Optimizing ScatterND operator on CUDA

How to parallelize something like the following?

ScatterND

This configuration happens in a Llama model.

gradient = ScatterND(zeros, indices, updates)

Where the shapes are:

  • zeros: 32000x4096

  • indices: 2x1024x1

  • updates: 2x1024x4096

from onnx_extended.args import get_parsed_args

script_args = get_parsed_args(
    "plot_op_scatternd_cuda",
    description=__doc__,
    config=(
        "small",
        "small, short optimization (default), "
        "medium for medium sizes, "
        "large for big sizes",
        "llama for a specific case on llama",
    ),
    warmup=3,
    repeat=5,
    itype=(1, "1 or 10 for float or float16"),
    expose="config,itype,warmup,repeat",
)

import time
import numpy as np
from numpy.testing import assert_almost_equal
from pandas import DataFrame
from tqdm import tqdm
import onnx.helper as oh
from onnx import TensorProto
from onnx.reference import ReferenceEvaluator
from onnx.reference.op_run import OpRun
from onnx_array_api.plotting.text_plot import onnx_simple_text_plot

itype = script_args.itype
dtype = np.float32 if itype == TensorProto.FLOAT else np.float16
config = script_args.config
print(f"config={config}")
print(f"itype={itype}, dtype={dtype}")

if config == "small":
    sizes = (256, 512, 1024)
elif config == "medium":
    sizes = (512, 1024, 2048)
elif config == "large":
    sizes = (1024, 2048, 4096, 8192)
elif config == "llama":
    sizes = (16000, 32000)
else:
    try:
        sizes = list(map(int, config.split(",")))
    except (ValueError, TypeError) as e:
        raise AssertionError(f"Unexpected config value {config!r}.") from e


def get_model(d3=True, optimize=False, shape_input=False, itype=TensorProto.FLOAT):
    indices_shape = ["i", "j", 1] if d3 else ["m", 1]
    updates_shape = ["i", "j", "b"] if d3 else ["m", "b"]
    kwargs = dict(reduction="add")
    if shape_input:
        kwargs["domain"] = "onnx_extended.ortops.optim.cuda"
    if optimize:
        kwargs["strategy"] = "optimize"

    model = oh.make_model(
        oh.make_graph(
            [
                oh.make_node(
                    "ScatterNDOfShape" if shape_input else "ScatterND",
                    ["shape" if shape_input else "X", "indices", "updates"],
                    ["Y"],
                    **kwargs,
                )
            ],
            "g",
            [
                (
                    oh.make_tensor_value_info("shape", TensorProto.INT64, ["s"])
                    if shape_input
                    else oh.make_tensor_value_info("X", itype, ["a", "b"])
                ),
                oh.make_tensor_value_info("indices", TensorProto.INT64, indices_shape),
                oh.make_tensor_value_info("updates", itype, updates_shape),
            ],
            [oh.make_tensor_value_info("Y", itype, ["a", "b"])],
        ),
        opset_imports=[
            oh.make_opsetid("", 18),
            oh.make_opsetid("onnx_extended.ortops.optim.cuda", 1),
        ],
        ir_version=9,
    )
    return model


model = get_model()
print(onnx_simple_text_plot(model))
config=small
itype=1, dtype=<class 'numpy.float32'>
opset: domain='' version=18
opset: domain='onnx_extended.ortops.optim.cuda' version=1
input: name='X' type=dtype('float32') shape=['a', 'b']
input: name='indices' type=dtype('int64') shape=['i', 'j', 1]
input: name='updates' type=dtype('float32') shape=['i', 'j', 'b']
ScatterND(X, indices, updates, reduction=b'add') -> Y
output: name='Y' type=dtype('float32') shape=['a', 'b']

Let’s see the evaluation by the ReferenceEvaluator.

def _scatter_nd_impl(data, indices, updates, reduction=None, verbose=False):  # type: ignore
    output = np.copy(data)
    for i in np.ndindex(indices.shape[:-1]):
        if verbose:
            print(f"updates for i={i}, indices={indices[i]}, updates={updates[i]}")
        if reduction == "add":
            output[tuple(indices[i])] += updates[i]
        elif reduction == "mul":
            output[tuple(indices[i])] *= updates[i]
        elif reduction == "max":
            output[tuple(indices[i])] = np.maximum(output[indices[i]], updates[i])
        elif reduction == "min":
            output[tuple(indices[i])] = np.minimum(output[indices[i]], updates[i])
        else:
            output[tuple(indices[i])] = updates[i]
    return output


class ScatterND(OpRun):
    def _run(self, data, indices, updates, reduction=None, optimize=None):  # type: ignore
        y = _scatter_nd_impl(data, indices, updates, reduction=reduction, verbose=True)
        return (y,)


class ScatterNDOfShape(OpRun):
    op_domain = "onnx_extended.ortops.optim.cuda"

    def _run(self, shape, indices, updates, reduction=None, optimize=None):  # type: ignore
        data = np.zeros(tuple(shape.tolist()), dtype=updates.dtype)
        y = _scatter_nd_impl(data, indices, updates, reduction=reduction)
        return (y,)


shape = (5, 7)
X = np.zeros(shape, dtype=dtype)
indices = np.zeros((2, 10, 1)).astype(np.int64)
indices[:, ::2, 0] = 3
updates = np.ones((2, 10, 7)).astype(dtype)
feeds = {"X": X, "indices": indices, "updates": updates}


ref = ReferenceEvaluator(model, new_ops=[ScatterND])
got = ref.run(None, feeds)[0]
print(got)
updates for i=(0, 0), indices=[3], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(0, 1), indices=[0], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(0, 2), indices=[3], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(0, 3), indices=[0], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(0, 4), indices=[3], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(0, 5), indices=[0], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(0, 6), indices=[3], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(0, 7), indices=[0], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(0, 8), indices=[3], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(0, 9), indices=[0], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(1, 0), indices=[3], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(1, 1), indices=[0], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(1, 2), indices=[3], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(1, 3), indices=[0], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(1, 4), indices=[3], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(1, 5), indices=[0], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(1, 6), indices=[3], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(1, 7), indices=[0], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(1, 8), indices=[3], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(1, 9), indices=[0], updates=[1. 1. 1. 1. 1. 1. 1.]
[[10. 10. 10. 10. 10. 10. 10.]
 [ 0.  0.  0.  0.  0.  0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.]
 [10. 10. 10. 10. 10. 10. 10.]
 [ 0.  0.  0.  0.  0.  0.  0.]]

To generalize, let’s change the shapes.

model = get_model(d3=False, itype=itype)
print(onnx_simple_text_plot(model))


new_indices = indices.reshape((-1, 1))
new_updates = updates.reshape((-1, updates.shape[-1]))
feeds = {"X": X, "indices": indices, "updates": updates}

ref = ReferenceEvaluator(model, new_ops=[ScatterND])
got = ref.run(None, feeds)[0]
print(got)
opset: domain='' version=18
opset: domain='onnx_extended.ortops.optim.cuda' version=1
input: name='X' type=dtype('float32') shape=['a', 'b']
input: name='indices' type=dtype('int64') shape=['m', 1]
input: name='updates' type=dtype('float32') shape=['m', 'b']
ScatterND(X, indices, updates, reduction=b'add') -> Y
output: name='Y' type=dtype('float32') shape=['a', 'b']
updates for i=(0, 0), indices=[3], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(0, 1), indices=[0], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(0, 2), indices=[3], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(0, 3), indices=[0], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(0, 4), indices=[3], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(0, 5), indices=[0], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(0, 6), indices=[3], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(0, 7), indices=[0], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(0, 8), indices=[3], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(0, 9), indices=[0], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(1, 0), indices=[3], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(1, 1), indices=[0], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(1, 2), indices=[3], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(1, 3), indices=[0], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(1, 4), indices=[3], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(1, 5), indices=[0], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(1, 6), indices=[3], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(1, 7), indices=[0], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(1, 8), indices=[3], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(1, 9), indices=[0], updates=[1. 1. 1. 1. 1. 1. 1.]
[[10. 10. 10. 10. 10. 10. 10.]
 [ 0.  0.  0.  0.  0.  0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.]
 [10. 10. 10. 10. 10. 10. 10.]
 [ 0.  0.  0.  0.  0.  0.  0.]]

First scenario

model = get_model(d3=False, shape_input=True, itype=itype)
print(onnx_simple_text_plot(model))


feeds = {
    "shape": np.array(X.shape, dtype=np.int64),
    "indices": indices.reshape((-1, 1)),
    "updates": updates.reshape((-1, updates.shape[-1])),
}

ref = ReferenceEvaluator(model, new_ops=[ScatterNDOfShape])
expected = ref.run(None, feeds)[0]
print(expected)
opset: domain='' version=18
opset: domain='onnx_extended.ortops.optim.cuda' version=1
input: name='shape' type=dtype('int64') shape=['s']
input: name='indices' type=dtype('int64') shape=['m', 1]
input: name='updates' type=dtype('float32') shape=['m', 'b']
ScatterNDOfShape[onnx_extended.ortops.optim.cuda](shape, indices, updates, reduction=b'add') -> Y
output: name='Y' type=dtype('float32') shape=['a', 'b']
[[10. 10. 10. 10. 10. 10. 10.]
 [ 0.  0.  0.  0.  0.  0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.]
 [10. 10. 10. 10. 10. 10. 10.]
 [ 0.  0.  0.  0.  0.  0.  0.]]

With onnxruntime

def get_session(model):
    import onnxruntime
    from onnx_extended.ortops.optim.cuda import get_ort_ext_libs

    if "CUDAExecutionProvider" not in onnxruntime.get_available_providers():
        return None

    opts = onnxruntime.SessionOptions()
    opts.register_custom_ops_library(get_ort_ext_libs()[0])
    sess = onnxruntime.InferenceSession(
        model.SerializeToString(),
        opts,
        providers=["CUDAExecutionProvider", "CPUExecutionProvider"],
    )
    return sess


sess1 = get_session(model)
if sess1 is not None:
    for k, v in feeds.items():
        print(k, v.dtype, v.shape)
    got = sess1.run(None, feeds)[0]
    print(got)
    assert_almost_equal(expected, got)
shape int64 (2,)
indices int64 (20, 1)
updates float32 (20, 7)
[[10. 10. 10. 10. 10. 10. 10.]
 [ 0.  0.  0.  0.  0.  0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.]
 [10. 10. 10. 10. 10. 10. 10.]
 [ 0.  0.  0.  0.  0.  0.  0.]]

Same model but using an optimization to compute it.

model = get_model(d3=False, shape_input=True, optimize=True, itype=itype)
print(onnx_simple_text_plot(model))

sess2 = get_session(model)
if sess2 is not None:
    got = sess2.run(None, feeds)[0]
    print(got)
    assert_almost_equal(expected, got)
opset: domain='' version=18
opset: domain='onnx_extended.ortops.optim.cuda' version=1
input: name='shape' type=dtype('int64') shape=['s']
input: name='indices' type=dtype('int64') shape=['m', 1]
input: name='updates' type=dtype('float32') shape=['m', 'b']
ScatterNDOfShape[onnx_extended.ortops.optim.cuda](shape, indices, updates, reduction=b'add', strategy=b'optimize') -> Y
output: name='Y' type=dtype('float32') shape=['a', 'b']
[[10. 10. 10. 10. 10. 10. 10.]
 [ 0.  0.  0.  0.  0.  0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.]
 [10. 10. 10. 10. 10. 10. 10.]
 [ 0.  0.  0.  0.  0.  0.  0.]]

Benchmark

def move_inputs(sess, feeds):
    from onnxruntime.capi._pybind_state import (
        SessionIOBinding,
        OrtDevice as C_OrtDevice,
        OrtValue as C_OrtValue,
    )

    input_names = [i.name for i in sess.get_inputs()]

    ort_device = C_OrtDevice(C_OrtDevice.cuda(), C_OrtDevice.default_memory(), 0)

    feed_ort_value = [
        (name, C_OrtValue.ortvalue_from_numpy(feeds[name], ort_device))
        for name in input_names
    ]

    bind = SessionIOBinding(sess._sess)
    for name, value in feed_ort_value:
        bind.bind_input(
            name, ort_device, feeds[name].dtype, value.shape(), value.data_ptr()
        )
    for o in sess.get_outputs():
        bind.bind_output(o.name, ort_device)
    return bind, feed_ort_value


def benchmark(
    sess, sizes, config, label, itype, times_col: int = 1, times_indices: int = 1
):

    data = []
    for size in tqdm(sizes):

        if config == "llama":
            # zeros: 32000x4096
            # indices: 2x1024x1
            # updates: 2x1024x4096
            nrow, ncol = size, 4096
            nind = 1024
        else:
            nrow, ncol = size, int(size * times_col)
            nind = int(size * times_indices)

        shape = np.array([nrow, ncol], dtype=np.int64)
        indices = np.array(
            [np.random.randint(0, nrow - 1) for _ in range(nind)], dtype=np.int64
        ).reshape((-1, 1))
        updates = np.random.randn(nind, ncol).astype(
            np.float32 if itype == TensorProto.FLOAT else np.float16
        )
        feeds = dict(shape=shape, indices=indices, updates=updates)
        bind, cuda_feeds = move_inputs(sess, feeds)

        begin = time.perf_counter()
        for i in range(script_args.warmup):
            # sess.run(None, feeds)
            sess._sess.run_with_iobinding(bind, None)
        warmup = time.perf_counter() - begin

        times = []
        for i in range(script_args.repeat):
            begin = time.perf_counter()
            # sess.run(None, feeds)
            sess._sess.run_with_iobinding(bind, None)
            times.append(time.perf_counter() - begin)

        npt = np.array(times)
        obs = dict(
            warmup=warmup,
            time=npt.mean(),
            std=npt.std(),
            min=npt.min(),
            max=npt.max(),
            repeat=script_args.repeat,
            size=size,
            label=label,
        )
        data.append(obs)
    return data

Not Fused.

if sess1 is not None:

    print(f"sizes={sizes}")

    data_nd1 = benchmark(
        sess1, sizes, script_args.config, "Atomic/Not Fused", itype=itype
    )
sizes=(256, 512, 1024)

  0%|          | 0/3 [00:00<?, ?it/s]
100%|██████████| 3/3 [00:00<00:00, 58.40it/s]

Fused.

if sess2 is not None:

    data_nd2 = benchmark(
        sess2, sizes, script_args.config, "No Atomic/Fused", itype=itype
    )
  0%|          | 0/3 [00:00<?, ?it/s]
100%|██████████| 3/3 [00:00<00:00, 63.78it/s]

Data

if sess2 is not None:

    df = DataFrame(data_nd1 + data_nd2)
    df.to_csv("plot_op_scatternd_cuda.csv", index=False)
    df.to_csv("plot_op_scatternd_cuda.xlsx", index=False)
    print(df.head())
     warmup      time           std       min       max  repeat  size             label
0  0.000576  0.000159  1.121428e-06  0.000158  0.000161       5   256  Atomic/Not Fused
1  0.001155  0.000392  9.668631e-06  0.000373  0.000398       5   512  Atomic/Not Fused
2  0.002914  0.000636  1.666577e-05  0.000609  0.000658       5  1024  Atomic/Not Fused
3  0.000717  0.000206  9.147109e-06  0.000188  0.000213       5   256   No Atomic/Fused
4  0.000950  0.000296  5.966584e-07  0.000295  0.000297       5   512   No Atomic/Fused

Pivot.

if sess2 is not None:

    pivot = df.pivot(index="size", columns="label", values="time")
    pivot["ratio"] = pivot["Atomic/Not Fused"] / pivot["No Atomic/Fused"]
    print("Speed up compare to the onnx standaed.")
    print(pivot)

    ax = pivot[["Atomic/Not Fused", "No Atomic/Fused"]].plot(
        logx=True,
        logy=True,
        title=f"Atomic/No-Atomic implementation for ScatterND on CUDA\nitype={itype}",
    )
    ax.get_figure().savefig("plot_op_scatternd_cuda.png")
Atomic/No-Atomic implementation for ScatterND on CUDA itype=1
Speed up compare to the onnx standaed.
label  Atomic/Not Fused  No Atomic/Fused     ratio
size
256            0.000159         0.000206  0.772643
512            0.000392         0.000296  1.325651
1024           0.000636         0.000719  0.884669

The best choice depends on the input sizes, For big matrices, the use of atomic is slowing down the computation.

Total running time of the script: (0 minutes 0.526 seconds)

Gallery generated by Sphinx-Gallery