Note
Go to the end to download the full example code.
Optimizing Masked ScatterND operator on CUDA¶
How to parallelize something like the following?
ScatterND¶
This configuration happens in a Llama model.
Where the shapes are:
zeros: 32000x4096
indices: 2x1024x1
updates: 2x1024x4096
from onnx_extended.args import get_parsed_args
script_args = get_parsed_args(
"plot_op_scatternd_mask_cuda",
description=__doc__,
config=(
"small",
"small, short optimization (default), "
"medium for medium sizes, "
"large for big sizes",
"llama for a specific case on llama",
),
warmup=3,
repeat=5,
itype=(1, "1 or 10 for float or float16"),
expose="config,itype,warmup,repeat",
)
import time
import numpy as np
from numpy.testing import assert_almost_equal
from pandas import DataFrame
from tqdm import tqdm
import onnx.helper as oh
import onnx.numpy_helper as onh
from onnx import TensorProto
from onnx.reference import ReferenceEvaluator
from onnx.reference.op_run import OpRun
from onnx_array_api.plotting.text_plot import onnx_simple_text_plot
itype = script_args.itype
dtype = np.float32 if itype == TensorProto.FLOAT else np.float16
config = script_args.config
print(f"config={config}")
print(f"itype={itype}, dtype={dtype}")
if config == "small":
sizes = (256, 512, 1024)
elif config == "medium":
sizes = (512, 1024, 2048)
elif config == "large":
sizes = (1024, 2048, 4096, 6144, 8192)
elif config == "llama":
sizes = (16000, 32000)
else:
try:
sizes = list(map(int, config.split(",")))
except (ValueError, TypeError) as e:
raise AssertionError(f"Unexpected config value {config!r}.") from e
def get_model(op_type="ScatterND", itype=TensorProto.FLOAT):
indices_shape = ["i", "j", 1]
updates_shape = ["i", "j", "b"]
dtype = np.float32 if itype == TensorProto.FLOAT else np.float16
if op_type == "ScatterND":
nodes = [
oh.make_node(
"ConstantOfShape",
["shape"],
["data"],
value=onh.from_array(np.array([0], dtype=dtype)),
),
oh.make_node(
"Constant",
[],
["mone"],
value=onh.from_array(np.array([-1], dtype=np.int64)),
),
oh.make_node("Equal", ["indices", "mone"], ["eq"]),
oh.make_node(
"Constant",
[],
["zero"],
value=onh.from_array(np.array([0], dtype=dtype)),
),
oh.make_node("Where", ["eq", "zero", "updates"], ["new_updates"]),
oh.make_node(
op_type, ["data", "indices", "new_updates"], ["Y"], reduction="add"
),
]
elif op_type == "ScatterNDOfShape":
nodes = [
oh.make_node(
"Constant",
[],
["mone"],
value=onh.from_array(np.array([-1], dtype=np.int64)),
),
oh.make_node("Equal", ["indices", "mone"], ["eq"]),
oh.make_node(
"Constant",
[],
["zero"],
value=onh.from_array(np.array([0], dtype=dtype)),
),
oh.make_node("Where", ["eq", "zero", "updates"], ["new_updates"]),
oh.make_node(
op_type,
["shape", "indices", "new_updates"],
["Y"],
strategy="optimize",
reduction="add",
domain="onnx_extended.ortops.optim.cuda",
),
]
elif op_type == "MaskedScatterNDOfShape":
nodes = [
oh.make_node(
op_type,
["shape", "indices", "updates"],
["Y"],
maskedValue=-1,
reduction="add",
domain="onnx_extended.ortops.optim.cuda",
),
]
else:
raise ValueError(f"Unkown value for op_type={op_type!r}.")
model = oh.make_model(
oh.make_graph(
nodes,
"g",
[
oh.make_tensor_value_info("shape", TensorProto.INT64, ["s"]),
oh.make_tensor_value_info("indices", TensorProto.INT64, indices_shape),
oh.make_tensor_value_info("updates", itype, updates_shape),
],
[oh.make_tensor_value_info("Y", itype, ["a", "b"])],
),
opset_imports=[
oh.make_opsetid("", 18),
oh.make_opsetid("onnx_extended.ortops.optim.cuda", 1),
],
ir_version=9,
)
return model
model = get_model()
print(onnx_simple_text_plot(model))
config=small
itype=1, dtype=<class 'numpy.float32'>
opset: domain='' version=18
opset: domain='onnx_extended.ortops.optim.cuda' version=1
input: name='shape' type=dtype('int64') shape=['s']
input: name='indices' type=dtype('int64') shape=['i', 'j', 1]
input: name='updates' type=dtype('float32') shape=['i', 'j', 'b']
Constant(value=[-1]) -> mone
Equal(indices, mone) -> eq
ConstantOfShape(shape, value=[0.0]) -> data
Constant(value=[0.0]) -> zero
Where(eq, zero, updates) -> new_updates
ScatterND(data, indices, new_updates, reduction=b'add') -> Y
output: name='Y' type=dtype('float32') shape=['a', 'b']
Let’s see the evaluation by the ReferenceEvaluator for the three proposed models.
def _scatter_nd_impl(data, indices, updates, reduction=None, verbose=False): # type: ignore
output = np.copy(data)
for i in np.ndindex(indices.shape[:-1]):
if verbose:
print(f"updates for i={i}, indices={indices[i]}, updates={updates[i]}")
assert reduction == "add", f"not implemented for reduction={reduction!r}"
output[tuple(indices[i])] += updates[i]
return output
class ScatterND(OpRun):
def _run(self, data, indices, updates, reduction=None, optimize=None): # type: ignore
y = _scatter_nd_impl(data, indices, updates, reduction=reduction, verbose=True)
return (y,)
class ScatterNDOfShape(OpRun):
op_domain = "onnx_extended.ortops.optim.cuda"
def _run(self, shape, indices, updates, reduction=None, strategy=None): # type: ignore
data = np.zeros(tuple(shape.tolist()), dtype=updates.dtype)
y = _scatter_nd_impl(data, indices, updates, reduction=reduction)
return (y,)
class MaskedScatterNDOfShape(OpRun):
op_domain = "onnx_extended.ortops.optim.cuda"
def _run(self, shape, indices, updates, reduction=None, maskedValue=None):
data = np.zeros(shape, dtype=updates.dtype)
new_updates = np.where(indices == maskedValue, 0, updates)
y = _scatter_nd_impl(data, indices, new_updates, reduction=reduction)
return (y,)
shape = np.array([5, 7], dtype=np.int64)
indices = np.ones((2, 10, 1)).astype(np.int64)
indices[0, ::2, 0] = 3
indices[1, ::2, 0] = 1
indices[:, 1::4, 0] = -1
updates = np.ones((2, 10, 7)).astype(dtype)
feeds = {"shape": shape, "indices": indices, "updates": updates}
baseline = None
for op_type in ["ScatterND", "ScatterNDOfShape", "MaskedScatterNDOfShape"]:
print("-----------------------------------------------")
print(f"op_type={op_type}")
model = get_model(op_type)
print(onnx_simple_text_plot(model))
ref = ReferenceEvaluator(
model, new_ops=[ScatterND, ScatterNDOfShape, MaskedScatterNDOfShape]
)
got = ref.run(None, feeds)[0]
print(got)
if baseline is None:
baseline = got
assert_almost_equal(baseline, got)
-----------------------------------------------
op_type=ScatterND
opset: domain='' version=18
opset: domain='onnx_extended.ortops.optim.cuda' version=1
input: name='shape' type=dtype('int64') shape=['s']
input: name='indices' type=dtype('int64') shape=['i', 'j', 1]
input: name='updates' type=dtype('float32') shape=['i', 'j', 'b']
Constant(value=[-1]) -> mone
Equal(indices, mone) -> eq
ConstantOfShape(shape, value=[0.0]) -> data
Constant(value=[0.0]) -> zero
Where(eq, zero, updates) -> new_updates
ScatterND(data, indices, new_updates, reduction=b'add') -> Y
output: name='Y' type=dtype('float32') shape=['a', 'b']
updates for i=(0, 0), indices=[3], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(0, 1), indices=[-1], updates=[0. 0. 0. 0. 0. 0. 0.]
updates for i=(0, 2), indices=[3], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(0, 3), indices=[1], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(0, 4), indices=[3], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(0, 5), indices=[-1], updates=[0. 0. 0. 0. 0. 0. 0.]
updates for i=(0, 6), indices=[3], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(0, 7), indices=[1], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(0, 8), indices=[3], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(0, 9), indices=[-1], updates=[0. 0. 0. 0. 0. 0. 0.]
updates for i=(1, 0), indices=[1], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(1, 1), indices=[-1], updates=[0. 0. 0. 0. 0. 0. 0.]
updates for i=(1, 2), indices=[1], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(1, 3), indices=[1], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(1, 4), indices=[1], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(1, 5), indices=[-1], updates=[0. 0. 0. 0. 0. 0. 0.]
updates for i=(1, 6), indices=[1], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(1, 7), indices=[1], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(1, 8), indices=[1], updates=[1. 1. 1. 1. 1. 1. 1.]
updates for i=(1, 9), indices=[-1], updates=[0. 0. 0. 0. 0. 0. 0.]
[[0. 0. 0. 0. 0. 0. 0.]
[9. 9. 9. 9. 9. 9. 9.]
[0. 0. 0. 0. 0. 0. 0.]
[5. 5. 5. 5. 5. 5. 5.]
[0. 0. 0. 0. 0. 0. 0.]]
-----------------------------------------------
op_type=ScatterNDOfShape
opset: domain='' version=18
opset: domain='onnx_extended.ortops.optim.cuda' version=1
input: name='shape' type=dtype('int64') shape=['s']
input: name='indices' type=dtype('int64') shape=['i', 'j', 1]
input: name='updates' type=dtype('float32') shape=['i', 'j', 'b']
Constant(value=[-1]) -> mone
Equal(indices, mone) -> eq
Constant(value=[0.0]) -> zero
Where(eq, zero, updates) -> new_updates
ScatterNDOfShape[onnx_extended.ortops.optim.cuda](shape, indices, new_updates, reduction=b'add', strategy=b'optimize') -> Y
output: name='Y' type=dtype('float32') shape=['a', 'b']
[[0. 0. 0. 0. 0. 0. 0.]
[9. 9. 9. 9. 9. 9. 9.]
[0. 0. 0. 0. 0. 0. 0.]
[5. 5. 5. 5. 5. 5. 5.]
[0. 0. 0. 0. 0. 0. 0.]]
-----------------------------------------------
op_type=MaskedScatterNDOfShape
opset: domain='' version=18
opset: domain='onnx_extended.ortops.optim.cuda' version=1
input: name='shape' type=dtype('int64') shape=['s']
input: name='indices' type=dtype('int64') shape=['i', 'j', 1]
input: name='updates' type=dtype('float32') shape=['i', 'j', 'b']
MaskedScatterNDOfShape[onnx_extended.ortops.optim.cuda](shape, indices, updates, maskedValue=-1, reduction=b'add') -> Y
output: name='Y' type=dtype('float32') shape=['a', 'b']
[[0. 0. 0. 0. 0. 0. 0.]
[9. 9. 9. 9. 9. 9. 9.]
[0. 0. 0. 0. 0. 0. 0.]
[5. 5. 5. 5. 5. 5. 5.]
[0. 0. 0. 0. 0. 0. 0.]]
With onnxruntime
def get_session(model):
import onnxruntime
from onnx_extended.ortops.optim.cuda import get_ort_ext_libs
if "CUDAExecutionProvider" not in onnxruntime.get_available_providers():
return None
opts = onnxruntime.SessionOptions()
opts.register_custom_ops_library(get_ort_ext_libs()[0])
sess = onnxruntime.InferenceSession(
model.SerializeToString(),
opts,
providers=["CUDAExecutionProvider", "CPUExecutionProvider"],
)
return sess
for op_type in ["ScatterND", "ScatterNDOfShape", "MaskedScatterNDOfShape"]:
print("-----------------------------------------------")
print(f"op_type={op_type}")
model = get_model(op_type)
print(onnx_simple_text_plot(model))
sess = get_session(model)
if sess is not None:
got = ref.run(None, feeds)[0]
print(got)
else:
print("onnxruntime is not available.")
if baseline is None:
baseline = got
assert_almost_equal(baseline, got)
-----------------------------------------------
op_type=ScatterND
opset: domain='' version=18
opset: domain='onnx_extended.ortops.optim.cuda' version=1
input: name='shape' type=dtype('int64') shape=['s']
input: name='indices' type=dtype('int64') shape=['i', 'j', 1]
input: name='updates' type=dtype('float32') shape=['i', 'j', 'b']
Constant(value=[-1]) -> mone
Equal(indices, mone) -> eq
ConstantOfShape(shape, value=[0.0]) -> data
Constant(value=[0.0]) -> zero
Where(eq, zero, updates) -> new_updates
ScatterND(data, indices, new_updates, reduction=b'add') -> Y
output: name='Y' type=dtype('float32') shape=['a', 'b']
[[0. 0. 0. 0. 0. 0. 0.]
[9. 9. 9. 9. 9. 9. 9.]
[0. 0. 0. 0. 0. 0. 0.]
[5. 5. 5. 5. 5. 5. 5.]
[0. 0. 0. 0. 0. 0. 0.]]
-----------------------------------------------
op_type=ScatterNDOfShape
opset: domain='' version=18
opset: domain='onnx_extended.ortops.optim.cuda' version=1
input: name='shape' type=dtype('int64') shape=['s']
input: name='indices' type=dtype('int64') shape=['i', 'j', 1]
input: name='updates' type=dtype('float32') shape=['i', 'j', 'b']
Constant(value=[-1]) -> mone
Equal(indices, mone) -> eq
Constant(value=[0.0]) -> zero
Where(eq, zero, updates) -> new_updates
ScatterNDOfShape[onnx_extended.ortops.optim.cuda](shape, indices, new_updates, reduction=b'add', strategy=b'optimize') -> Y
output: name='Y' type=dtype('float32') shape=['a', 'b']
[[0. 0. 0. 0. 0. 0. 0.]
[9. 9. 9. 9. 9. 9. 9.]
[0. 0. 0. 0. 0. 0. 0.]
[5. 5. 5. 5. 5. 5. 5.]
[0. 0. 0. 0. 0. 0. 0.]]
-----------------------------------------------
op_type=MaskedScatterNDOfShape
opset: domain='' version=18
opset: domain='onnx_extended.ortops.optim.cuda' version=1
input: name='shape' type=dtype('int64') shape=['s']
input: name='indices' type=dtype('int64') shape=['i', 'j', 1]
input: name='updates' type=dtype('float32') shape=['i', 'j', 'b']
MaskedScatterNDOfShape[onnx_extended.ortops.optim.cuda](shape, indices, updates, maskedValue=-1, reduction=b'add') -> Y
output: name='Y' type=dtype('float32') shape=['a', 'b']
[[0. 0. 0. 0. 0. 0. 0.]
[9. 9. 9. 9. 9. 9. 9.]
[0. 0. 0. 0. 0. 0. 0.]
[5. 5. 5. 5. 5. 5. 5.]
[0. 0. 0. 0. 0. 0. 0.]]
Benchmark¶
def move_inputs(sess, feeds):
from onnxruntime.capi._pybind_state import (
SessionIOBinding,
OrtDevice as C_OrtDevice,
OrtValue as C_OrtValue,
)
input_names = [i.name for i in sess.get_inputs()]
ort_device = C_OrtDevice(C_OrtDevice.cuda(), C_OrtDevice.default_memory(), 0)
feed_ort_value = [
(name, C_OrtValue.ortvalue_from_numpy(feeds[name], ort_device))
for name in input_names
]
bind = SessionIOBinding(sess._sess)
for name, value in feed_ort_value:
bind.bind_input(
name, ort_device, feeds[name].dtype, value.shape(), value.data_ptr()
)
for o in sess.get_outputs():
bind.bind_output(o.name, ort_device)
return bind, feed_ort_value
def benchmark(sizes, config, itype, times_col: int = 1, times_indices: int = 1):
data = []
for size in tqdm(sizes):
if config == "llama":
# zeros: 32000x4096
# indices: 2x1024x1
# updates: 2x1024x4096
shape = (32000, 4096)
shape_indices = (2, size, 1)
else:
shape = (size, int(size * times_col))
shape_indices = (2, int(size * times_indices), 1)
shape_updates = (2, shape_indices[1], shape[-1])
shape = np.array(shape, dtype=np.int64)
indices = np.array(
[np.random.randint(-1, shape[0]) for _ in range(np.prod(shape_indices))],
dtype=np.int64,
).reshape(shape_indices)
updates = np.random.randn(*shape_updates).astype(
np.float32 if itype == TensorProto.FLOAT else np.float16
)
feeds = dict(shape=shape, indices=indices, updates=updates)
for op_type in ["ScatterND", "ScatterNDOfShape", "MaskedScatterNDOfShape"]:
model = get_model(op_type)
sess = get_session(model)
bind, cuda_feeds = move_inputs(sess, feeds)
begin = time.perf_counter()
for i in range(script_args.warmup):
sess._sess.run_with_iobinding(bind, None)
warmup = time.perf_counter() - begin
times = []
for i in range(script_args.repeat):
begin = time.perf_counter()
# sess.run(None, feeds)
sess._sess.run_with_iobinding(bind, None)
times.append(time.perf_counter() - begin)
npt = np.array(times)
obs = dict(
label=op_type,
warmup=warmup,
time=npt.mean(),
std=npt.std(),
min=npt.min(),
max=npt.max(),
repeat=script_args.repeat,
size=size,
)
data.append(obs)
return data
Benchmark.
sizes=(256, 512, 1024)
0%| | 0/3 [00:00<?, ?it/s]
67%|██████▋ | 2/3 [00:00<00:00, 16.12it/s]
100%|██████████| 3/3 [00:00<00:00, 3.79it/s]
Data¶
label warmup time std min max repeat size
0 ScatterND 0.008493 0.000598 0.000054 0.000556 0.000696 5 256
1 ScatterNDOfShape 0.001895 0.000387 0.000012 0.000373 0.000410 5 256
2 MaskedScatterNDOfShape 0.000768 0.000186 0.000014 0.000174 0.000209 5 256
3 ScatterND 0.003423 0.000675 0.000005 0.000668 0.000680 5 512
4 ScatterNDOfShape 0.003804 0.000811 0.000009 0.000797 0.000822 5 512
Pivot.
if sess is not None:
pivot = df.pivot(index="size", columns="label", values="time")
col = pivot["ScatterND"].copy()
print("Time")
print(pivot)
for c in pivot.columns:
pivot[c] = col / pivot[c]
print("Speed up compare to the onnx standaed.")
print(pivot)
ax = pivot.plot(
logx=True,
logy=True,
title=f"Optimization for ScatterND on CUDA\nitype={itype}",
)
ax.get_figure().savefig("plot_op_scatternd_mask_cuda.png")
Time
label MaskedScatterNDOfShape ScatterND ScatterNDOfShape
size
256 0.000186 0.000598 0.000387
512 0.000329 0.000675 0.000811
1024 0.000748 0.001529 0.001714
Speed up compare to the onnx standaed.
label MaskedScatterNDOfShape ScatterND ScatterNDOfShape
size
256 3.216077 1.0 1.542634
512 2.051340 1.0 0.832626
1024 2.044650 1.0 0.892008
It requires more test to determine when it is better. But the fused operator with mask seems more efficient in any case compare to the fused operator without mask. For big sizes, ScatterND seems very slow as it is using atomic addition.
Total running time of the script: (0 minutes 1.156 seconds)