Note
Go to the end to download the full example code.
Optimizing ScatterND operator on CUDA¶
How to parallelize something like the following?
ScatterND¶
This configuration happens in a Llama model.
Where the shapes are:
zeros: 32000x4096
indices: 2x1024x1
updates: 2x1024x4096
from onnx_extended.args import get_parsed_args
script_args = get_parsed_args(
"plot_op_scatternd_cuda",
description=__doc__,
config=(
"small",
"small, short optimization (default), "
"medium for medium sizes, "
"large for big sizes",
"llama for a specific case on llama",
),
warmup=3,
repeat=5,
itype=(1, "1 or 10 for float or float16"),
expose="config,itype,warmup,repeat",
)
import time
import numpy as np
from numpy.testing import assert_almost_equal
from pandas import DataFrame
from tqdm import tqdm
import onnx.helper as oh
from onnx import TensorProto
from onnx.reference import ReferenceEvaluator
from onnx.reference.op_run import OpRun
from onnx_array_api.plotting.text_plot import onnx_simple_text_plot
itype = script_args.itype
dtype = np.float32 if itype == TensorProto.FLOAT else np.float16
config = script_args.config
print(f"config={config}")
print(f"itype={itype}, dtype={dtype}")
if config == "small":
sizes = (256, 512, 1024)
elif config == "medium":
sizes = (512, 1024, 2048)
elif config == "large":
sizes = (1024, 2048, 4096, 8192)
elif config == "llama":
sizes = (16000, 32000)
else:
try:
sizes = list(map(int, config.split(",")))
except (ValueError, TypeError) as e:
raise AssertionError(f"Unexpected config value {config!r}.") from e
def get_model(d3=True, optimize=False, shape_input=False, itype=TensorProto.FLOAT):
indices_shape = ["i", "j", 1] if d3 else ["m", 1]
updates_shape = ["i", "j", "b"] if d3 else ["m", "b"]
kwargs = dict(reduction="add")
if shape_input:
kwargs["domain"] = "onnx_extended.ortops.optim.cuda"
if optimize:
kwargs["strategy"] = "optimize"
model = oh.make_model(
oh.make_graph(
[
oh.make_node(
"ScatterNDOfShape" if shape_input else "ScatterND",
["shape" if shape_input else "X", "indices", "updates"],
["Y"],
**kwargs,
)
],
"g",
[
(
oh.make_tensor_value_info("shape", TensorProto.INT64, ["s"])
if shape_input
else oh.make_tensor_value_info("X", itype, ["a", "b"])
),
oh.make_tensor_value_info("indices", TensorProto.INT64, indices_shape),
oh.make_tensor_value_info("updates", itype, updates_shape),
],
[oh.make_tensor_value_info("Y", itype, ["a", "b"])],
),
opset_imports=[
oh.make_opsetid("", 18),
oh.make_opsetid("onnx_extended.ortops.optim.cuda", 1),
],
ir_version=9,
)
return model
model = get_model()
print(onnx_simple_text_plot(model))
config=small
itype=1, dtype=<class 'numpy.float32'>
opset: domain='' version=18
opset: domain='onnx_extended.ortops.optim.cuda' version=1
input: name='X' type=dtype('float32') shape=['a', 'b']
input: name='indices' type=dtype('int64') shape=['i', 'j', 1]
input: name='updates' type=dtype('float32') shape=['i', 'j', 'b']
ScatterND(X, indices, updates, reduction=b'add') -> Y
output: name='Y' type=dtype('float32') shape=['a', 'b']
Let’s see the evaluation by the ReferenceEvaluator.
def _scatter_nd_impl(data, indices, updates, reduction=None, verbose=False): # type: ignore
output = np.copy(data)
for i in np.ndindex(indices.shape[:-1]):
if verbose:
print(f"updates for i={i}, indices={indices[i]}, updates={updates[i]}")
if reduction == "add":
output[tuple(indices[i])] += updates[i]
elif reduction == "mul":
output[tuple(indices[i])] *= updates[i]
elif reduction == "max":
output[tuple(indices[i])] = np.maximum(output[indices[i]], updates[i])
elif reduction == "min":
output[tuple(indices[i])] = np.minimum(output[indices[i]], updates[i])
else:
output[tuple(indices[i])] = updates[i]
return output
class ScatterND(OpRun):
def _run(self, data, indices, updates, reduction=None, optimize=None): # type: ignore
y = _scatter_nd_impl(data, indices, updates, reduction=reduction, verbose=True)
return (y,)
class ScatterNDOfShape(OpRun):
op_domain = "onnx_extended.ortops.optim.cuda"
def _run(self, shape, indices, updates, reduction=None, optimize=None): # type: ignore
data = np.zeros(tuple(shape.tolist()), dtype=updates.dtype)
y = _scatter_nd_impl(data, indices, updates, reduction=reduction)
return (y,)
shape = (5, 7)
X = np.zeros(shape, dtype=dtype)
indices = np.zeros((2, 10, 1)).astype(np.int64)
indices[:, ::2, 0] = 3
updates = np.ones((2, 10, 7)).astype(dtype)
feeds = {"X": X, "indices": indices, "updates": updates}
ref = ReferenceEvaluator(model, new_ops=[ScatterND])
got = ref.run(None, feeds)[0]
print(got)
updates for i=(0, 0), indices=[3], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(0, 1), indices=[0], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(0, 2), indices=[3], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(0, 3), indices=[0], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(0, 4), indices=[3], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(0, 5), indices=[0], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(0, 6), indices=[3], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(0, 7), indices=[0], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(0, 8), indices=[3], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(0, 9), indices=[0], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(1, 0), indices=[3], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(1, 1), indices=[0], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(1, 2), indices=[3], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(1, 3), indices=[0], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(1, 4), indices=[3], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(1, 5), indices=[0], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(1, 6), indices=[3], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(1, 7), indices=[0], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(1, 8), indices=[3], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(1, 9), indices=[0], updates=[1. 1. 1. 1. 1. 1. 1.]
[[10. 10. 10. 10. 10. 10. 10.]
[ 0. 0. 0. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 0. 0. 0.]
[10. 10. 10. 10. 10. 10. 10.]
[ 0. 0. 0. 0. 0. 0. 0.]]
To generalize, let’s change the shapes.
model = get_model(d3=False, itype=itype)
print(onnx_simple_text_plot(model))
new_indices = indices.reshape((-1, 1))
new_updates = updates.reshape((-1, updates.shape[-1]))
feeds = {"X": X, "indices": indices, "updates": updates}
ref = ReferenceEvaluator(model, new_ops=[ScatterND])
got = ref.run(None, feeds)[0]
print(got)
opset: domain='' version=18
opset: domain='onnx_extended.ortops.optim.cuda' version=1
input: name='X' type=dtype('float32') shape=['a', 'b']
input: name='indices' type=dtype('int64') shape=['m', 1]
input: name='updates' type=dtype('float32') shape=['m', 'b']
ScatterND(X, indices, updates, reduction=b'add') -> Y
output: name='Y' type=dtype('float32') shape=['a', 'b']
updates for i=(0, 0), indices=[3], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(0, 1), indices=[0], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(0, 2), indices=[3], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(0, 3), indices=[0], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(0, 4), indices=[3], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(0, 5), indices=[0], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(0, 6), indices=[3], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(0, 7), indices=[0], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(0, 8), indices=[3], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(0, 9), indices=[0], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(1, 0), indices=[3], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(1, 1), indices=[0], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(1, 2), indices=[3], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(1, 3), indices=[0], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(1, 4), indices=[3], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(1, 5), indices=[0], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(1, 6), indices=[3], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(1, 7), indices=[0], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(1, 8), indices=[3], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(1, 9), indices=[0], updates=[1. 1. 1. 1. 1. 1. 1.]
[[10. 10. 10. 10. 10. 10. 10.]
[ 0. 0. 0. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 0. 0. 0.]
[10. 10. 10. 10. 10. 10. 10.]
[ 0. 0. 0. 0. 0. 0. 0.]]
First scenario¶
model = get_model(d3=False, shape_input=True, itype=itype)
print(onnx_simple_text_plot(model))
feeds = {
"shape": np.array(X.shape, dtype=np.int64),
"indices": indices.reshape((-1, 1)),
"updates": updates.reshape((-1, updates.shape[-1])),
}
ref = ReferenceEvaluator(model, new_ops=[ScatterNDOfShape])
expected = ref.run(None, feeds)[0]
print(expected)
opset: domain='' version=18
opset: domain='onnx_extended.ortops.optim.cuda' version=1
input: name='shape' type=dtype('int64') shape=['s']
input: name='indices' type=dtype('int64') shape=['m', 1]
input: name='updates' type=dtype('float32') shape=['m', 'b']
ScatterNDOfShape[onnx_extended.ortops.optim.cuda](shape, indices, updates, reduction=b'add') -> Y
output: name='Y' type=dtype('float32') shape=['a', 'b']
[[10. 10. 10. 10. 10. 10. 10.]
[ 0. 0. 0. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 0. 0. 0.]
[10. 10. 10. 10. 10. 10. 10.]
[ 0. 0. 0. 0. 0. 0. 0.]]
With onnxruntime
def get_session(model):
import onnxruntime
from onnx_extended.ortops.optim.cuda import get_ort_ext_libs
if "CUDAExecutionProvider" not in onnxruntime.get_available_providers():
return None
opts = onnxruntime.SessionOptions()
opts.register_custom_ops_library(get_ort_ext_libs()[0])
sess = onnxruntime.InferenceSession(
model.SerializeToString(),
opts,
providers=["CUDAExecutionProvider", "CPUExecutionProvider"],
)
return sess
sess1 = get_session(model)
if sess1 is not None:
for k, v in feeds.items():
print(k, v.dtype, v.shape)
got = sess1.run(None, feeds)[0]
print(got)
assert_almost_equal(expected, got)
shape int64 (2,)
indices int64 (20, 1)
updates float32 (20, 7)
[[10. 10. 10. 10. 10. 10. 10.]
[ 0. 0. 0. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 0. 0. 0.]
[10. 10. 10. 10. 10. 10. 10.]
[ 0. 0. 0. 0. 0. 0. 0.]]
Same model but using an optimization to compute it.
opset: domain='' version=18
opset: domain='onnx_extended.ortops.optim.cuda' version=1
input: name='shape' type=dtype('int64') shape=['s']
input: name='indices' type=dtype('int64') shape=['m', 1]
input: name='updates' type=dtype('float32') shape=['m', 'b']
ScatterNDOfShape[onnx_extended.ortops.optim.cuda](shape, indices, updates, reduction=b'add', strategy=b'optimize') -> Y
output: name='Y' type=dtype('float32') shape=['a', 'b']
[[10. 10. 10. 10. 10. 10. 10.]
[ 0. 0. 0. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 0. 0. 0.]
[10. 10. 10. 10. 10. 10. 10.]
[ 0. 0. 0. 0. 0. 0. 0.]]
Benchmark¶
def move_inputs(sess, feeds):
from onnxruntime.capi._pybind_state import (
SessionIOBinding,
OrtDevice as C_OrtDevice,
OrtValue as C_OrtValue,
)
input_names = [i.name for i in sess.get_inputs()]
ort_device = C_OrtDevice(C_OrtDevice.cuda(), C_OrtDevice.default_memory(), 0)
feed_ort_value = [
(name, C_OrtValue.ortvalue_from_numpy(feeds[name], ort_device))
for name in input_names
]
bind = SessionIOBinding(sess._sess)
for name, value in feed_ort_value:
bind.bind_input(
name, ort_device, feeds[name].dtype, value.shape(), value.data_ptr()
)
for o in sess.get_outputs():
bind.bind_output(o.name, ort_device)
return bind, feed_ort_value
def benchmark(
sess, sizes, config, label, itype, times_col: int = 1, times_indices: int = 1
):
data = []
for size in tqdm(sizes):
if config == "llama":
# zeros: 32000x4096
# indices: 2x1024x1
# updates: 2x1024x4096
nrow, ncol = size, 4096
nind = 1024
else:
nrow, ncol = size, int(size * times_col)
nind = int(size * times_indices)
shape = np.array([nrow, ncol], dtype=np.int64)
indices = np.array(
[np.random.randint(0, nrow - 1) for _ in range(nind)], dtype=np.int64
).reshape((-1, 1))
updates = np.random.randn(nind, ncol).astype(
np.float32 if itype == TensorProto.FLOAT else np.float16
)
feeds = dict(shape=shape, indices=indices, updates=updates)
bind, cuda_feeds = move_inputs(sess, feeds)
begin = time.perf_counter()
for i in range(script_args.warmup):
# sess.run(None, feeds)
sess._sess.run_with_iobinding(bind, None)
warmup = time.perf_counter() - begin
times = []
for i in range(script_args.repeat):
begin = time.perf_counter()
# sess.run(None, feeds)
sess._sess.run_with_iobinding(bind, None)
times.append(time.perf_counter() - begin)
npt = np.array(times)
obs = dict(
warmup=warmup,
time=npt.mean(),
std=npt.std(),
min=npt.min(),
max=npt.max(),
repeat=script_args.repeat,
size=size,
label=label,
)
data.append(obs)
return data
Not Fused.
sizes=(256, 512, 1024)
0%| | 0/3 [00:00<?, ?it/s]
100%|██████████| 3/3 [00:00<00:00, 58.40it/s]
Fused.
if sess2 is not None:
data_nd2 = benchmark(
sess2, sizes, script_args.config, "No Atomic/Fused", itype=itype
)
0%| | 0/3 [00:00<?, ?it/s]
100%|██████████| 3/3 [00:00<00:00, 63.78it/s]
Data¶
warmup time std min max repeat size label
0 0.000576 0.000159 1.121428e-06 0.000158 0.000161 5 256 Atomic/Not Fused
1 0.001155 0.000392 9.668631e-06 0.000373 0.000398 5 512 Atomic/Not Fused
2 0.002914 0.000636 1.666577e-05 0.000609 0.000658 5 1024 Atomic/Not Fused
3 0.000717 0.000206 9.147109e-06 0.000188 0.000213 5 256 No Atomic/Fused
4 0.000950 0.000296 5.966584e-07 0.000295 0.000297 5 512 No Atomic/Fused
Pivot.
if sess2 is not None:
pivot = df.pivot(index="size", columns="label", values="time")
pivot["ratio"] = pivot["Atomic/Not Fused"] / pivot["No Atomic/Fused"]
print("Speed up compare to the onnx standaed.")
print(pivot)
ax = pivot[["Atomic/Not Fused", "No Atomic/Fused"]].plot(
logx=True,
logy=True,
title=f"Atomic/No-Atomic implementation for ScatterND on CUDA\nitype={itype}",
)
ax.get_figure().savefig("plot_op_scatternd_cuda.png")
Speed up compare to the onnx standaed.
label Atomic/Not Fused No Atomic/Fused ratio
size
256 0.000159 0.000206 0.772643
512 0.000392 0.000296 1.325651
1024 0.000636 0.000719 0.884669
The best choice depends on the input sizes, For big matrices, the use of atomic is slowing down the computation.
Total running time of the script: (0 minutes 0.526 seconds)