[docs]defget_ort_ext_libs()->List[str]:""" Returns the list of libraries implementing new simple :epkg:`onnxruntime` kernels implemented for the :epkg:`CPUExecutionProvider`. """return_get_ort_ext_libs(os.path.dirname(__file__))
defdocumentation()->List[str]:""" Returns a list of rst string documenting every implemented kernels in this subfolder. """returnlist(map(textwrap.dedent,[""" onnx_extended.ortops.option.cpu.DenseToSparse ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Converts a dense tensor into a sparse one. All null values are skipped. **Provider** CPUExecutionProvider **Inputs** * X (T): 2D tensor **Outputs** * Y (T): 1D tensor **Constraints** * T: float """,""" onnx_extended.ortops.option.cpu.SparseToDense ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Converts a spadenserse tensor into a sparse one. All missing values are replaced by 0. **Provider** CPUExecutionProvider **Inputs** * X (T): 1D tensor **Outputs** * Y (T): 2D tensor **Constraints** * T: float """,""" onnx_extended.ortops.option.cpu.TfIdfVectorizer ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Implements TfIdfVectorizer. **Provider** CPUExecutionProvider **Attributes** See `onnx TfIdfVectorizer <https://onnx.ai/onnx/operators/onnx_aionnxml_TfIdfVectorizer.html>`_. The implementation does not support string labels. It is adding one attribute. * sparse: INT64, default is 0, the output and the computation are sparse, see **Inputs** * X (T1): tensor of type T1 **Outputs** * label (T3): labels of type T3 * Y (T2): probabilities of type T2 **Constraints** * T1: float, double * T2: float, double * T3: int64 """,""" onnx_extended.ortops.option.cpu.TreeEnsembleClassifier ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ It does the sum of two tensors. **Provider** CPUExecutionProvider **Attributes** See `onnx TreeEnsembleClassifier <https://onnx.ai/onnx/operators/onnx_aionnxml_TreeEnsembleClassifier.html>`_. The implementation does not support string labels. The only change: nodes_modes: string contenation with `,` **Inputs** * X (T1): tensor of type T1 **Outputs** * label (T3): labels of type T3 * Y (T2): probabilities of type T2 **Constraints** * T1: float, double * T2: float, double * T3: int64 """,""" onnx_extended.ortops.option.cpu.TreeEnsembleClassifierSparse ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ It does the sum of two tensors. **Provider** CPUExecutionProvider **Attributes** See `onnx TreeEnsembleClassifier <https://onnx.ai/onnx/operators/onnx_aionnxml_TreeEnsembleClassifier.html>`_. The implementation does not support string labels. The only change: nodes_modes: string contenation with `,` **Inputs** * X (T1): tensor of type T1 (sparse) **Outputs** * label (T3): labels of type T3 * Y (T2): probabilities of type T2 **Constraints** * T1: float, double * T2: float, double * T3: int64 """,""" onnx_extended.ortops.option.cpu.TreeEnsembleRegressor ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ It does the sum of two tensors. **Provider** CPUExecutionProvider **Attributes** See `onnx TreeEnsembleRegressor <https://onnx.ai/onnx/operators/onnx_aionnxml_TreeEnsembleRegressor.html>`_. The only change: nodes_modes: string contenation with `,` **Inputs** * X (T1): tensor of type T1 **Outputs** * Y (T2): prediction of type T2 **Constraints** * T1: float, double * T2: float, double """,""" onnx_extended.ortops.option.cpu.TreeEnsembleRegressorSparse ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ It does the sum of two tensors. **Provider** CPUExecutionProvider **Attributes** See `onnx TreeEnsembleRegressor <https://onnx.ai/onnx/operators/onnx_aionnxml_TreeEnsembleRegressor.html>`_. The only change: nodes_modes: string contenation with `,` **Inputs** * X (T1): tensor of type T1 (sparse) **Outputs** * Y (T2): prediction of type T2 **Constraints** * T1: float, double * T2: float, double """,],))