Note
Go to the end to download the full example code
Measuring performance about Gemm with onnxruntime¶
The benchmark measures the performance of Gemm for different types and configuration. That includes a custom operator only available on CUDA calling function cublasLtMatmul. This function offers many options.
import pprint
import platform
from itertools import product
import numpy
from tqdm import tqdm
import matplotlib.pyplot as plt
from pandas import DataFrame, pivot_table
from onnx import TensorProto
from onnx.helper import (
make_model,
make_node,
make_graph,
make_tensor_value_info,
make_opsetid,
)
from onnx.checker import check_model
from onnx.numpy_helper import from_array
from onnx.reference import ReferenceEvaluator
from onnxruntime import InferenceSession, SessionOptions, get_available_providers
from onnxruntime.capi._pybind_state import (
OrtValue as C_OrtValue,
OrtDevice as C_OrtDevice,
)
from onnxruntime.capi.onnxruntime_pybind11_state import (
Fail,
NotImplemented,
InvalidGraph,
InvalidArgument,
)
try:
from onnx_array_api.plotting.text_plot import onnx_simple_text_plot
except ImportError:
onnx_simple_text_plot = str
try:
from onnx_extended.reference import CReferenceEvaluator
except ImportError:
CReferenceEvaluator = ReferenceEvaluator
from onnx_extended.args import get_parsed_args
from onnx_extended.ext_test_case import unit_test_going, measure_time
try:
from onnx_extended.validation.cuda.cuda_example_py import get_device_prop
from onnx_extended.ortops.tutorial.cuda import get_ort_ext_libs
has_cuda = True
except ImportError:
def get_device_prop():
return {"name": "CPU"}
def get_ort_ext_libs():
return None
has_cuda = False
default_dims = (
"32,32,32;64,64,64;128,128,128;256,256,256;"
"400,400,400;512,512,512;1024,1024,1024"
)
if has_cuda:
prop = get_device_prop()
if prop.get("major", 0) >= 7:
default_dims += ";2048,2048,2048;4096,4096,4096"
if prop.get("major", 0) >= 9:
default_dims += ";16384,16384,16384"
script_args = get_parsed_args(
"plot_bench_gemm_ort",
description=__doc__,
dims=(
"32,32,32;64,64,64" if unit_test_going() else default_dims,
"square matrix dimensions to try, comma separated values",
),
types=(
"FLOAT" if unit_test_going() else "FLOAT8E4M3FN,FLOAT,FLOAT16,BFLOAT16",
"element type to teest",
),
number=2 if unit_test_going() else 4,
repeat=2 if unit_test_going() else 10,
warmup=2 if unit_test_going() else 5,
expose="repeat,number,warmup",
)
Device properties¶
if has_cuda:
properties = get_device_prop()
pprint.pprint(properties)
else:
properties = {"major": 0}
{'clockRate': 1569000,
'computeMode': 0,
'concurrentKernels': 1,
'isMultiGpuBoard': 0,
'major': 6,
'maxThreadsPerBlock': 1024,
'minor': 1,
'multiProcessorCount': 10,
'name': 'NVIDIA GeForce GTX 1060',
'sharedMemPerBlock': 49152,
'totalConstMem': 65536,
'totalGlobalMem': 6442319872}
Model to benchmark¶
It includes one Gemm. The operator changes. It can the regular Gemm, a custom Gemm from domain com.microsoft or a custom implementation from domain onnx_extended.ortops.tutorial.cuda.
def create_model(
mat_type=TensorProto.FLOAT, provider="CUDAExecutionProvider", domain="com.microsoft"
):
A = make_tensor_value_info("A", mat_type, [None, None])
B = make_tensor_value_info("B", mat_type, [None, None])
outputs = [make_tensor_value_info("C", mat_type, [None, None])]
inits = []
if domain != "":
if provider != "CUDAExecutionProvider":
return None
f8 = False
if domain == "com.microsoft":
op_name = "GemmFloat8"
computeType = "CUBLAS_COMPUTE_32F"
node_output = ["C"]
elif mat_type == TensorProto.FLOAT:
op_name = "CustomGemmFloat"
computeType = "CUBLAS_COMPUTE_32F_FAST_TF32"
node_output = ["C"]
elif mat_type == TensorProto.FLOAT16:
op_name = "CustomGemmFloat16"
computeType = "CUBLAS_COMPUTE_16F"
node_output = ["C"]
elif mat_type in (TensorProto.FLOAT8E4M3FN, TensorProto.FLOAT8E5M2):
f8 = True
op_name = "CustomGemmFloat8E4M3FN"
computeType = "CUBLAS_COMPUTE_32F"
node_output = ["C"]
outputs = [
make_tensor_value_info("C", TensorProto.FLOAT16, [None, None]),
]
inits.append(from_array(numpy.array([1], dtype=numpy.float32), name="I"))
else:
return None
node_kw = dict(
alpha=1.0,
transB=1,
domain=domain,
computeType=computeType,
fastAccumulationMode=1,
rowMajor=0 if op_name.startswith("CustomGemmFloat") else 1,
)
node_kw["name"] = (
f"{mat_type}.{len(node_output)}.{len(outputs)}."
f"{domain}..{node_kw['rowMajor']}.."
f"{node_kw['fastAccumulationMode']}..{node_kw['computeType']}.."
f"{f8}"
)
node_inputs = ["A", "B"]
if f8:
node_inputs.append("")
node_inputs.extend(["I"] * 3)
nodes = [make_node(op_name, node_inputs, node_output, **node_kw)]
else:
nodes = [
make_node("Gemm", ["A", "B"], ["C"], transA=1, beta=0.0),
]
graph = make_graph(nodes, "a", [A, B], outputs, inits)
if mat_type < 16:
# regular type
opset, ir = 18, 8
else:
opset, ir = 19, 9
onnx_model = make_model(
graph,
opset_imports=[
make_opsetid("", opset),
make_opsetid("com.microsoft", 1),
make_opsetid("onnx_extended.ortops.tutorial.cuda", 1),
],
ir_version=ir,
)
check_model(onnx_model)
return onnx_model
print(onnx_simple_text_plot(create_model()))
opset: domain='' version=18
opset: domain='com.microsoft' version=1
opset: domain='onnx_extended.ortops.tutorial.cuda' version=1
input: name='A' type=dtype('float32') shape=['', '']
input: name='B' type=dtype('float32') shape=['', '']
GemmFloat8[com.microsoft](A, B, alpha=1.00, computeType=b'CUBLAS_COMPUTE_32F', fastAccumulationMode=1, rowMajor=1, transB=1) -> C
output: name='C' type=dtype('float32') shape=['', '']
A model to cast into anytype. numpy does not support float 8. onnxruntime is used to cast a float array into any type. It must be called with tensor of type OrtValue.
def create_cast(to, cuda=False):
A = make_tensor_value_info("A", TensorProto.FLOAT, [None, None])
C = make_tensor_value_info("C", to, [None, None])
if cuda:
nodes = [
make_node("Cast", ["A"], ["Cc"], to=to),
make_node("MemcpyFromHost", ["Cc"], ["C"]),
]
else:
nodes = [make_node("Cast", ["A"], ["C"], to=to)]
graph = make_graph(nodes, "a", [A], [C])
if to < 16:
# regular type
opset, ir = 18, 8
else:
opset, ir = 19, 9
onnx_model = make_model(
graph, opset_imports=[make_opsetid("", opset)], ir_version=ir
)
if not cuda:
# OpType: MemcpyFromHost
check_model(onnx_model)
return onnx_model
print(onnx_simple_text_plot(create_cast(TensorProto.FLOAT16)))
opset: domain='' version=18
input: name='A' type=dtype('float32') shape=['', '']
Cast(A, to=10) -> C
output: name='C' type=dtype('float16') shape=['', '']
Performance¶
The benchmark will run the following configurations.
types = list(getattr(TensorProto, a) for a in script_args.types.split(","))
engine = [InferenceSession, CReferenceEvaluator]
providers = [
["CUDAExecutionProvider", "CPUExecutionProvider"],
["CPUExecutionProvider"],
]
# M, N, K
# we use multiple of 8, otherwise, float8 does not work.
dims = [list(int(i) for i in line.split(",")) for line in script_args.dims.split(";")]
domains = ["onnx_extended.ortops.tutorial.cuda", "", "com.microsoft"]
Let’s cache the matrices involved.
def to_ort_value(m):
device = C_OrtDevice(C_OrtDevice.cpu(), C_OrtDevice.default_memory(), 0)
ort_value = C_OrtValue.ortvalue_from_numpy(m, device)
return ort_value
def cached_inputs(dims, types):
matrices = {}
matrices_cuda = {}
pbar = tqdm(list(product(dims, types)))
for dim, tt in pbar:
m, n, k = dim
pbar.set_description(f"t={tt} dim={dim}")
for i, j in [(m, k), (k, n), (k, m)]:
if (tt, i, j) in matrices:
continue
# CPU
try:
sess = InferenceSession(
create_cast(tt).SerializeToString(),
providers=["CPUExecutionProvider"],
)
cpu = True
except (InvalidGraph, InvalidArgument, NotImplemented):
# not support by this version of onnxruntime
cpu = False
if cpu:
vect = (numpy.random.randn(i, j) * 10).astype(numpy.float32)
ov = to_ort_value(vect)
ovtt = sess._sess.run_with_ort_values({"A": ov}, ["C"], None)[0]
matrices[tt, i, j] = ovtt
else:
continue
# CUDA
if "CUDAExecutionProvider" not in get_available_providers():
# No CUDA
continue
sess = InferenceSession(
create_cast(tt, cuda=True).SerializeToString(),
providers=["CUDAExecutionProvider", "CPUExecutionProvider"],
)
vect = (numpy.random.randn(i, j) * 10).astype(numpy.float32)
ov = to_ort_value(vect)
ovtt = sess._sess.run_with_ort_values({"A": ov}, ["C"], None)[0]
matrices_cuda[tt, i, j] = ovtt
return matrices, matrices_cuda
matrices, matrices_cuda = cached_inputs(dims, types)
print(f"{len(matrices)} matrices were created.")
0%| | 0/28 [00:00<?, ?it/s]
t=17 dim=[32, 32, 32]: 0%| | 0/28 [00:00<?, ?it/s]
t=17 dim=[32, 32, 32]: 4%|▎ | 1/28 [00:06<03:02, 6.77s/it]
t=1 dim=[32, 32, 32]: 4%|▎ | 1/28 [00:06<03:02, 6.77s/it]
t=10 dim=[32, 32, 32]: 4%|▎ | 1/28 [00:06<03:02, 6.77s/it]
t=16 dim=[32, 32, 32]: 4%|▎ | 1/28 [00:06<03:02, 6.77s/it]
t=17 dim=[64, 64, 64]: 4%|▎ | 1/28 [00:06<03:02, 6.77s/it]
t=1 dim=[64, 64, 64]: 4%|▎ | 1/28 [00:06<03:02, 6.77s/it]
t=10 dim=[64, 64, 64]: 4%|▎ | 1/28 [00:06<03:02, 6.77s/it]
t=16 dim=[64, 64, 64]: 4%|▎ | 1/28 [00:06<03:02, 6.77s/it]
t=17 dim=[128, 128, 128]: 4%|▎ | 1/28 [00:06<03:02, 6.77s/it]
t=1 dim=[128, 128, 128]: 4%|▎ | 1/28 [00:06<03:02, 6.77s/it]
t=10 dim=[128, 128, 128]: 4%|▎ | 1/28 [00:06<03:02, 6.77s/it]
t=16 dim=[128, 128, 128]: 4%|▎ | 1/28 [00:06<03:02, 6.77s/it]
t=17 dim=[256, 256, 256]: 4%|▎ | 1/28 [00:06<03:02, 6.77s/it]
t=1 dim=[256, 256, 256]: 4%|▎ | 1/28 [00:06<03:02, 6.77s/it]
t=1 dim=[256, 256, 256]: 50%|█████ | 14/28 [00:06<00:04, 2.83it/s]
t=10 dim=[256, 256, 256]: 50%|█████ | 14/28 [00:06<00:04, 2.83it/s]
t=16 dim=[256, 256, 256]: 50%|█████ | 14/28 [00:06<00:04, 2.83it/s]
t=17 dim=[400, 400, 400]: 50%|█████ | 14/28 [00:06<00:04, 2.83it/s]
t=1 dim=[400, 400, 400]: 50%|█████ | 14/28 [00:06<00:04, 2.83it/s]
t=10 dim=[400, 400, 400]: 50%|█████ | 14/28 [00:06<00:04, 2.83it/s]
t=16 dim=[400, 400, 400]: 50%|█████ | 14/28 [00:06<00:04, 2.83it/s]
t=17 dim=[512, 512, 512]: 50%|█████ | 14/28 [00:06<00:04, 2.83it/s]
t=1 dim=[512, 512, 512]: 50%|█████ | 14/28 [00:07<00:04, 2.83it/s]
t=1 dim=[512, 512, 512]: 79%|███████▊ | 22/28 [00:07<00:01, 4.93it/s]
t=10 dim=[512, 512, 512]: 79%|███████▊ | 22/28 [00:07<00:01, 4.93it/s]
t=16 dim=[512, 512, 512]: 79%|███████▊ | 22/28 [00:07<00:01, 4.93it/s]
t=17 dim=[1024, 1024, 1024]: 79%|███████▊ | 22/28 [00:07<00:01, 4.93it/s]
t=1 dim=[1024, 1024, 1024]: 79%|███████▊ | 22/28 [00:07<00:01, 4.93it/s]
t=10 dim=[1024, 1024, 1024]: 79%|███████▊ | 22/28 [00:07<00:01, 4.93it/s]
t=16 dim=[1024, 1024, 1024]: 79%|███████▊ | 22/28 [00:07<00:01, 4.93it/s]
t=16 dim=[1024, 1024, 1024]: 100%|██████████| 28/28 [00:07<00:00, 6.17it/s]
t=16 dim=[1024, 1024, 1024]: 100%|██████████| 28/28 [00:07<00:00, 3.72it/s]
28 matrices were created.
Let’s run the benchmark
def rendering_obs(obs, dim, number, repeat, domain, provider, internal_time):
stype = {
TensorProto.FLOAT: "f32",
TensorProto.FLOAT16: "f16",
TensorProto.BFLOAT16: "bf16",
TensorProto.INT8: "i8",
TensorProto.INT16: "i16",
TensorProto.INT32: "i32",
TensorProto.UINT32: "u32",
TensorProto.FLOAT8E4M3FN: "e4m3fn",
TensorProto.FLOAT8E5M2: "e5m2",
}[tt]
obs.update(
dict(
engine={"InferenceSession": "ort", "CReferenceEvaluator": "np"}[
engine.__name__
],
stype=stype,
type=f"{stype}",
M=dim[0],
N=dim[1],
K=dim[2],
cost=numpy.prod(dim) * 4,
cost_s=f"{numpy.prod(dim) * 4}-{dim[0]}x{dim[1]}x{dim[2]}",
repeat=repeat,
number=number,
domain={
"": "ORT",
"com.microsoft": "COM",
"onnx_extended.ortops.tutorial.cuda": "EXT",
}[domain],
provider={
"CPUExecutionProvider": "cpu",
"CUDAExecutionProvider": "cuda",
}[provider[0]],
platform=platform.processor(),
intime=internal_time,
)
)
return obs
opts = SessionOptions()
r = get_ort_ext_libs()
if r is not None:
opts.register_custom_ops_library(r[0])
data = []
errors = []
pbar = tqdm(list(product(types, engine, providers, dims, domains)))
for tt, engine, provider, dim, domain in pbar:
if (
tt in {TensorProto.FLOAT8E4M3FN, TensorProto.FLOAT8E5M2}
and properties.get("major", 0) < 9
):
# f8 not available
if provider[0] == "CPUExecutionProvider":
continue
errors.append(
f"f8 not available, major={properties.get('major', 0)}, "
f"tt={tt}, provider={provider!r}, domain={domain!r}."
)
continue
elif provider[0] == "CPUExecutionProvider" and max(dim) > 2000:
# too long
continue
if max(dim) <= 200:
repeat, number = script_args.repeat * 4, script_args.number * 4
elif max(dim) <= 256:
repeat, number = script_args.repeat * 2, script_args.number * 2
else:
repeat, number = script_args.repeat, script_args.number
onx = create_model(tt, provider=provider[0], domain=domain)
if onx is None:
if provider[0] == "CPUExecutionProvider":
continue
errors.append(
f"No model for tt={tt}, provider={provider!r}, domain={domain!r}."
)
continue
with open(f"plot_bench_gemm_ort_{tt}_{domain}.onnx", "wb") as f:
f.write(onx.SerializeToString())
k1 = (tt, dim[2], dim[0])
k2 = (tt, dim[2], dim[1])
if k1 not in matrices:
errors.append(f"Key k1={k1!r} not in matrices.")
continue
if k2 not in matrices:
errors.append(f"Key k2={k2!r} not in matrices.")
continue
pbar.set_description(f"t={tt} e={engine.__name__} p={provider[0][:4]} dim={dim}")
if engine == CReferenceEvaluator:
if (
domain != ""
or max(dim) > 256
or provider != ["CPUExecutionProvider"]
or tt not in [TensorProto.FLOAT, TensorProto.FLOAT16]
):
# All impossible or slow cases.
continue
if tt == TensorProto.FLOAT16 and max(dim) > 50:
repeat, number = 2, 2
feeds = {"A": matrices[k1].numpy(), "B": matrices[k2].numpy()}
sess = engine(onx)
sess.run(None, feeds)
obs = measure_time(lambda: sess.run(None, feeds), repeat=repeat, number=number)
elif engine == InferenceSession:
if provider[0] not in get_available_providers():
errors.append(f"provider={provider[0]} is missing")
continue
try:
sess = engine(onx.SerializeToString(), opts, providers=provider)
except (NotImplemented, InvalidGraph, Fail) as e:
# not implemented
errors.append((tt, engine.__class__.__name__, provider, domain, e))
continue
the_feeds = (
{"A": matrices[k1], "B": matrices[k2]}
if provider == ["CPUExecutionProvider"]
else {"A": matrices_cuda[k1], "B": matrices_cuda[k2]}
)
out_names = ["C"]
# warmup
for i in range(script_args.warmup):
sess._sess.run_with_ort_values(the_feeds, out_names, None)[0]
# benchamrk
times = []
def fct_benchmarked():
got = sess._sess.run_with_ort_values(the_feeds, out_names, None)
if len(got) > 1:
times.append(got[1])
obs = measure_time(fct_benchmarked, repeat=repeat, number=number)
internal_time = None
if times:
np_times = [t.numpy() for t in times]
internal_time = (sum(np_times) / len(times))[0]
else:
errors.append(f"unknown engine={engine}")
continue
# improves the rendering
obs = rendering_obs(obs, dim, number, repeat, domain, provider, internal_time)
data.append(obs)
if unit_test_going() and len(data) >= 2:
break
0%| | 0/336 [00:00<?, ?it/s]
t=1 e=InferenceSession p=CUDA dim=[32, 32, 32]: 0%| | 0/336 [00:00<?, ?it/s]
t=1 e=InferenceSession p=CUDA dim=[32, 32, 32]: 25%|██▌ | 85/336 [00:04<00:12, 20.74it/s]
t=1 e=InferenceSession p=CUDA dim=[32, 32, 32]: 25%|██▌ | 85/336 [00:04<00:12, 20.74it/s]
t=1 e=InferenceSession p=CUDA dim=[32, 32, 32]: 25%|██▌ | 85/336 [00:04<00:12, 20.74it/s]
t=1 e=InferenceSession p=CUDA dim=[64, 64, 64]: 25%|██▌ | 85/336 [00:04<00:12, 20.74it/s]
t=1 e=InferenceSession p=CUDA dim=[64, 64, 64]: 26%|██▌ | 88/336 [00:07<00:24, 10.10it/s]
t=1 e=InferenceSession p=CUDA dim=[64, 64, 64]: 26%|██▌ | 88/336 [00:07<00:24, 10.10it/s]
t=1 e=InferenceSession p=CUDA dim=[64, 64, 64]: 26%|██▋ | 89/336 [00:07<00:25, 9.85it/s]
t=1 e=InferenceSession p=CUDA dim=[64, 64, 64]: 26%|██▋ | 89/336 [00:07<00:25, 9.85it/s]
t=1 e=InferenceSession p=CUDA dim=[128, 128, 128]: 26%|██▋ | 89/336 [00:07<00:25, 9.85it/s]
t=1 e=InferenceSession p=CUDA dim=[128, 128, 128]: 27%|██▋ | 91/336 [00:10<00:47, 5.15it/s]
t=1 e=InferenceSession p=CUDA dim=[128, 128, 128]: 27%|██▋ | 91/336 [00:10<00:47, 5.15it/s]
t=1 e=InferenceSession p=CUDA dim=[128, 128, 128]: 27%|██▋ | 92/336 [00:11<00:48, 5.01it/s]
t=1 e=InferenceSession p=CUDA dim=[128, 128, 128]: 27%|██▋ | 92/336 [00:11<00:48, 5.01it/s]
t=1 e=InferenceSession p=CUDA dim=[256, 256, 256]: 27%|██▋ | 92/336 [00:11<00:48, 5.01it/s]
t=1 e=InferenceSession p=CUDA dim=[256, 256, 256]: 28%|██▊ | 94/336 [00:12<00:56, 4.26it/s]
t=1 e=InferenceSession p=CUDA dim=[256, 256, 256]: 28%|██▊ | 94/336 [00:12<00:56, 4.26it/s]
t=1 e=InferenceSession p=CUDA dim=[256, 256, 256]: 28%|██▊ | 95/336 [00:12<00:57, 4.17it/s]
t=1 e=InferenceSession p=CUDA dim=[256, 256, 256]: 28%|██▊ | 95/336 [00:12<00:57, 4.17it/s]
t=1 e=InferenceSession p=CUDA dim=[400, 400, 400]: 28%|██▊ | 95/336 [00:12<00:57, 4.17it/s]
t=1 e=InferenceSession p=CUDA dim=[400, 400, 400]: 29%|██▉ | 97/336 [00:13<00:55, 4.27it/s]
t=1 e=InferenceSession p=CUDA dim=[400, 400, 400]: 29%|██▉ | 97/336 [00:13<00:55, 4.27it/s]
t=1 e=InferenceSession p=CUDA dim=[400, 400, 400]: 29%|██▉ | 98/336 [00:13<00:54, 4.35it/s]
t=1 e=InferenceSession p=CUDA dim=[400, 400, 400]: 29%|██▉ | 98/336 [00:13<00:54, 4.35it/s]
t=1 e=InferenceSession p=CUDA dim=[512, 512, 512]: 29%|██▉ | 98/336 [00:13<00:54, 4.35it/s]
t=1 e=InferenceSession p=CUDA dim=[512, 512, 512]: 30%|██▉ | 100/336 [00:13<00:56, 4.18it/s]
t=1 e=InferenceSession p=CUDA dim=[512, 512, 512]: 30%|██▉ | 100/336 [00:13<00:56, 4.18it/s]
t=1 e=InferenceSession p=CUDA dim=[512, 512, 512]: 30%|███ | 101/336 [00:14<00:58, 4.03it/s]
t=1 e=InferenceSession p=CUDA dim=[512, 512, 512]: 30%|███ | 101/336 [00:14<00:58, 4.03it/s]
t=1 e=InferenceSession p=CUDA dim=[1024, 1024, 1024]: 30%|███ | 101/336 [00:14<00:58, 4.03it/s]
t=1 e=InferenceSession p=CUDA dim=[1024, 1024, 1024]: 31%|███ | 103/336 [00:15<01:36, 2.42it/s]
t=1 e=InferenceSession p=CUDA dim=[1024, 1024, 1024]: 31%|███ | 103/336 [00:15<01:36, 2.42it/s]
t=1 e=InferenceSession p=CUDA dim=[1024, 1024, 1024]: 31%|███ | 104/336 [00:17<02:12, 1.76it/s]
t=1 e=InferenceSession p=CUDA dim=[1024, 1024, 1024]: 31%|███ | 104/336 [00:17<02:12, 1.76it/s]
t=1 e=InferenceSession p=CPUE dim=[32, 32, 32]: 31%|███ | 104/336 [00:17<02:12, 1.76it/s]
t=1 e=InferenceSession p=CPUE dim=[64, 64, 64]: 31%|███ | 104/336 [00:17<02:12, 1.76it/s]
t=1 e=InferenceSession p=CPUE dim=[128, 128, 128]: 31%|███ | 104/336 [00:17<02:12, 1.76it/s]
t=1 e=InferenceSession p=CPUE dim=[256, 256, 256]: 31%|███ | 104/336 [00:17<02:12, 1.76it/s]
t=1 e=InferenceSession p=CPUE dim=[256, 256, 256]: 35%|███▍ | 116/336 [00:17<00:33, 6.59it/s]
t=1 e=InferenceSession p=CPUE dim=[400, 400, 400]: 35%|███▍ | 116/336 [00:17<00:33, 6.59it/s]
t=1 e=InferenceSession p=CPUE dim=[512, 512, 512]: 35%|███▍ | 116/336 [00:17<00:33, 6.59it/s]
t=1 e=InferenceSession p=CPUE dim=[512, 512, 512]: 36%|███▋ | 122/336 [00:17<00:22, 9.46it/s]
t=1 e=InferenceSession p=CPUE dim=[1024, 1024, 1024]: 36%|███▋ | 122/336 [00:17<00:22, 9.46it/s]
t=1 e=InferenceSession p=CPUE dim=[1024, 1024, 1024]: 38%|███▊ | 126/336 [00:17<00:25, 8.32it/s]
t=1 e=CReferenceEvaluator p=CUDA dim=[32, 32, 32]: 38%|███▊ | 126/336 [00:17<00:25, 8.32it/s]
t=1 e=CReferenceEvaluator p=CUDA dim=[32, 32, 32]: 38%|███▊ | 126/336 [00:17<00:25, 8.32it/s]
t=1 e=CReferenceEvaluator p=CUDA dim=[32, 32, 32]: 38%|███▊ | 126/336 [00:17<00:25, 8.32it/s]
t=1 e=CReferenceEvaluator p=CUDA dim=[64, 64, 64]: 38%|███▊ | 126/336 [00:17<00:25, 8.32it/s]
t=1 e=CReferenceEvaluator p=CUDA dim=[64, 64, 64]: 38%|███▊ | 126/336 [00:17<00:25, 8.32it/s]
t=1 e=CReferenceEvaluator p=CUDA dim=[64, 64, 64]: 38%|███▊ | 126/336 [00:17<00:25, 8.32it/s]
t=1 e=CReferenceEvaluator p=CUDA dim=[128, 128, 128]: 38%|███▊ | 126/336 [00:17<00:25, 8.32it/s]
t=1 e=CReferenceEvaluator p=CUDA dim=[128, 128, 128]: 38%|███▊ | 126/336 [00:17<00:25, 8.32it/s]
t=1 e=CReferenceEvaluator p=CUDA dim=[128, 128, 128]: 38%|███▊ | 126/336 [00:17<00:25, 8.32it/s]
t=1 e=CReferenceEvaluator p=CUDA dim=[256, 256, 256]: 38%|███▊ | 126/336 [00:17<00:25, 8.32it/s]
t=1 e=CReferenceEvaluator p=CUDA dim=[256, 256, 256]: 38%|███▊ | 126/336 [00:17<00:25, 8.32it/s]
t=1 e=CReferenceEvaluator p=CUDA dim=[256, 256, 256]: 38%|███▊ | 126/336 [00:17<00:25, 8.32it/s]
t=1 e=CReferenceEvaluator p=CUDA dim=[400, 400, 400]: 38%|███▊ | 126/336 [00:17<00:25, 8.32it/s]
t=1 e=CReferenceEvaluator p=CUDA dim=[400, 400, 400]: 38%|███▊ | 126/336 [00:17<00:25, 8.32it/s]
t=1 e=CReferenceEvaluator p=CUDA dim=[400, 400, 400]: 38%|███▊ | 126/336 [00:17<00:25, 8.32it/s]
t=1 e=CReferenceEvaluator p=CUDA dim=[512, 512, 512]: 38%|███▊ | 126/336 [00:17<00:25, 8.32it/s]
t=1 e=CReferenceEvaluator p=CUDA dim=[512, 512, 512]: 38%|███▊ | 126/336 [00:17<00:25, 8.32it/s]
t=1 e=CReferenceEvaluator p=CUDA dim=[512, 512, 512]: 38%|███▊ | 126/336 [00:17<00:25, 8.32it/s]
t=1 e=CReferenceEvaluator p=CUDA dim=[1024, 1024, 1024]: 38%|███▊ | 126/336 [00:17<00:25, 8.32it/s]
t=1 e=CReferenceEvaluator p=CUDA dim=[1024, 1024, 1024]: 38%|███▊ | 126/336 [00:17<00:25, 8.32it/s]
t=1 e=CReferenceEvaluator p=CUDA dim=[1024, 1024, 1024]: 38%|███▊ | 126/336 [00:17<00:25, 8.32it/s]
t=1 e=CReferenceEvaluator p=CPUE dim=[32, 32, 32]: 38%|███▊ | 126/336 [00:17<00:25, 8.32it/s]
t=1 e=CReferenceEvaluator p=CPUE dim=[64, 64, 64]: 38%|███▊ | 126/336 [00:17<00:25, 8.32it/s]
t=1 e=CReferenceEvaluator p=CPUE dim=[128, 128, 128]: 38%|███▊ | 126/336 [00:18<00:25, 8.32it/s]
t=1 e=CReferenceEvaluator p=CPUE dim=[128, 128, 128]: 46%|████▌ | 155/336 [00:18<00:06, 25.96it/s]
t=1 e=CReferenceEvaluator p=CPUE dim=[256, 256, 256]: 46%|████▌ | 155/336 [00:18<00:06, 25.96it/s]
t=1 e=CReferenceEvaluator p=CPUE dim=[400, 400, 400]: 46%|████▌ | 155/336 [00:18<00:06, 25.96it/s]
t=1 e=CReferenceEvaluator p=CPUE dim=[512, 512, 512]: 46%|████▌ | 155/336 [00:18<00:06, 25.96it/s]
t=1 e=CReferenceEvaluator p=CPUE dim=[1024, 1024, 1024]: 46%|████▌ | 155/336 [00:18<00:06, 25.96it/s]
t=10 e=InferenceSession p=CUDA dim=[32, 32, 32]: 46%|████▌ | 155/336 [00:18<00:06, 25.96it/s]
t=10 e=InferenceSession p=CUDA dim=[32, 32, 32]: 50%|█████ | 169/336 [00:23<00:24, 6.73it/s]
t=10 e=InferenceSession p=CUDA dim=[32, 32, 32]: 50%|█████ | 169/336 [00:23<00:24, 6.73it/s]
t=10 e=InferenceSession p=CUDA dim=[32, 32, 32]: 50%|█████ | 169/336 [00:23<00:24, 6.73it/s]
t=10 e=InferenceSession p=CUDA dim=[64, 64, 64]: 50%|█████ | 169/336 [00:23<00:24, 6.73it/s]
t=10 e=InferenceSession p=CUDA dim=[64, 64, 64]: 50%|█████ | 169/336 [00:30<00:24, 6.73it/s]
t=10 e=InferenceSession p=CUDA dim=[64, 64, 64]: 50%|█████ | 169/336 [00:30<00:24, 6.73it/s]
t=10 e=InferenceSession p=CUDA dim=[64, 64, 64]: 52%|█████▏ | 174/336 [00:30<00:56, 2.86it/s]
t=10 e=InferenceSession p=CUDA dim=[128, 128, 128]: 52%|█████▏ | 174/336 [00:30<00:56, 2.86it/s]
t=10 e=InferenceSession p=CUDA dim=[128, 128, 128]: 52%|█████▏ | 174/336 [00:40<00:56, 2.86it/s]
t=10 e=InferenceSession p=CUDA dim=[128, 128, 128]: 52%|█████▏ | 174/336 [00:41<00:56, 2.86it/s]
t=10 e=InferenceSession p=CUDA dim=[128, 128, 128]: 52%|█████▏ | 176/336 [00:42<02:01, 1.32it/s]
t=10 e=InferenceSession p=CUDA dim=[128, 128, 128]: 52%|█████▏ | 176/336 [00:42<02:01, 1.32it/s]
t=10 e=InferenceSession p=CUDA dim=[256, 256, 256]: 52%|█████▏ | 176/336 [00:42<02:01, 1.32it/s]
t=10 e=InferenceSession p=CUDA dim=[256, 256, 256]: 53%|█████▎ | 178/336 [00:45<02:11, 1.20it/s]
t=10 e=InferenceSession p=CUDA dim=[256, 256, 256]: 53%|█████▎ | 178/336 [00:45<02:11, 1.20it/s]
t=10 e=InferenceSession p=CUDA dim=[256, 256, 256]: 53%|█████▎ | 178/336 [00:45<02:11, 1.20it/s]
t=10 e=InferenceSession p=CUDA dim=[400, 400, 400]: 53%|█████▎ | 178/336 [00:45<02:11, 1.20it/s]
t=10 e=InferenceSession p=CUDA dim=[400, 400, 400]: 54%|█████▍ | 181/336 [00:49<02:19, 1.11it/s]
t=10 e=InferenceSession p=CUDA dim=[400, 400, 400]: 54%|█████▍ | 181/336 [00:49<02:19, 1.11it/s]
t=10 e=InferenceSession p=CUDA dim=[400, 400, 400]: 54%|█████▍ | 181/336 [00:49<02:19, 1.11it/s]
t=10 e=InferenceSession p=CUDA dim=[400, 400, 400]: 54%|█████▍ | 183/336 [00:49<01:59, 1.28it/s]
t=10 e=InferenceSession p=CUDA dim=[512, 512, 512]: 54%|█████▍ | 183/336 [00:49<01:59, 1.28it/s]
t=10 e=InferenceSession p=CUDA dim=[512, 512, 512]: 54%|█████▍ | 183/336 [00:54<01:59, 1.28it/s]
t=10 e=InferenceSession p=CUDA dim=[512, 512, 512]: 55%|█████▌ | 185/336 [00:54<02:50, 1.13s/it]
t=10 e=InferenceSession p=CUDA dim=[512, 512, 512]: 55%|█████▌ | 185/336 [00:54<02:50, 1.13s/it]
t=10 e=InferenceSession p=CUDA dim=[1024, 1024, 1024]: 55%|█████▌ | 185/336 [00:54<02:50, 1.13s/it]
t=10 e=InferenceSession p=CUDA dim=[1024, 1024, 1024]: 55%|█████▌ | 185/336 [01:11<02:50, 1.13s/it]
t=10 e=InferenceSession p=CUDA dim=[1024, 1024, 1024]: 56%|█████▌ | 187/336 [01:29<10:31, 4.24s/it]
t=10 e=InferenceSession p=CUDA dim=[1024, 1024, 1024]: 56%|█████▌ | 187/336 [01:29<10:31, 4.24s/it]
t=10 e=InferenceSession p=CUDA dim=[1024, 1024, 1024]: 56%|█████▌ | 188/336 [01:30<09:30, 3.85s/it]
t=10 e=InferenceSession p=CUDA dim=[1024, 1024, 1024]: 56%|█████▌ | 188/336 [01:30<09:30, 3.85s/it]
t=10 e=InferenceSession p=CPUE dim=[32, 32, 32]: 56%|█████▌ | 188/336 [01:30<09:30, 3.85s/it]
t=10 e=InferenceSession p=CPUE dim=[32, 32, 32]: 57%|█████▋ | 191/336 [01:30<06:08, 2.54s/it]
t=10 e=InferenceSession p=CPUE dim=[64, 64, 64]: 57%|█████▋ | 191/336 [01:30<06:08, 2.54s/it]
t=10 e=InferenceSession p=CPUE dim=[128, 128, 128]: 57%|█████▋ | 191/336 [01:30<06:08, 2.54s/it]
t=10 e=InferenceSession p=CPUE dim=[128, 128, 128]: 59%|█████▊ | 197/336 [01:30<03:02, 1.31s/it]
t=10 e=InferenceSession p=CPUE dim=[256, 256, 256]: 59%|█████▊ | 197/336 [01:30<03:02, 1.31s/it]
t=10 e=InferenceSession p=CPUE dim=[256, 256, 256]: 60%|█████▉ | 200/336 [01:30<02:15, 1.01it/s]
t=10 e=InferenceSession p=CPUE dim=[400, 400, 400]: 60%|█████▉ | 200/336 [01:30<02:15, 1.01it/s]
t=10 e=InferenceSession p=CPUE dim=[400, 400, 400]: 60%|██████ | 203/336 [01:31<01:38, 1.35it/s]
t=10 e=InferenceSession p=CPUE dim=[512, 512, 512]: 60%|██████ | 203/336 [01:31<01:38, 1.35it/s]
t=10 e=InferenceSession p=CPUE dim=[512, 512, 512]: 61%|██████▏ | 206/336 [01:31<01:14, 1.76it/s]
t=10 e=InferenceSession p=CPUE dim=[1024, 1024, 1024]: 61%|██████▏ | 206/336 [01:31<01:14, 1.76it/s]
t=10 e=InferenceSession p=CPUE dim=[1024, 1024, 1024]: 62%|██████▏ | 209/336 [01:33<01:13, 1.73it/s]
t=10 e=CReferenceEvaluator p=CUDA dim=[32, 32, 32]: 62%|██████▏ | 209/336 [01:33<01:13, 1.73it/s]
t=10 e=CReferenceEvaluator p=CUDA dim=[32, 32, 32]: 62%|██████▏ | 209/336 [01:33<01:13, 1.73it/s]
t=10 e=CReferenceEvaluator p=CUDA dim=[32, 32, 32]: 62%|██████▏ | 209/336 [01:33<01:13, 1.73it/s]
t=10 e=CReferenceEvaluator p=CUDA dim=[64, 64, 64]: 62%|██████▏ | 209/336 [01:33<01:13, 1.73it/s]
t=10 e=CReferenceEvaluator p=CUDA dim=[64, 64, 64]: 62%|██████▏ | 209/336 [01:33<01:13, 1.73it/s]
t=10 e=CReferenceEvaluator p=CUDA dim=[64, 64, 64]: 62%|██████▏ | 209/336 [01:33<01:13, 1.73it/s]
t=10 e=CReferenceEvaluator p=CUDA dim=[128, 128, 128]: 62%|██████▏ | 209/336 [01:33<01:13, 1.73it/s]
t=10 e=CReferenceEvaluator p=CUDA dim=[128, 128, 128]: 62%|██████▏ | 209/336 [01:33<01:13, 1.73it/s]
t=10 e=CReferenceEvaluator p=CUDA dim=[128, 128, 128]: 62%|██████▏ | 209/336 [01:33<01:13, 1.73it/s]
t=10 e=CReferenceEvaluator p=CUDA dim=[256, 256, 256]: 62%|██████▏ | 209/336 [01:33<01:13, 1.73it/s]
t=10 e=CReferenceEvaluator p=CUDA dim=[256, 256, 256]: 62%|██████▏ | 209/336 [01:33<01:13, 1.73it/s]
t=10 e=CReferenceEvaluator p=CUDA dim=[256, 256, 256]: 62%|██████▏ | 209/336 [01:33<01:13, 1.73it/s]
t=10 e=CReferenceEvaluator p=CUDA dim=[400, 400, 400]: 62%|██████▏ | 209/336 [01:33<01:13, 1.73it/s]
t=10 e=CReferenceEvaluator p=CUDA dim=[400, 400, 400]: 62%|██████▏ | 209/336 [01:33<01:13, 1.73it/s]
t=10 e=CReferenceEvaluator p=CUDA dim=[400, 400, 400]: 62%|██████▏ | 209/336 [01:33<01:13, 1.73it/s]
t=10 e=CReferenceEvaluator p=CUDA dim=[512, 512, 512]: 62%|██████▏ | 209/336 [01:33<01:13, 1.73it/s]
t=10 e=CReferenceEvaluator p=CUDA dim=[512, 512, 512]: 62%|██████▏ | 209/336 [01:33<01:13, 1.73it/s]
t=10 e=CReferenceEvaluator p=CUDA dim=[512, 512, 512]: 62%|██████▏ | 209/336 [01:33<01:13, 1.73it/s]
t=10 e=CReferenceEvaluator p=CUDA dim=[1024, 1024, 1024]: 62%|██████▏ | 209/336 [01:33<01:13, 1.73it/s]
t=10 e=CReferenceEvaluator p=CUDA dim=[1024, 1024, 1024]: 62%|██████▏ | 209/336 [01:33<01:13, 1.73it/s]
t=10 e=CReferenceEvaluator p=CUDA dim=[1024, 1024, 1024]: 62%|██████▏ | 209/336 [01:33<01:13, 1.73it/s]
t=10 e=CReferenceEvaluator p=CPUE dim=[32, 32, 32]: 62%|██████▏ | 209/336 [01:33<01:13, 1.73it/s]
t=10 e=CReferenceEvaluator p=CPUE dim=[32, 32, 32]: 69%|██████▉ | 233/336 [01:33<00:14, 6.87it/s]
t=10 e=CReferenceEvaluator p=CPUE dim=[64, 64, 64]: 69%|██████▉ | 233/336 [01:33<00:14, 6.87it/s]
t=10 e=CReferenceEvaluator p=CPUE dim=[128, 128, 128]: 69%|██████▉ | 233/336 [01:33<00:14, 6.87it/s]
t=10 e=CReferenceEvaluator p=CPUE dim=[128, 128, 128]: 71%|███████ | 239/336 [01:33<00:11, 8.30it/s]
t=10 e=CReferenceEvaluator p=CPUE dim=[256, 256, 256]: 71%|███████ | 239/336 [01:33<00:11, 8.30it/s]
t=10 e=CReferenceEvaluator p=CPUE dim=[256, 256, 256]: 72%|███████▏ | 243/336 [01:34<00:13, 6.96it/s]
t=10 e=CReferenceEvaluator p=CPUE dim=[400, 400, 400]: 72%|███████▏ | 243/336 [01:34<00:13, 6.96it/s]
t=10 e=CReferenceEvaluator p=CPUE dim=[512, 512, 512]: 72%|███████▏ | 243/336 [01:34<00:13, 6.96it/s]
t=10 e=CReferenceEvaluator p=CPUE dim=[1024, 1024, 1024]: 72%|███████▏ | 243/336 [01:34<00:13, 6.96it/s]
t=16 e=InferenceSession p=CUDA dim=[32, 32, 32]: 72%|███████▏ | 243/336 [01:34<00:13, 6.96it/s]
t=16 e=InferenceSession p=CUDA dim=[32, 32, 32]: 76%|███████▌ | 254/336 [01:35<00:09, 8.84it/s]
t=16 e=InferenceSession p=CUDA dim=[32, 32, 32]: 76%|███████▌ | 254/336 [01:35<00:09, 8.84it/s]
t=16 e=InferenceSession p=CUDA dim=[64, 64, 64]: 76%|███████▌ | 254/336 [01:35<00:09, 8.84it/s]
t=16 e=InferenceSession p=CUDA dim=[64, 64, 64]: 76%|███████▋ | 257/336 [01:36<00:10, 7.69it/s]
t=16 e=InferenceSession p=CUDA dim=[64, 64, 64]: 76%|███████▋ | 257/336 [01:36<00:10, 7.69it/s]
t=16 e=InferenceSession p=CUDA dim=[128, 128, 128]: 76%|███████▋ | 257/336 [01:36<00:10, 7.69it/s]
t=16 e=InferenceSession p=CUDA dim=[128, 128, 128]: 77%|███████▋ | 260/336 [01:37<00:11, 6.60it/s]
t=16 e=InferenceSession p=CUDA dim=[128, 128, 128]: 77%|███████▋ | 260/336 [01:37<00:11, 6.60it/s]
t=16 e=InferenceSession p=CUDA dim=[256, 256, 256]: 77%|███████▋ | 260/336 [01:37<00:11, 6.60it/s]
t=16 e=InferenceSession p=CUDA dim=[256, 256, 256]: 78%|███████▊ | 263/336 [01:37<00:10, 6.91it/s]
t=16 e=InferenceSession p=CUDA dim=[256, 256, 256]: 78%|███████▊ | 263/336 [01:37<00:10, 6.91it/s]
t=16 e=InferenceSession p=CUDA dim=[400, 400, 400]: 78%|███████▊ | 263/336 [01:37<00:10, 6.91it/s]
t=16 e=InferenceSession p=CUDA dim=[400, 400, 400]: 79%|███████▉ | 266/336 [01:37<00:09, 7.77it/s]
t=16 e=InferenceSession p=CUDA dim=[400, 400, 400]: 79%|███████▉ | 266/336 [01:37<00:09, 7.77it/s]
t=16 e=InferenceSession p=CUDA dim=[512, 512, 512]: 79%|███████▉ | 266/336 [01:37<00:09, 7.77it/s]
t=16 e=InferenceSession p=CUDA dim=[512, 512, 512]: 80%|████████ | 269/336 [01:37<00:08, 8.18it/s]
t=16 e=InferenceSession p=CUDA dim=[512, 512, 512]: 80%|████████ | 269/336 [01:37<00:08, 8.18it/s]
t=16 e=InferenceSession p=CUDA dim=[1024, 1024, 1024]: 80%|████████ | 269/336 [01:37<00:08, 8.18it/s]
t=16 e=InferenceSession p=CUDA dim=[1024, 1024, 1024]: 81%|████████ | 272/336 [01:39<00:12, 5.01it/s]
t=16 e=InferenceSession p=CUDA dim=[1024, 1024, 1024]: 81%|████████ | 272/336 [01:39<00:12, 5.01it/s]
t=16 e=InferenceSession p=CPUE dim=[32, 32, 32]: 81%|████████ | 272/336 [01:39<00:12, 5.01it/s]
t=16 e=InferenceSession p=CPUE dim=[64, 64, 64]: 81%|████████ | 272/336 [01:39<00:12, 5.01it/s]
t=16 e=InferenceSession p=CPUE dim=[128, 128, 128]: 81%|████████ | 272/336 [01:39<00:12, 5.01it/s]
t=16 e=InferenceSession p=CPUE dim=[256, 256, 256]: 81%|████████ | 272/336 [01:39<00:12, 5.01it/s]
t=16 e=InferenceSession p=CPUE dim=[400, 400, 400]: 81%|████████ | 272/336 [01:39<00:12, 5.01it/s]
t=16 e=InferenceSession p=CPUE dim=[512, 512, 512]: 81%|████████ | 272/336 [01:39<00:12, 5.01it/s]
t=16 e=InferenceSession p=CPUE dim=[1024, 1024, 1024]: 81%|████████ | 272/336 [01:39<00:12, 5.01it/s]
t=16 e=CReferenceEvaluator p=CUDA dim=[32, 32, 32]: 81%|████████ | 272/336 [01:39<00:12, 5.01it/s]
t=16 e=CReferenceEvaluator p=CUDA dim=[32, 32, 32]: 81%|████████ | 272/336 [01:39<00:12, 5.01it/s]
t=16 e=CReferenceEvaluator p=CUDA dim=[64, 64, 64]: 81%|████████ | 272/336 [01:39<00:12, 5.01it/s]
t=16 e=CReferenceEvaluator p=CUDA dim=[64, 64, 64]: 81%|████████ | 272/336 [01:39<00:12, 5.01it/s]
t=16 e=CReferenceEvaluator p=CUDA dim=[128, 128, 128]: 81%|████████ | 272/336 [01:39<00:12, 5.01it/s]
t=16 e=CReferenceEvaluator p=CUDA dim=[128, 128, 128]: 81%|████████ | 272/336 [01:39<00:12, 5.01it/s]
t=16 e=CReferenceEvaluator p=CUDA dim=[256, 256, 256]: 81%|████████ | 272/336 [01:39<00:12, 5.01it/s]
t=16 e=CReferenceEvaluator p=CUDA dim=[256, 256, 256]: 81%|████████ | 272/336 [01:39<00:12, 5.01it/s]
t=16 e=CReferenceEvaluator p=CUDA dim=[400, 400, 400]: 81%|████████ | 272/336 [01:39<00:12, 5.01it/s]
t=16 e=CReferenceEvaluator p=CUDA dim=[400, 400, 400]: 81%|████████ | 272/336 [01:39<00:12, 5.01it/s]
t=16 e=CReferenceEvaluator p=CUDA dim=[512, 512, 512]: 81%|████████ | 272/336 [01:39<00:12, 5.01it/s]
t=16 e=CReferenceEvaluator p=CUDA dim=[512, 512, 512]: 81%|████████ | 272/336 [01:39<00:12, 5.01it/s]
t=16 e=CReferenceEvaluator p=CUDA dim=[1024, 1024, 1024]: 81%|████████ | 272/336 [01:39<00:12, 5.01it/s]
t=16 e=CReferenceEvaluator p=CUDA dim=[1024, 1024, 1024]: 81%|████████ | 272/336 [01:39<00:12, 5.01it/s]
t=16 e=CReferenceEvaluator p=CPUE dim=[32, 32, 32]: 81%|████████ | 272/336 [01:39<00:12, 5.01it/s]
t=16 e=CReferenceEvaluator p=CPUE dim=[64, 64, 64]: 81%|████████ | 272/336 [01:39<00:12, 5.01it/s]
t=16 e=CReferenceEvaluator p=CPUE dim=[128, 128, 128]: 81%|████████ | 272/336 [01:39<00:12, 5.01it/s]
t=16 e=CReferenceEvaluator p=CPUE dim=[256, 256, 256]: 81%|████████ | 272/336 [01:39<00:12, 5.01it/s]
t=16 e=CReferenceEvaluator p=CPUE dim=[400, 400, 400]: 81%|████████ | 272/336 [01:39<00:12, 5.01it/s]
t=16 e=CReferenceEvaluator p=CPUE dim=[512, 512, 512]: 81%|████████ | 272/336 [01:39<00:12, 5.01it/s]
t=16 e=CReferenceEvaluator p=CPUE dim=[1024, 1024, 1024]: 81%|████████ | 272/336 [01:39<00:12, 5.01it/s]
t=16 e=CReferenceEvaluator p=CPUE dim=[1024, 1024, 1024]: 100%|██████████| 336/336 [01:39<00:00, 3.39it/s]
Results¶
0 ... 4
average 0.004862 ... 0.005088
deviation 0.000222 ... 0.000096
min_exec 0.00444 ... 0.004951
max_exec 0.005432 ... 0.005407
repeat 40 ... 40
number 16 ... 16
ttime 0.194488 ... 0.203515
context_size 64 ... 64
warmup_time 0.005957 ... 0.005067
engine ort ... ort
stype f32 ... f32
type f32 ... f32
M 32 ... 128
N 32 ... 128
K 32 ... 128
cost 131072 ... 8388608
cost_s 131072-32x32x32 ... 8388608-128x128x128
domain EXT ... EXT
provider cuda ... cuda
platform x86_64 ... x86_64
intime None ... None
[21 rows x 5 columns]
The errors¶
1/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='onnx_extended.ortops.tutorial.cuda'.
2/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain=''.
3/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='com.microsoft'.
4/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='onnx_extended.ortops.tutorial.cuda'.
5/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain=''.
6/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='com.microsoft'.
7/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='onnx_extended.ortops.tutorial.cuda'.
8/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain=''.
9/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='com.microsoft'.
10/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='onnx_extended.ortops.tutorial.cuda'.
11/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain=''.
12/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='com.microsoft'.
13/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='onnx_extended.ortops.tutorial.cuda'.
14/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain=''.
15/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='com.microsoft'.
16/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='onnx_extended.ortops.tutorial.cuda'.
17/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain=''.
18/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='com.microsoft'.
19/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='onnx_extended.ortops.tutorial.cuda'.
20/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain=''.
21/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='com.microsoft'.
22/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='onnx_extended.ortops.tutorial.cuda'.
23/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain=''.
24/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='com.microsoft'.
25/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='onnx_extended.ortops.tutorial.cuda'.
26/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain=''.
27/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='com.microsoft'.
28/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='onnx_extended.ortops.tutorial.cuda'.
29/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain=''.
30/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='com.microsoft'.
31/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='onnx_extended.ortops.tutorial.cuda'.
32/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain=''.
33/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='com.microsoft'.
34/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='onnx_extended.ortops.tutorial.cuda'.
35/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain=''.
36/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='com.microsoft'.
37/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='onnx_extended.ortops.tutorial.cuda'.
38/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain=''.
39/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='com.microsoft'.
40/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='onnx_extended.ortops.tutorial.cuda'.
41/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain=''.
42/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='com.microsoft'.
43/84-(1, 'type', ['CUDAExecutionProvider', 'CPUExecutionProvider'], 'com.microsoft', InvalidGraph('[ONNXRuntimeError] : 10 : INVALID_GRAPH : This is an invalid model. In Node, ("1.1.1.com.microsoft..1..1..CUBLAS_COMPUTE_32F..False", GemmFloat8, "com.microsoft", -1) : ("A": tensor(float),"B": tensor(float),) -> ("C": tensor(float),) , Error Unrecognized attribute: rowMajor for operator GemmFloat8'))
44/84-(1, 'type', ['CUDAExecutionProvider', 'CPUExecutionProvider'], 'com.microsoft', InvalidGraph('[ONNXRuntimeError] : 10 : INVALID_GRAPH : This is an invalid model. In Node, ("1.1.1.com.microsoft..1..1..CUBLAS_COMPUTE_32F..False", GemmFloat8, "com.microsoft", -1) : ("A": tensor(float),"B": tensor(float),) -> ("C": tensor(float),) , Error Unrecognized attribute: rowMajor for operator GemmFloat8'))
45/84-(1, 'type', ['CUDAExecutionProvider', 'CPUExecutionProvider'], 'com.microsoft', InvalidGraph('[ONNXRuntimeError] : 10 : INVALID_GRAPH : This is an invalid model. In Node, ("1.1.1.com.microsoft..1..1..CUBLAS_COMPUTE_32F..False", GemmFloat8, "com.microsoft", -1) : ("A": tensor(float),"B": tensor(float),) -> ("C": tensor(float),) , Error Unrecognized attribute: rowMajor for operator GemmFloat8'))
46/84-(1, 'type', ['CUDAExecutionProvider', 'CPUExecutionProvider'], 'com.microsoft', InvalidGraph('[ONNXRuntimeError] : 10 : INVALID_GRAPH : This is an invalid model. In Node, ("1.1.1.com.microsoft..1..1..CUBLAS_COMPUTE_32F..False", GemmFloat8, "com.microsoft", -1) : ("A": tensor(float),"B": tensor(float),) -> ("C": tensor(float),) , Error Unrecognized attribute: rowMajor for operator GemmFloat8'))
47/84-(1, 'type', ['CUDAExecutionProvider', 'CPUExecutionProvider'], 'com.microsoft', InvalidGraph('[ONNXRuntimeError] : 10 : INVALID_GRAPH : This is an invalid model. In Node, ("1.1.1.com.microsoft..1..1..CUBLAS_COMPUTE_32F..False", GemmFloat8, "com.microsoft", -1) : ("A": tensor(float),"B": tensor(float),) -> ("C": tensor(float),) , Error Unrecognized attribute: rowMajor for operator GemmFloat8'))
48/84-(1, 'type', ['CUDAExecutionProvider', 'CPUExecutionProvider'], 'com.microsoft', InvalidGraph('[ONNXRuntimeError] : 10 : INVALID_GRAPH : This is an invalid model. In Node, ("1.1.1.com.microsoft..1..1..CUBLAS_COMPUTE_32F..False", GemmFloat8, "com.microsoft", -1) : ("A": tensor(float),"B": tensor(float),) -> ("C": tensor(float),) , Error Unrecognized attribute: rowMajor for operator GemmFloat8'))
49/84-(1, 'type', ['CUDAExecutionProvider', 'CPUExecutionProvider'], 'com.microsoft', InvalidGraph('[ONNXRuntimeError] : 10 : INVALID_GRAPH : This is an invalid model. In Node, ("1.1.1.com.microsoft..1..1..CUBLAS_COMPUTE_32F..False", GemmFloat8, "com.microsoft", -1) : ("A": tensor(float),"B": tensor(float),) -> ("C": tensor(float),) , Error Unrecognized attribute: rowMajor for operator GemmFloat8'))
50/84-(10, 'type', ['CUDAExecutionProvider', 'CPUExecutionProvider'], 'com.microsoft', InvalidGraph('[ONNXRuntimeError] : 10 : INVALID_GRAPH : This is an invalid model. In Node, ("10.1.1.com.microsoft..1..1..CUBLAS_COMPUTE_32F..False", GemmFloat8, "com.microsoft", -1) : ("A": tensor(float16),"B": tensor(float16),) -> ("C": tensor(float16),) , Error Unrecognized attribute: rowMajor for operator GemmFloat8'))
51/84-(10, 'type', ['CUDAExecutionProvider', 'CPUExecutionProvider'], 'com.microsoft', InvalidGraph('[ONNXRuntimeError] : 10 : INVALID_GRAPH : This is an invalid model. In Node, ("10.1.1.com.microsoft..1..1..CUBLAS_COMPUTE_32F..False", GemmFloat8, "com.microsoft", -1) : ("A": tensor(float16),"B": tensor(float16),) -> ("C": tensor(float16),) , Error Unrecognized attribute: rowMajor for operator GemmFloat8'))
52/84-(10, 'type', ['CUDAExecutionProvider', 'CPUExecutionProvider'], 'com.microsoft', InvalidGraph('[ONNXRuntimeError] : 10 : INVALID_GRAPH : This is an invalid model. In Node, ("10.1.1.com.microsoft..1..1..CUBLAS_COMPUTE_32F..False", GemmFloat8, "com.microsoft", -1) : ("A": tensor(float16),"B": tensor(float16),) -> ("C": tensor(float16),) , Error Unrecognized attribute: rowMajor for operator GemmFloat8'))
53/84-(10, 'type', ['CUDAExecutionProvider', 'CPUExecutionProvider'], 'com.microsoft', InvalidGraph('[ONNXRuntimeError] : 10 : INVALID_GRAPH : This is an invalid model. In Node, ("10.1.1.com.microsoft..1..1..CUBLAS_COMPUTE_32F..False", GemmFloat8, "com.microsoft", -1) : ("A": tensor(float16),"B": tensor(float16),) -> ("C": tensor(float16),) , Error Unrecognized attribute: rowMajor for operator GemmFloat8'))
54/84-(10, 'type', ['CUDAExecutionProvider', 'CPUExecutionProvider'], 'com.microsoft', InvalidGraph('[ONNXRuntimeError] : 10 : INVALID_GRAPH : This is an invalid model. In Node, ("10.1.1.com.microsoft..1..1..CUBLAS_COMPUTE_32F..False", GemmFloat8, "com.microsoft", -1) : ("A": tensor(float16),"B": tensor(float16),) -> ("C": tensor(float16),) , Error Unrecognized attribute: rowMajor for operator GemmFloat8'))
55/84-(10, 'type', ['CUDAExecutionProvider', 'CPUExecutionProvider'], 'com.microsoft', InvalidGraph('[ONNXRuntimeError] : 10 : INVALID_GRAPH : This is an invalid model. In Node, ("10.1.1.com.microsoft..1..1..CUBLAS_COMPUTE_32F..False", GemmFloat8, "com.microsoft", -1) : ("A": tensor(float16),"B": tensor(float16),) -> ("C": tensor(float16),) , Error Unrecognized attribute: rowMajor for operator GemmFloat8'))
56/84-(10, 'type', ['CUDAExecutionProvider', 'CPUExecutionProvider'], 'com.microsoft', InvalidGraph('[ONNXRuntimeError] : 10 : INVALID_GRAPH : This is an invalid model. In Node, ("10.1.1.com.microsoft..1..1..CUBLAS_COMPUTE_32F..False", GemmFloat8, "com.microsoft", -1) : ("A": tensor(float16),"B": tensor(float16),) -> ("C": tensor(float16),) , Error Unrecognized attribute: rowMajor for operator GemmFloat8'))
57/84-No model for tt=16, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='onnx_extended.ortops.tutorial.cuda'.
58/84-(16, 'type', ['CUDAExecutionProvider', 'CPUExecutionProvider'], 'com.microsoft', InvalidGraph('[ONNXRuntimeError] : 10 : INVALID_GRAPH : This is an invalid model. In Node, ("16.1.1.com.microsoft..1..1..CUBLAS_COMPUTE_32F..False", GemmFloat8, "com.microsoft", -1) : ("A": tensor(bfloat16),"B": tensor(bfloat16),) -> ("C": tensor(bfloat16),) , Error Unrecognized attribute: rowMajor for operator GemmFloat8'))
59/84-No model for tt=16, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='onnx_extended.ortops.tutorial.cuda'.
60/84-(16, 'type', ['CUDAExecutionProvider', 'CPUExecutionProvider'], 'com.microsoft', InvalidGraph('[ONNXRuntimeError] : 10 : INVALID_GRAPH : This is an invalid model. In Node, ("16.1.1.com.microsoft..1..1..CUBLAS_COMPUTE_32F..False", GemmFloat8, "com.microsoft", -1) : ("A": tensor(bfloat16),"B": tensor(bfloat16),) -> ("C": tensor(bfloat16),) , Error Unrecognized attribute: rowMajor for operator GemmFloat8'))
61/84-No model for tt=16, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='onnx_extended.ortops.tutorial.cuda'.
62/84-(16, 'type', ['CUDAExecutionProvider', 'CPUExecutionProvider'], 'com.microsoft', InvalidGraph('[ONNXRuntimeError] : 10 : INVALID_GRAPH : This is an invalid model. In Node, ("16.1.1.com.microsoft..1..1..CUBLAS_COMPUTE_32F..False", GemmFloat8, "com.microsoft", -1) : ("A": tensor(bfloat16),"B": tensor(bfloat16),) -> ("C": tensor(bfloat16),) , Error Unrecognized attribute: rowMajor for operator GemmFloat8'))
63/84-No model for tt=16, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='onnx_extended.ortops.tutorial.cuda'.
64/84-(16, 'type', ['CUDAExecutionProvider', 'CPUExecutionProvider'], 'com.microsoft', InvalidGraph('[ONNXRuntimeError] : 10 : INVALID_GRAPH : This is an invalid model. In Node, ("16.1.1.com.microsoft..1..1..CUBLAS_COMPUTE_32F..False", GemmFloat8, "com.microsoft", -1) : ("A": tensor(bfloat16),"B": tensor(bfloat16),) -> ("C": tensor(bfloat16),) , Error Unrecognized attribute: rowMajor for operator GemmFloat8'))
65/84-No model for tt=16, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='onnx_extended.ortops.tutorial.cuda'.
66/84-(16, 'type', ['CUDAExecutionProvider', 'CPUExecutionProvider'], 'com.microsoft', InvalidGraph('[ONNXRuntimeError] : 10 : INVALID_GRAPH : This is an invalid model. In Node, ("16.1.1.com.microsoft..1..1..CUBLAS_COMPUTE_32F..False", GemmFloat8, "com.microsoft", -1) : ("A": tensor(bfloat16),"B": tensor(bfloat16),) -> ("C": tensor(bfloat16),) , Error Unrecognized attribute: rowMajor for operator GemmFloat8'))
67/84-No model for tt=16, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='onnx_extended.ortops.tutorial.cuda'.
68/84-(16, 'type', ['CUDAExecutionProvider', 'CPUExecutionProvider'], 'com.microsoft', InvalidGraph('[ONNXRuntimeError] : 10 : INVALID_GRAPH : This is an invalid model. In Node, ("16.1.1.com.microsoft..1..1..CUBLAS_COMPUTE_32F..False", GemmFloat8, "com.microsoft", -1) : ("A": tensor(bfloat16),"B": tensor(bfloat16),) -> ("C": tensor(bfloat16),) , Error Unrecognized attribute: rowMajor for operator GemmFloat8'))
69/84-No model for tt=16, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='onnx_extended.ortops.tutorial.cuda'.
70/84-(16, 'type', ['CUDAExecutionProvider', 'CPUExecutionProvider'], 'com.microsoft', InvalidGraph('[ONNXRuntimeError] : 10 : INVALID_GRAPH : This is an invalid model. In Node, ("16.1.1.com.microsoft..1..1..CUBLAS_COMPUTE_32F..False", GemmFloat8, "com.microsoft", -1) : ("A": tensor(bfloat16),"B": tensor(bfloat16),) -> ("C": tensor(bfloat16),) , Error Unrecognized attribute: rowMajor for operator GemmFloat8'))
71/84-(16, 'type', ['CPUExecutionProvider'], '', NotImplemented("[ONNXRuntimeError] : 9 : NOT_IMPLEMENTED : Could not find an implementation for Gemm(13) node with name ''"))
72/84-(16, 'type', ['CPUExecutionProvider'], '', NotImplemented("[ONNXRuntimeError] : 9 : NOT_IMPLEMENTED : Could not find an implementation for Gemm(13) node with name ''"))
73/84-(16, 'type', ['CPUExecutionProvider'], '', NotImplemented("[ONNXRuntimeError] : 9 : NOT_IMPLEMENTED : Could not find an implementation for Gemm(13) node with name ''"))
74/84-(16, 'type', ['CPUExecutionProvider'], '', NotImplemented("[ONNXRuntimeError] : 9 : NOT_IMPLEMENTED : Could not find an implementation for Gemm(13) node with name ''"))
75/84-(16, 'type', ['CPUExecutionProvider'], '', NotImplemented("[ONNXRuntimeError] : 9 : NOT_IMPLEMENTED : Could not find an implementation for Gemm(13) node with name ''"))
76/84-(16, 'type', ['CPUExecutionProvider'], '', NotImplemented("[ONNXRuntimeError] : 9 : NOT_IMPLEMENTED : Could not find an implementation for Gemm(13) node with name ''"))
77/84-(16, 'type', ['CPUExecutionProvider'], '', NotImplemented("[ONNXRuntimeError] : 9 : NOT_IMPLEMENTED : Could not find an implementation for Gemm(13) node with name ''"))
78/84-No model for tt=16, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='onnx_extended.ortops.tutorial.cuda'.
79/84-No model for tt=16, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='onnx_extended.ortops.tutorial.cuda'.
80/84-No model for tt=16, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='onnx_extended.ortops.tutorial.cuda'.
81/84-No model for tt=16, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='onnx_extended.ortops.tutorial.cuda'.
82/84-No model for tt=16, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='onnx_extended.ortops.tutorial.cuda'.
83/84-No model for tt=16, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='onnx_extended.ortops.tutorial.cuda'.
84/84-No model for tt=16, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='onnx_extended.ortops.tutorial.cuda'.
Summary¶
piv = pivot_table(
df,
index=["cost"],
columns=["provider", "type", "domain", "engine"],
values=["average", "intime"],
)
piv.reset_index(drop=False).to_excel("plot_bench_gemm_ort_summary.xlsx")
piv.reset_index(drop=False).to_csv("plot_bench_gemm_ort_summary.csv")
print("summary")
print(piv)
piv
summary
average ...
provider cpu ... cuda
type f16 f32 ... f16 f32
domain ORT ORT ... ORT EXT ORT
engine np ort np ... ort ort ort
cost ...
131072 0.000427 0.000081 0.000030 ... 0.000222 0.004862 0.000202
1048576 0.002866 0.000103 0.000042 ... 0.000329 0.004908 0.000314
8388608 0.023623 0.000409 0.000159 ... 0.002651 0.005088 0.000498
67108864 0.170814 0.001660 0.000437 ... 0.001357 0.006411 0.001798
256000000 NaN 0.003915 NaN ... 0.002719 0.008772 0.004143
536870912 NaN 0.008509 NaN ... 0.006512 0.011558 0.006459
4294967296 NaN 0.040063 NaN ... 0.022766 0.035488 0.028698
[7 rows x 9 columns]
With the dimensions.
pivs = pivot_table(
df,
index=["cost_s"],
columns=["provider", "type", "domain", "engine"],
values=["average", "intime"],
)
print(pivs)
average ...
provider cpu ... cuda
type f16 ... f32
domain ORT ... EXT ORT
engine np ort ... ort ort
cost_s ...
1048576-64x64x64 0.002866 0.000103 ... 0.004908 0.000314
131072-32x32x32 0.000427 0.000081 ... 0.004862 0.000202
256000000-400x400x400 NaN 0.003915 ... 0.008772 0.004143
4294967296-1024x1024x1024 NaN 0.040063 ... 0.035488 0.028698
536870912-512x512x512 NaN 0.008509 ... 0.011558 0.006459
67108864-256x256x256 0.170814 0.001660 ... 0.006411 0.001798
8388608-128x128x128 0.023623 0.000409 ... 0.005088 0.000498
[7 rows x 9 columns]
plot
dfi = df[
df.type.isin({"f32", "f16", "bf16", "e4m3fn", "e5m2"}) & df.engine.isin({"ort"})
]
pivi = pivot_table(
dfi,
index=["cost"],
columns=["type", "domain", "provider", "engine"],
values="average",
)
fig, ax = plt.subplots(1, 2, figsize=(12, 6))
piv.plot(ax=ax[0], title="Gemm performance\nlower is better", logx=True, logy=True)
if pivi.shape[0] > 0:
pivi.plot(
ax=ax[1],
title=f"Gemm performance ORT\n{platform.processor()}",
logx=True,
logy=True,
)
fig.tight_layout()
fig.savefig("plot_bench_gemm_ort.png")
Total running time of the script: (1 minutes 54.521 seconds)