid,
)
from onnx.checker import check_model
from onnxruntime import InferenceSession
from onnx_extended.ortcy.wrap.ortinf import OrtSession
from onnx_extended.args import get_parsed_args
from onnx_extended.ext_test_case import measure_time, unit_test_going


script_args = get_parsed_args(
    "plot_bench_cypy_ort",
    description=__doc__,
    dims=(
        "1,10" if unit_test_going() else "1,10,100,1000",
        "square matrix dimensions to try, comma separated values",
    ),
    expose="repeat,number",
)

A simple onnx model

A = numpy_helper.from_array(numpy.array([1], dtype=numpy.float32), name="A")
X = make_tensor_value_info("X", TensorProto.FLOAT, [None, None])
Y = make_tensor_value_info("Y", TensorProto.FLOAT, [None, None])
node1 = make_node("Add", ["X", "A"], ["Y"])
graph = make_graph([node1], "+1", [X], [Y], [A])
onnx_model = make_model(graph, opset_imports=[make_opsetid("", 18)], ir_version=8)
check_model(onnx_model)

Two python bindings on CPU

sess_ort = InferenceSession(
    onnx_model.SerializeToString(), providers=["CPUExecutionProvider"]
)
sess_ext = OrtSession(onnx_model.SerializeToString())

x = numpy.random.randn(10, 10).astype(numpy.float32)
y = x + 1

y_ort = sess_ort.run(None, {"X": x})[0]
y_ext = sess_ext.run([x])[0]

d_ort = numpy.abs(y_ort - y).sum()
d_ext = numpy.abs(y_ext - y).sum()
print(f"Discrepancies: d_ort={d_ort}, d_ext={d_ext}")
Discrepancies: d_ort=0.0, d_ext=0.0

Time measurement

run_1_1 is a specific implementation when there is only 1 input and output.

t_ort = measure_time(lambda: sess_ort.run(None, {"X": x})[0], number=200, repeat=100)
print(f"t_ort={t_ort}")

t_ext = measure_time(lambda: sess_ext.run([x])[0], number=200, repeat=100)
print(f"t_ext={t_ext}")

t_ext2 = measure_time(lambda: sess_ext.run_1_1(x), number=200, repeat=100)
print(f"t_ext2={t_ext2}")
t_ort={'average': 1.1017984999807592e-05, 'deviation': 1.1627572347791087e-06, 'min_exec': 1.0173499999837077e-05, 'max_exec': 1.705549999996947e-05, 'repeat': 100, 'number': 200, 'ttime': 0.0011017984999807592, 'context_size': 64, 'warmup_time': 6.429999984902679e-05}
t_ext={'average': 1.4125910000029763e-05, 'deviation': 1.0116295268419106e-05, 'min_exec': 9.202999999615713e-06, 'max_exec': 7.462750000058804e-05, 'repeat': 100, 'number': 200, 'ttime': 0.0014125910000029763, 'context_size': 64, 'warmup_time': 7.379999988188501e-05}
t_ext2={'average': 8.863004999875556e-06, 'deviation': 1.1311618198577438e-06, 'min_exec': 7.898999999724765e-06, 'max_exec': 1.5066000000842906e-05, 'repeat': 100, 'number': 200, 'ttime': 0.0008863004999875556, 'context_size': 64, 'warmup_time': 4.759999956149841e-05}

Benchmark

dims = list(int(i) for i in script_args.dims.split(","))

data = []
for dim in tqdm(dims):
    if dim < 1000:
        number, repeat = script_args.number, script_args.repeat
    else:
        number, repeat = script_args.number * 5, script_args.repeat * 5
    x = numpy.random.randn(dim, dim).astype(numpy.float32)
    t_ort = measure_time(
        lambda: sess_ort.run(None, {"X": x})[0], number=number, repeat=50
    )
    t_ort["name"] = "ort"
    t_ort["dim"] = dim
    data.append(t_ort)

    t_ext = measure_time(lambda: sess_ext.run([x])[0], number=number, repeat=repeat)
    t_ext["name"] = "ext"
    t_ext["dim"] = dim
    data.append(t_ext)

    t_ext2 = measure_time(lambda: sess_ext.run_1_1(x), number=number, repeat=repeat)
    t_ext2["name"] = "ext_1_1"
    t_ext2["dim"] = dim
    data.append(t_ext2)

    if unit_test_going() and dim >= 10:
        break


df = DataFrame(data)
df
  0%|          | 0/4 [00:00<?, ?it/s]
100%|██████████| 4/4 [00:03<00:00,  1.12it/s]
100%|██████████| 4/4 [00:03<00:00,  1.12it/s]
average deviation min_exec max_exec repeat number ttime context_size warmup_time name dim
0 0.000011 6.732164e-07 0.000010 0.000015 50 10 0.000539 64 0.000090 ort 1
1 0.000009 1.841304e-07 0.000009 0.000010 10 10 0.000094 64 0.000040 ext 1
2 0.000008 8.129576e-08 0.000008 0.000008 10 10 0.000079 64 0.000022 ext_1_1 1
3 0.000011 5.452700e-07 0.000011 0.000015 50 10 0.000546 64 0.000032 ort 10
4 0.000010 7.448463e-07 0.000009 0.000012 10 10 0.000096 64 0.000029 ext 10
5 0.000008 9.436630e-08 0.000008 0.000008 10 10 0.000080 64 0.000021 ext_1_1 10
6 0.000015 3.044421e-06 0.000014 0.000033 50 10 0.000748 64 0.000036 ort 100
7 0.000014 2.304404e-06 0.000013 0.000019 10 10 0.000139 64 0.000057 ext 100
8 0.000011 9.202717e-08 0.000011 0.000011 10 10 0.000112 64 0.000025 ext_1_1 100
9 0.000485 1.299964e-04 0.000371 0.001006 50 50 0.024248 64 0.001992 ort 1000
10 0.000462 8.708347e-05 0.000365 0.000741 50 50 0.023108 64 0.002587 ext 1000
11 0.000454 5.599289e-05 0.000372 0.000642 50 50 0.022699 64 0.000430 ext_1_1 1000


Plots

piv = df.pivot(index="dim", columns="name", values="average")

fig, ax = plt.subplots(1, 1)
piv.plot(ax=ax, title="Binding Comparison", logy=True, logx=True)
fig.tight_layout()
fig.savefig("plot_bench_ort.png")
Binding Comparison

Total running time of the script: (0 minutes 4.796 seconds)

Gallery generated by Sphinx-Gallery