Source code for onnx_extended.tools.einsum.einsum_impl_classes

from typing import Any, Dict, Iterable, List, Optional, Tuple, Union
import numpy
from onnx import helper, numpy_helper, ModelProto, NodeProto, TensorProto
from .einsum_config import (
    DEFAULT_IR_VERSION,
    DEFAULT_OPSET,
    guess_proto_dtype,
)
from .einsum_impl_ext import (
    numpy_extended_dot,
    numpy_diagonal,
    _numpy_extended_dot_equation,
    numpy_extended_dot_python,
    numpy_extended_dot_matrix,
)
from .blas_lapack import gemm_dot


def single_axes(axes: Tuple[int, ...]) -> Optional[List[int]]:
    """
    *axes* contains positive values, then it is the position
    of this axis in the original matrix, otherwise it is -1
    meaning this axis is an added single dimension to align
    all the dimensions based on the einsum equation.

    :param axes: axes described above
    :return: list of integer in set `{1, 2}`, 1 for
        a single axis, 2 otherwise
    """
    if axes is None:
        return axes
    return [(1 if a == -1 else 2) for a in axes]


[docs] class EinsumSubOp: """ Defines a sub operation used in Einsum decomposition. :param full_dim: dimension of the result :param name: name (reshape, transpose, reduce_sum, matmul, id, squeeze, diagonal, mul, batch_dot) :param inputs: inputs :param kwargs: arguments Operator suffixed by `_mm` (*transpose_mm*, *reduce_sum_mm*) are equivalent to the same operator without the suffix but takes two inputs and only changes the first one. Attributes `_info` summarizes the known information about dimensions. Many of them are empty because inserted. Value `1` means it was the case, `2` means it is a plain dimension. """ _allowed = { "expand_dims", "transpose", "reduce_sum", "matmul", "id", "squeeze", "diagonal", "mul", "batch_dot", "transpose_mm", "reduce_sum_mm", } def __init__( self, full_dim: int, name: str, *inputs: List["EinsumSubOp"], **kwargs: Dict[str, Any], ): self.full_dim = full_dim self.name = name self.inputs = inputs self.kwargs = kwargs self._info: Dict[str, Any] = {} assert ( name in EinsumSubOp._allowed ), f"Unexpected name {name!r}. It should be in {EinsumSubOp._allowed!r}." assert len(inputs) in ( 1, 2, ), f"Inputs must contains 1 or 2 inputs not {len(inputs)}." if name == "matmul" and len(inputs) != 2: raise RuntimeError( "Inputs must contains 2 inputs not %d for operator 'matmul'." "" % len(inputs) ) for i, inp in enumerate(inputs): assert isinstance( inp, (int, EinsumSubOp) ), "Input %d has type %r, int or EinsumSubOp is expected." "" % ( i, type(inp), ) self._check_() def _check_(self): if self.name == "transpose": self._check_arg_("perm", tuple) perm = self.kwargs["perm"] assert len(perm) == len( set(perm) ), f"perm has duplicated values {perm!r} (name={self.name!r})." assert list(perm) != list( range(len(perm)) ), f"Transpose = identity perm={perm}. It must be removed." elif self.name == "matmul": self._check_arg_("axes", tuple) self._check_arg_("left", tuple) self._check_arg_("right", tuple) axes = self.kwargs["axes"] left = self.kwargs["left"] right = self.kwargs["right"] for a in axes: if a in left and a in right: raise RuntimeError( "One axis belongs to every set (axes, left, right). " "axes=%r, left=%r, right=%r." % (axes, left, right) ) def __repr__(self) -> str: inps = ", ".join(map(str, self.inputs)) kw = ", ".join(f"{k}={w!r}" for k, w in self.kwargs.items()) m = f"{self.__class__.__name__}({self.name!r}, {inps}, {kw})" return m
[docs] def dot_label(self) -> Optional[str]: """ Displays some informations useful to understand the operator. """ if self.name == "matmul": ndim = self.kwargs["ndim"] axes = self.kwargs["axes"] left = self.kwargs["left"] right = self.kwargs["right"] eq = _numpy_extended_dot_equation(ndim, ndim, axes, left, right) eq = eq.replace(">", "\\\\=") return "~" + eq return None
def _check_arg_(self, name: str, typ: type, empty: bool = False): assert ( name in self.kwargs ), f"Parameter {name!r} not found for operator {self.name!r}." if empty and self.kwargs[name] is None: return assert isinstance( self.kwargs[name], typ ), "Unexpected type %r for parameter %r and parameter %r." "" % ( type(self.kwargs[name]), name, self.name, ) def _check_row_( self, row: numpy.ndarray, inp: bool = False, verbose: bool = False, ): """ Checks input or output is valid. """ if verbose: if inp: print("<<" if inp else ">>", self.name, row, self.kwargs) else: print("<<" if inp else ">>", self.name, row) def _compute_output_row_id( self, row: numpy.ndarray, row2: numpy.ndarray, ab: bool = False, verbose: bool = False, ): assert not ab, "ab option not allowed." self._check_row_(row, True, verbose=verbose) row[:] = row2[:] self._check_row_(row, verbose=verbose) def _compute_output_row_transpose( self, row: numpy.ndarray, row2: Optional[numpy.ndarray] = None, ab: bool = False, verbose: bool = False, ): if ab: assert row2 is not None self._compute_output_row_transpose(row2, verbose=verbose) return self._check_row_(row, True, verbose=verbose) self._check_arg_("perm", tuple) assert len(self.kwargs["perm"]) == len( row ), f"Unexpected permutation {self.kwargs['perm']!r} (row={row!r})." perm = self.kwargs["perm"] cpy = row.copy() for i, p in enumerate(perm): row[i] = cpy[p] self._check_row_(row, verbose=verbose) def _compute_output_row_transpose_mm( self, row: numpy.ndarray, row2: Optional[numpy.ndarray] = None, ab: bool = False, verbose: bool = False, ): assert ab, "ab must be True." self._check_row_(row, True, verbose=verbose) assert row2 is not None, "transpose_mm expects a second input." self._compute_output_row_transpose(row, row2=None, verbose=verbose) def _compute_output_row_expand_dims( self, row: numpy.ndarray, row2: Optional[numpy.ndarray] = None, ab: bool = False, verbose: bool = False, ): assert not ab, "ab option not allowed." self._check_row_(row, True, verbose=verbose) self._check_arg_("axes", tuple) axes = self.kwargs["axes"] for axis in axes: assert isinstance(axis, tuple), ( "Parameter axes of expand_dims should be a tuple of " "tuple, axes=%r." % axes ) assert row[axis[1]] == -1, "Dimension should be -1 in row %r axis=%r." % ( row, self.kwargs["axis"], ) self._check_row_(row, verbose=verbose) def _compute_output_row_reduce_sum( self, row: numpy.ndarray, row2: Optional[numpy.ndarray] = None, ab: bool = False, verbose: bool = False, ): assert not ab, "ab option not allowed." self._check_row_(row, True, verbose=verbose) self._check_arg_("axes", tuple) for a in self.kwargs["axes"]: row[a] = -1 self._check_row_(row, verbose=verbose) def _compute_output_row_reduce_sum_mm( self, row: numpy.ndarray, row2: Optional[numpy.ndarray] = None, ab: bool = False, verbose: bool = False, ): assert ab, "ab must be true." self._check_row_(row2, True, verbose=verbose) assert row2 is not None, "reduce_sum_mm expects a second input." self._compute_output_row_reduce_sum(row, row2=None, verbose=verbose) def _compute_output_row_squeeze( self, row: numpy.ndarray, row2: Optional[numpy.ndarray] = None, ab: bool = False, verbose: bool = False, ): assert not ab, "ab option not allowed." self._check_row_(row, True, verbose=verbose) self._check_arg_("axes", tuple) for a in self.kwargs["axes"]: row[a] = -1 self._check_row_(row, verbose=verbose) def _compute_output_row_diagonal( self, row: numpy.ndarray, row2: Optional[numpy.ndarray] = None, ab: bool = False, verbose: bool = False, ): assert not ab, "ab option not allowed." self._check_row_(row, True, verbose=verbose) self._check_arg_("diag", list) to_remove = [] for choice, choices in self.kwargs["diag"]: for ch in choices: if ch != choice: to_remove.append(ch) for i in range(len(row)): if row[i] in choices: if row[i] != choice: row[i] = choice to_remove.sort() for r in to_remove: for i in range(len(row)): assert ( row[i] != r ), "Unexpected result r=%r row=%r to_remove=%r " "diag=%r." % ( r, row, to_remove, self.kwargs["diag"], ) if row[i] > r: row[i] -= 1 self._check_row_(row, verbose=verbose) def _compute_output_row_matmul( self, row: numpy.ndarray, row2: Optional[numpy.ndarray] = None, ab: bool = False, verbose: bool = False, ): assert ab, "ab must be True." assert row2 is not None, "row2 must be defined" self._check_row_(row, True, verbose=verbose) self._check_row_(row2, True, verbose=verbose) self._check_arg_("axes", tuple) self._check_arg_("left", tuple) self._check_arg_("right", tuple) self._check_arg_("ndim", int) assert row2 is not None, "matmul expects two inputs." if verbose: ndim = self.kwargs["ndim"] axes = self.kwargs["axes"] left = self.kwargs["left"] right = self.kwargs["right"] print( " MATMUL %r @ %r axes=%r left=%r right=%r - eq=%s" % ( row, row2, axes, left, right, _numpy_extended_dot_equation(ndim, ndim, axes, left, right), ) ) row2[:] = numpy.maximum(row, row2) for a in self.kwargs["axes"]: if a not in self.kwargs["right"]: row2[a] = -1 self._check_row_(row2, verbose=verbose) def _compute_output_row_batch_dot( self, row: numpy.ndarray, row2: Optional[numpy.ndarray] = None, ab: bool = False, verbose: bool = False, ): assert ab, "ab must be True." self._check_row_(row, True, verbose=verbose) self._check_row_(row2, True, verbose=verbose) self._check_arg_("batch_axes", tuple) self._check_arg_("keep_axes", tuple, empty=True) self._check_arg_("sum_axes", tuple) self._check_arg_("left", tuple) self._check_arg_("right", tuple) self._check_arg_("ndim", int) assert row2 is not None, "batch_dot expects two inputs." if verbose: batch_axes = self.kwargs["batch_axes"] keep_axes = self.kwargs["keep_axes"] sum_axes = self.kwargs["sum_axes"] left = self.kwargs["left"] right = self.kwargs["right"] ndim = self.kwargs["ndim"] print( " BATCH_DOT batch_axes=%r keep_axes=%r sum_axes=%r " "left=%r right=%r eq=%r" % ( batch_axes, keep_axes, sum_axes, left, right, _numpy_extended_dot_equation(ndim, ndim, sum_axes, left, right), ) ) row2[:] = numpy.maximum(row, row2) for a in self.kwargs["sum_axes"]: if a not in self.kwargs["right"]: row2[a] = -1 self._check_row_(row2, verbose=verbose) def _compute_output_row_mul( self, row: numpy.ndarray, row2: Optional[numpy.ndarray] = None, ab: bool = False, verbose: bool = False, ): assert ab, "ab must be True." self._check_row_(row, True, verbose=verbose) self._check_row_(row2, True, verbose=verbose) assert row2 is not None, "mul expects two inputs." if verbose: print(f" MUL {row!r} @ {row2!r}") row2[:] = numpy.maximum(row, row2) self._check_row_(row2, verbose=verbose)
[docs] def compute_output_row( self, row: numpy.ndarray, row2: Optional[numpy.ndarray] = None, ab: bool = False, verbose: bool = False, ): """ Updates *row* based on the operator. """ method_name = f"_compute_output_row_{self.name}" meth = getattr(self, method_name, None) if meth is None: raise NotImplementedError( f"compute_output_row not implemented for {self.name!r}." ) if verbose and ab: print(" -- called as a binary operator") self.add_info(i_row=single_axes(row), i_row2=single_axes(row2)) meth(row, row2=row2, ab=ab, verbose=verbose) self.add_info(o_row=single_axes(row), o_row2=single_axes(row2))
[docs] def add_info(self, **kwargs: Dict[str, Any]): """ Adds information to the node. :param kwargs: dictionary """ for k, v in kwargs.items(): assert ( k not in self._info ), f"Key {k!r} already added (operator {self.name!r})." self._info[k] = v
def _check_inputs_(self, n_expected: int, check_dim: bool = False): assert ( len(self.inputs) == n_expected ), "Number of inputs must be %d not %d for operator %r." "" % ( n_expected, len(self.inputs), self.name, ) def _check_shape_(self, m: numpy.ndarray): assert ( len(m.shape) == self.full_dim ), "Number of dimensions %r is different from expected value " "%d." % ( m.shape, self.full_dim, ) def _get_data(self, data: Dict[int, Any], key: Union[int, "EinsumSubOp"]) -> Any: if isinstance(key, int): assert key in data, "Unable to find key %d in %r." % ( key, list(sorted(data)), ) return data[key] if isinstance(key, EinsumSubOp): assert id(key) in data, "Unable to find key %d in %r." % ( id(key), list(sorted(data)), ) return data[id(key)] raise TypeError(f"Unexpected input type {type(key)!r}.") def _apply_id( self, data: Dict[int, Any], verbose: bool = False, **kwargs: Dict[str, Any] ) -> Any: self._check_inputs_(1) inp = self.inputs[0] output = self._get_data(data, inp) return output def _apply_diagonal( self, data: Dict[int, Any], verbose: bool = False, **kwargs: Dict[str, Any] ) -> Any: self._check_inputs_(1) inp = self.inputs[0] m = self._get_data(data, inp) if verbose: print(f"- {self.name}, shape={m.shape!r} diag={self.kwargs['diag']!r}") diag = self.kwargs["diag"] if len(diag) != 1: raise NotImplementedError( f"Not implemented with more than one duplicated indice {diag!r}." ) diag0 = diag[0] output = numpy_diagonal(m, axis=diag0[0], axes=diag0[1]) return output def _apply_expand_dims( self, data: Dict[int, Any], verbose: bool = False, **kwargs: Dict[str, Any] ) -> Any: self._check_inputs_(1) inp = self.inputs[0] m = self._get_data(data, inp) if verbose: print(f"- {self.name}, shape={m.shape!r} axes={self.kwargs['axes']!r}") output = m for axis in reversed(self.kwargs["axes"]): output = numpy.expand_dims(output, axis[0]) return output def _apply_transpose( self, data: Dict[int, Any], verbose: bool = False, **kwargs: Dict[str, Any] ) -> Any: self._check_inputs_(1, True) inp = self.inputs[0] m = self._get_data(data, inp) self._check_shape_(m) if verbose: print(f"- {self.name}, shape={m.shape!r} perm={self.kwargs['perm']!r}") output = numpy.transpose(m, self.kwargs["perm"]) self._check_shape_(output) return output def _apply_transpose_mm( self, data: Dict[int, Any], verbose: bool = False, **kwargs: Dict[str, Any] ) -> Any: self._check_inputs_(2, True) inp = self.inputs[0] m = self._get_data(data, inp) self._check_shape_(m) if verbose: print(f"- {self.name}, shape={m.shape!r} perm={self.kwargs['perm']!r}") output = numpy.transpose(m, self.kwargs["perm"]) self._check_shape_(output) return output def _apply_matmul( self, data: Dict[int, Any], verbose: bool = False, **kwargs: Dict[str, Any] ) -> Any: self._check_inputs_(2) inp1 = self.inputs[0] inp2 = self.inputs[1] m1 = self._get_data(data, inp1) m2 = self._get_data(data, inp2) self._check_shape_(m1) self._check_shape_(m2) axes = self.kwargs["axes"] left = self.kwargs["left"] right = self.kwargs["right"] if verbose: print( "- %s, shapes=%r @ %r axes=%r left=%r right=%r" % (self.name, m1.shape, m2.shape, axes, left, right) ) impl = kwargs.get("matmul_impl", None) if impl == "pyf": output = numpy_extended_dot_matrix( m1, m2, axes, left, right, verbose=verbose ) elif impl == "py": output = numpy_extended_dot_python( m1, m2, axes, left, right, verbose=verbose ) elif impl is None: output = numpy_extended_dot(m1, m2, axes, left, right, verbose=verbose) else: raise ValueError(f"Unknown implementation of numpy_extended_dot ({impl}).") self._check_shape_(output) return output def _apply_mul( self, data: Dict[int, Any], verbose: bool = False, **kwargs: Dict[str, Any] ) -> Any: self._check_inputs_(2) inp1 = self.inputs[0] inp2 = self.inputs[1] m1 = self._get_data(data, inp1) m2 = self._get_data(data, inp2) self._check_shape_(m1) self._check_shape_(m2) if verbose: print(f"- {self.name}, shapes={m1.shape!r} @ {m2.shape!r}") output = m1 * m2 self._check_shape_(output) return output def _apply_batch_dot( self, data: Dict[int, Any], verbose: bool = False, **kwargs: Dict[str, Any] ) -> Any: self._check_inputs_(2) inp1 = self.inputs[0] inp2 = self.inputs[1] m1 = self._get_data(data, inp1) m2 = self._get_data(data, inp2) self._check_shape_(m1) self._check_shape_(m2) batch_axes = self.kwargs["batch_axes"] keep_axes = self.kwargs["keep_axes"] sum_axes = self.kwargs["sum_axes"] left = self.kwargs["left"] right = self.kwargs["right"] if verbose: print( "- %s, shapes=%r @ %r batch_axes=%r keep_axes=%r " "sum_axes=%r" % (self.name, m1.shape, m2.shape, batch_axes, keep_axes, sum_axes) ) assert len(m1.shape) == len(m2.shape), ( "batch_dot only work with two tensors with the same number " "of dimensions not %r @ %r." % (m1.shape, m2.shape) ) dim0 = int(numpy.prod([m1.shape[i] for i in batch_axes])) dim0b = int(numpy.prod([m2.shape[i] for i in batch_axes])) dimb = int( -1 if keep_axes is None else numpy.prod([m1.shape[i] for i in keep_axes]) ) dim1 = int(numpy.prod([m1.shape[i] for i in sum_axes])) dim2 = int(numpy.prod([m2.shape[i] for i in sum_axes])) if verbose: print(f"- {self.name}, reshape={m1.shape!r} into {dim0, dimb, dim1!r}") print(f"- {self.name}, reshape={m2.shape!r} into {dim0b, dimb, dim2!r}") m1sh = m1.reshape((dim0, dimb, dim1)) m2sh = m2.reshape((dim0b, dimb, dim2)) batch_kind = self.get_dot_kind() if batch_kind in ("11", "N1", "N1"): m1sh = m1sh.reshape((-1, m1sh.shape[-1])) m2sh = m2sh.reshape((-1, m2sh.shape[-1])) if verbose: print( "- %s, use gemm with shape %r, %r" % (self.name, m1sh.shape, m2sh.shape) ) dot = gemm_dot(m1sh, m2sh, False, True) else: dot = m1sh @ numpy.transpose(m2sh, (0, 2, 1)) # new shape new_shape = ( [max(m1.shape[i], m2.shape[i]) for i in batch_axes] + [m1.shape[i] for i in left if i not in batch_axes] + [m2.shape[i] for i in right if i not in batch_axes] ) while len(new_shape) < len(m1.shape): new_shape.append(1) if verbose: taken = set(batch_axes) | set(sum_axes) ax = [i for i in range(len(m1.shape)) if i not in taken] print( "- %s, shapes=%r @ %r -> %r" % (self.name, m1sh.shape, m2sh.shape, dot.shape) ) print( "- %s, batch_axes=%r ax=%r new_shape=%r left=%r right=%r" % (self.name, batch_axes, ax, new_shape, left, right) ) output = dot.reshape(tuple(new_shape)) self._check_shape_(output) return output def _apply_reduce_sum( self, data: Dict[int, Any], verbose: bool = False, **kwargs: Dict[str, Any] ) -> Any: self._check_inputs_(1) inp = self.inputs[0] m = self._get_data(data, inp) self._check_shape_(m) axes = self.kwargs["axes"] if verbose: print(f"- {self.name}, shape={m.shape!r} axes={self.kwargs['axes']!r}") output = numpy.sum(m, axis=axes, keepdims=True) self._check_shape_(output) return output def _apply_reduce_sum_mm( self, data: Dict[int, Any], verbose: bool = False, **kwargs: Dict[str, Any] ) -> Any: self._check_inputs_(2, True) inp = self.inputs[0] m = self._get_data(data, inp) self._check_shape_(m) if verbose: print(f"- {self.name}, shape={m.shape!r} axes={self.kwargs['axes']!r}") output = numpy.sum(m, self.kwargs["axes"]) self._check_shape_(output) return output def _apply_squeeze( self, data: Dict[int, Any], verbose: bool = False, **kwargs: Dict[str, Any] ) -> Any: self._check_inputs_(1) inp = self.inputs[0] m = self._get_data(data, inp) axes = self.kwargs["axes"] if verbose: print(f"- {self.name}, shape={m.shape!r} axes={self.kwargs['axes']!r}") output = m for a in axes[::-1]: output = numpy.squeeze(output, axis=a) return output
[docs] def apply( self, data: Dict[int, Any], verbose: bool = False, **kwargs: Dict[str, Any] ) -> Any: """ Applies one operator on the data. :param data: dictionary storing the results :param verbose: prints out intermediate results :param kwargs: additional parameters, see methods `_apply*` :return: output Known additional paramaters: * 'matmul_impl': if None calls :func:`numpy.einsum` through :func:`numpy_extended_dot <onnx_extended.tools.einsum.einsum_impl_ext.numpy_extended_dot>` (default) or 'py' to call :func:`numpy_extended_dot_python <onnx_extended.tools.einsum.einsum_impl_ext.numpy_extended_dot_python>` instead. """ if verbose: print() print( "apply %r (%s)." % (self.name, ", ".join(map(lambda s: str(id(s)), self.inputs))) ) method_name = f"_apply_{self.name}" meth = getattr(self, method_name, None) if meth is None: raise NotImplementedError(f"apply not implemented for {self.name!r}.") output = meth(data, verbose, **kwargs) data[id(self)] = output if verbose: print("+ %s, shape=%r -- %d" % (self.name, output.shape, id(self))) return output
def _onnx_name(self) -> str: return "einsum%d_%s" % (id(self), self.name[:2]) def _check_onnx_opset_(self, opset: Optional[int], limit: int): if opset is not None and opset < limit: raise RuntimeError( f"Opset ({opset!r}) must be >= {limit!r} for operator {self.name!r}." ) def _to_onnx_id( self, names: List[str], opset: Optional[int], verbose: bool = False, **kwargs: Dict[str, Any], ) -> Iterable[NodeProto]: self._check_inputs_(1) inp = self.inputs[0] name = self._get_data(names, inp) yield helper.make_node("Identity", [name], [self._onnx_name()]) def _to_onnx_expand_dims( self, names: List[str], opset: Optional[int], verbose: bool = False, **kwargs: Dict[str, Any], ) -> Iterable[NodeProto]: self._check_inputs_(1) self._check_onnx_opset_(opset, 11) inp = self.inputs[0] name = self._get_data(names, inp) axes = self.kwargs["axes"] name_axes = name + "_axes" yield numpy_helper.from_array( numpy.array([a[1] for a in axes], dtype=numpy.int64), name=name_axes ) s_axes = "".join(map(str, [a[1] for a in axes])) yield helper.make_node( "Unsqueeze", [name, name_axes], [self._onnx_name()], name="Unsqueeze%s_%d" % (s_axes, id(self)), ) def _to_onnx_squeeze( self, names: List[str], opset: Optional[int], verbose: bool = False, **kwargs: Dict[str, Any], ) -> Iterable[NodeProto]: self._check_inputs_(1) self._check_onnx_opset_(opset, 11) inp = self.inputs[0] name = self._get_data(names, inp) axes = self.kwargs["axes"] name_axes = name + "_axes" yield numpy_helper.from_array( numpy.array(axes, dtype=numpy.int64), name=name_axes ) s_axes = "".join(map(str, axes)) yield helper.make_node( "Squeeze", [name, name_axes], [self._onnx_name()], name="Squeeze%s_%d" % (s_axes, id(self)), ) def _to_onnx_transpose( self, names: List[str], opset: Optional[int], verbose: bool = False, **kwargs: Dict[str, Any], ) -> Iterable[NodeProto]: self._check_inputs_(1) inp = self.inputs[0] name = self._get_data(names, inp) perm = self.kwargs["perm"] s_perm = "".join(map(str, perm)) yield helper.make_node( "Transpose", [name], [self._onnx_name()], perm=perm, name="Transpose%s_%d" % (s_perm, id(self)), ) def _to_onnx_reduce_sum( self, names: List[str], opset: Optional[int], verbose: bool = False, **kwargs: Dict[str, Any], ) -> Iterable[NodeProto]: self._check_inputs_(1) self._check_onnx_opset_(opset, 11) inp = self.inputs[0] name = self._get_data(names, inp) axes = self.kwargs["axes"] name_axes = self._onnx_name() + "_axes" yield numpy_helper.from_array( numpy.array(axes, dtype=numpy.int64), name=name_axes ) s_axes = "".join(map(str, axes)) yield helper.make_node( "ReduceSum", [name, name_axes], [self._onnx_name()], keepdims=1, name="ReduceSum%s_%d" % (s_axes, id(self)), ) def _to_onnx_mul( self, data: List[Any], verbose: bool = False, **kwargs: Dict[str, Any] ) -> Iterable[NodeProto]: self._check_inputs_(2) inp1 = self.inputs[0] inp2 = self.inputs[1] m1 = self._get_data(data, inp1) m2 = self._get_data(data, inp2) yield helper.make_node("Mul", [m1, m2], [self._onnx_name()]) def _to_onnx_batch_dot( self, names: List[str], opset: Optional[int], verbose: bool = False, **kwargs: Dict[str, Any], ) -> Iterable[NodeProto]: self._check_inputs_(2) self._check_onnx_opset_(opset, 13) inp1, inp2 = self.inputs[:2] name1 = self._get_data(names, inp1) name2 = self._get_data(names, inp2) batch_axes = self.kwargs["batch_axes"] keep_axes = self.kwargs["keep_axes"] sum_axes = self.kwargs["sum_axes"] left = self.kwargs["left"] right = self.kwargs["right"] root = self._onnx_name() def return_name_one(): name_one = root + "_1" return name_one, numpy_helper.from_array( numpy.array([1], dtype=numpy.int64), name=name_one ) name_one = None name_shape1 = root + "_shape1" name_shape2 = root + "_shape2" concat_left = [] concat_right = [] yield helper.make_node("Shape", [name1], [name_shape1]) yield helper.make_node("Shape", [name2], [name_shape2]) if len(batch_axes) > 0: name_batch_axes = root + "_batch_axes" yield numpy_helper.from_array( numpy.array(batch_axes, dtype=numpy.int64), name=name_batch_axes ) if len(sum_axes) > 0: name_sum_axes = root + "_sum_axes" yield numpy_helper.from_array( numpy.array(sum_axes, dtype=numpy.int64), name=name_sum_axes ) # dim0 = int(numpy.prod([m1.shape[i] for i in batch_axes])) # dim0b = int(numpy.prod([m2.shape[i] for i in batch_axes])) if len(batch_axes) > 1: name_dim0 = root + "_dim0" name_dim0b = root + "_dim0b" name_dim0g = name_dim0 + "g" name_dim0bg = name_dim0b + "g" concat_left.append(name_dim0) concat_right.append(name_dim0b) yield helper.make_node( "Gather", [name_shape1, name_batch_axes], [name_dim0g] ) yield helper.make_node( "Gather", [name_shape2, name_batch_axes], [name_dim0bg] ) yield helper.make_node("ReduceProd", [name_dim0g], [name_dim0], keepdims=1) yield helper.make_node( "ReduceProd", [name_dim0bg], [name_dim0b], keepdims=1 ) elif len(batch_axes) == 1: name_dim0g = root + "_dim0g" name_dim0bg = root + "_dim0bg" name_dim0 = name_dim0g name_dim0b = name_dim0bg concat_left.append(name_dim0) concat_right.append(name_dim0b) yield helper.make_node( "Gather", [name_shape1, name_batch_axes], [name_dim0g] ) yield helper.make_node( "Gather", [name_shape2, name_batch_axes], [name_dim0bg] ) else: if name_one is None: name_one, cst_init = return_name_one() yield cst_init name_dim0 = name_one name_dim0b = name_one concat_left.append(name_dim0) concat_right.append(name_dim0b) # dimb = int(-1 if keep_axes is None else numpy.prod( # [m1.shape[i] for i in keep_axes])) if keep_axes in (-1, None) or len(keep_axes) == 0: name_dimb = root + "__1" concat_left.append(name_dimb) concat_right.append(name_dimb) yield numpy_helper.from_array( numpy.array([-1], dtype=numpy.int64), name=name_dimb ) elif len(keep_axes) == 1: name_keep_axes = root + "_keep_axes" name_dimb = root + "_dimb" name_dimbg = name_dimb concat_left.append(name_dimb) concat_right.append(name_dimb) yield numpy_helper.from_array( numpy.array(keep_axes, dtype=numpy.int64), name=name_keep_axes ) yield helper.make_node( "Gather", [name_shape1, name_keep_axes], [name_dimbg] ) else: name_keep_axes = root + "_keep_axes" name_dimb = root + "_dimb" name_dimbg = name_dimb + "g" concat_left.append(name_dimb) concat_right.append(name_dimb) yield numpy_helper.from_array( numpy.array(keep_axes, dtype=numpy.int64), name=name_keep_axes ) yield helper.make_node( "Gather", [name_shape1, name_keep_axes], [name_dimbg] ) yield helper.make_node("ReduceProd", [name_dimbg], [name_dimb], keepdims=1) # dim1 = int(numpy.prod([m1.shape[i] for i in sum_axes])) # dim2 = int(numpy.prod([m2.shape[i] for i in sum_axes])) if len(sum_axes) == 0: if name_one is None: name_one, cst_init = return_name_one() yield cst_init name_dim1 = name_one name_dim2 = name_one concat_left.append(name_dim1) concat_right.append(name_dim2) elif len(sum_axes) == 1: name_dim1 = root + "_dim1" name_dim2 = root + "_dim2" name_dim1g = name_dim1 name_dim2g = name_dim2 concat_left.append(name_dim1) concat_right.append(name_dim2) yield helper.make_node("Gather", [name_shape1, name_sum_axes], [name_dim1g]) yield helper.make_node("Gather", [name_shape2, name_sum_axes], [name_dim2g]) else: name_dim1 = root + "_dim1" name_dim2 = root + "_dim2" name_dim1g = name_dim1 + "g" name_dim2g = name_dim2 + "g" concat_left.append(name_dim1) concat_right.append(name_dim2) yield helper.make_node("Gather", [name_shape1, name_sum_axes], [name_dim1g]) yield helper.make_node("Gather", [name_shape2, name_sum_axes], [name_dim2g]) yield helper.make_node("ReduceProd", [name_dim1g], [name_dim1], keepdims=1) yield helper.make_node("ReduceProd", [name_dim2g], [name_dim2], keepdims=1) batch_kind = self.get_dot_kind() if batch_kind in ("11", "N1", "N1"): # *shape1, *shape2 name_minus_one = root + "__01" yield numpy_helper.from_array( numpy.array([-1], dtype=numpy.int64), name=name_minus_one ) name_agg_shape1_2 = root + f"_resh1_{batch_kind}" name_agg_shape2_2 = root + f"_resh2_{batch_kind}" yield helper.make_node( "Concat", [name_minus_one, name_dim1], [name_agg_shape1_2], axis=0 ) yield helper.make_node( "Concat", [name_minus_one, name_dim2], [name_agg_shape2_2], axis=0 ) # m1sh = m1.reshape((-1, dim1)) # m2sh = m2.reshape((-1, dim2)) name_agg1_2 = root + "_aresh1" name_agg2_2 = root + "_aresh2" yield helper.make_node("Reshape", [name1, name_agg_shape1_2], [name_agg1_2]) yield helper.make_node("Reshape", [name2, name_agg_shape2_2], [name_agg2_2]) # dot = gemm(m1sh, m2sh, False, True) name_dot = root + "_gemm" yield helper.make_node( "Gemm", [name_agg1_2, name_agg2_2], [name_dot], alpha=1.0, beta=0.0, transA=0, transB=1, ) else: # *shape1, *shape2 name_agg_shape1 = root + "_resh1" name_agg_shape2 = root + "_resh2" yield helper.make_node("Concat", concat_left, [name_agg_shape1], axis=0) yield helper.make_node("Concat", concat_right, [name_agg_shape2], axis=0) # m1sh = m1.reshape((dim0, dimb, dim1)) # m2sh = m2.reshape((dim0b, dimb, dim2)) name_agg1 = root + "_aresh1" name_agg2 = root + "_aresh2" yield helper.make_node("Reshape", [name1, name_agg_shape1], [name_agg1]) yield helper.make_node("Reshape", [name2, name_agg_shape2], [name_agg2]) # dot = m1sh @ numpy.transpose(m2sh, (0, 2, 1)) name_agg2_tr = root + "_aresh2_tr" yield helper.make_node( "Transpose", [name_agg2], [name_agg2_tr], perm=[0, 2, 1], name=f"Transpose021_{id(self)}", ) name_dot = root + "_dot" yield helper.make_node("MatMul", [name_agg1, name_agg2_tr], [name_dot]) # new_shape = ([max(m1.shape[i], m2.shape[i]) for i in batch_axes] + # [m1.shape[i] for i in left if i not in batch_axes] + # [m2.shape[i] for i in right if i not in batch_axes]) concat_final = [] if len(batch_axes) > 0: name_max_dim = root + "_max_dim" concat_final.append(name_max_dim) yield helper.make_node("Max", [name_dim0g, name_dim0bg], [name_max_dim]) left_set = list(sorted(set(left) - (set(batch_axes) & set(left)))) if len(left_set) > 0: name_left_dim = root + "_left_dim" name_left_set = root + "_left_set" yield numpy_helper.from_array( numpy.array(left_set, dtype=numpy.int64), name=name_left_set ) yield helper.make_node( "Gather", [name_shape1, name_left_set], [name_left_dim] ) concat_final.append(name_left_dim) right_set = list(sorted(set(right) - (set(batch_axes) & set(right)))) if len(right_set) > 0: name_right_dim = root + "_right_dim" name_right_set = root + "_right_set" yield numpy_helper.from_array( numpy.array(right_set, dtype=numpy.int64), name=name_right_set ) yield helper.make_node( "Gather", [name_shape2, name_right_set], [name_right_dim] ) concat_final.append(name_right_dim) name_new_shape = root + "_new_shape" diff = self.full_dim - (len(batch_axes) + len(left_set) + len(right_set)) if diff > 0: names_ones = root + "_ones" yield numpy_helper.from_array( numpy.array([1 for i in range(diff)], dtype=numpy.int64), name=names_ones, ) concat_final.append(names_ones) yield helper.make_node("Concat", concat_final, [name_new_shape], axis=0) name_final = root + "_final" yield helper.make_node("Reshape", [name_dot, name_new_shape], [name_final])
[docs] def to_onnx( self, names: List[str], opset: Optional[int], verbose: bool = False, **kwargs: Dict[str, Any], ) -> Iterable[NodeProto]: """ Converts this node into ONNX. Enumerates all ONNX node which participate to the conversion. The last one is the final output. :param names: dictionary where to find already converted name :param opset: opset :param verbose: prints out intermediate results :param kwargs: additional parameter for the conversion :return: output """ if opset is None: opset = DEFAULT_OPSET if verbose: print() print( "to_onnx %r (%s) opset=%r." % (self.name, ", ".join(map(lambda s: str(id(s)), self.inputs)), opset) ) method_name = f"_to_onnx_{self.name}" meth = getattr(self, method_name, None) if meth is None: if self.name.endswith("_mm"): raise NotImplementedError( "to_onnx not implemented for %r." "You should call method simplify_mm_nodes " "to remove it." % self.name ) raise NotImplementedError(f"to_onnx not implemented for {self.name!r}.") for node in meth(names, verbose=verbose, opset=opset, **kwargs): if hasattr(node, "output"): names[id(self)] = node.output[0] if verbose: print( "+ OP %r -- (%s - %d)" % (node.output[0], self.name, id(self)) ) elif verbose: # Initializer print("+ CT %r -- (%s - %d)" % (node.name, self.name, id(self))) yield node
[docs] def get_dot_kind(self) -> str: """ Every matrix multiplication can be either: * a simple multiplication (`M`) (undetected) * a 2D matrix multiplication (`11`) * a broadcasted matrix multiplication (`N1` or `1N`) * a batch matrix multiplication (`NN`) This method returns which kind it is. """ batch_axes = self.kwargs["batch_axes"] # keep_axes = self.kwargs['keep_axes'] # sum_axes = self.kwargs['sum_axes'] # left = self.kwargs['left'] # right = self.kwargs['right'] info = self._info row_left = info["i_row"] row_right = info["i_row2"] batch_left = [row_left[k] for k in batch_axes] batch_right = [row_right[k] for k in batch_axes] n_left = len(batch_left) > 0 and max(batch_left) == 2 n_right = len(batch_right) > 0 and max(batch_right) == 2 return f"{'N' if n_left else '1'}{'N' if n_right else '1'}"
[docs] class GraphEinsumSubOp: """ Class gathering all nodes produced to explicit einsum operators. :param letters: list of distinct letters :param mat: matrix, see :func:`analyse_einsum_equation <onnx_extended.tools.einsum.einsum_impl.analyse_einsum_equation>` :param lengths: lengths of every input :param duplicates: see :func:`analyse_einsum_equation <onnx_extended.tools.einsum.einsum_impl.analyse_einsum_equation>` """ def __init__( self, letters: str, mat: numpy.ndarray, lengths: List[int], duplicates: List[Dict[str, int]], ): self._nodes: Dict[int, Union[int, EinsumSubOp]] = {} self._mark: Dict[int, Union[int, EinsumSubOp]] = {} self._ops: List[EinsumSubOp] = [] self._inputs: Dict[int, Union[int, EinsumSubOp]] = {} self.last_op: Optional[Union[int, EinsumSubOp]] = None self.last_added_op: Optional[Union[int, EinsumSubOp]] = None self.metadata = dict( letters=letters, mat=mat, lengths=lengths, mat0=mat.copy(), duplicates=duplicates, )
[docs] def append(self, op: Union[int, EinsumSubOp]) -> Optional[EinsumSubOp]: """ Adds one input or result. :param op: integer (an input) or an instance of :class:`EinsumSubOp <onnx_extended.tools.einsum.einsum_impl_classes.EinsumSubOp>`. :return: op or None if op is an integer """ if isinstance(op, int): assert op not in self._nodes, "Key %d already added." % op self._nodes[op] = op self.last_added_op = op self._inputs[op] = op return None if isinstance(op, EinsumSubOp): assert op not in self._nodes, "Key %d already added, op=%r." % (id(op), op) self._nodes[id(op)] = op self._ops.append(op) self.last_added_op = op return op raise TypeError(f"Unexpected type {type(op)!r}.")
[docs] def mark_last_node(self): """ Marks the last node as the final output. """ assert self.last_added_op is not None, "last_added_op is None." self.mark(-1, self.last_added_op)
[docs] def mark(self, i: int, op: EinsumSubOp): """ Marks one input or result as an intermediate result after a full einsum step. :param i: a position :param op: an instance of :class:`EinsumSubOp <onnx_extended.tools.einsum.einsum_impl_classes.EinsumSubOp>`. """ assert isinstance(i, int), f"i must an integer not {type(i)!r}." if i != -1 and i not in self._inputs: raise RuntimeError("Input %d was not registered in %r." % (i, self._inputs)) if isinstance(op, EinsumSubOp): assert id(op) in self._nodes, "Key %d not found, op=%r." % (id(op), op) self._mark[i] = op self._mark[id(op)] = i self.last_op = op else: raise TypeError(f"Unexpected type {type(i)!r}.")
def __iter__(self) -> Iterable[EinsumSubOp]: "Iterates on nodes." for op in self._ops: yield op
[docs] def to_dot(self, **kwargs: Dict[str, Any]) -> str: """ Produces a graph in :epkg:`dot`. :param kwargs: additional graph option :return: string """ options = { "orientation": "portrait", "ranksep": "0.25", "nodesep": "0.05", "width": "0.5", "height": "0.1", "size": "5", "node": "[shape=record]", } options.update(kwargs) def d2s(d): it = [] for k, v in sorted(d.items()): it.append(f"{k}={v}") return " ".join(it) def d2sd(d): it = [] for k, v in sorted(d.items()): if len(v) > 1: it.append(f"{k}={','.join(map(str, v))}") return " ".join(it) rows = ["digraph{"] for k, v in options.items(): if isinstance(v, str) and "[" in v: rows.append(f"{k} {v};") else: rows.append(f"{k}={v};") for k, v in self._nodes.items(): if isinstance(v, int): let = [ (r, self.metadata["letters"][i]) for i, r in enumerate(self.metadata["mat0"][v]) if r != -1 ] dup = self.metadata["duplicates"][v] if dup is None: dup = "" else: dup = f" - {d2sd(dup)}" let.sort() letters = "".join(_[1] for _ in let) lab = "input %d\\\\n%s\\\\n%s%s" % ( v, letters, str(self.metadata["mat0"][v]), dup, ) sk = v extended_lab = "" else: lab = f"{v.name}\\\\n{d2s(v.kwargs)}" sk = id(v) extended_lab = v.dot_label() if extended_lab: extended_lab = "\\\\n" + extended_lab if sk in self._mark and isinstance(self._mark[sk], int): la = self._mark[sk] lab = lab.replace("\\\\n", " - I%d\\\\n" % la) s = f'{k} [label="{lab}{extended_lab}" style=filled fillcolor=red];' else: s = f'{k} [label="{lab}{extended_lab}"];' rows.append(s) if not hasattr(v, "inputs"): continue for i in v.inputs: vid = i if isinstance(i, int) else id(i) s = "%d -> %d;" % (vid, k) rows.append(s) rows.append("}") return "\n".join(rows)
[docs] def apply_sequence( self, *inputs: List[EinsumSubOp], verbose: bool = False, **kwargs: Dict[str, Any], ) -> Any: """ Applies a sequence of operations on a list of inputs. :param inputs: inputs :param verbose: prints out intermediate results :param kwargs: additional parameters, see :meth:`apply <onnx_extended.tools.einsum.einsum_impl_classes.EinsumSubOp.apply>`. :return: output """ if verbose: print("######### apply_sequence") data = {i: inp for i, inp in enumerate(inputs)} last = None for op in self: last = op.apply(data, verbose=verbose, **kwargs) assert last is not None, "Sequence of operations is empty." return last
[docs] def clean_unused_nodes(self, verbose: bool = False): """ Cleans nodes with unused outputs. :param verbose: display intermediate information """ def iteration(it): # Walks through all nodes. is_used = {} for node in self._ops: if not isinstance(node, EinsumSubOp): continue if id(node) not in is_used: is_used[id(node)] = [] for inp in node.inputs: if not isinstance(inp, EinsumSubOp): continue idn = id(inp) if idn not in is_used: is_used[idn] = [] is_used[idn].append(id(node)) # Remove unused nodes. removed = [] for k, v in is_used.items(): if len(v) == 0: removed.append(k) removed = set(removed) i_rem = [] for i, op in enumerate(self._ops): if not isinstance(op, EinsumSubOp): continue if id(op) in removed and id(op) not in self._mark: i_rem.append((i, id(op))) for i, idn in reversed(i_rem): if verbose: print( "[GraphEinsumSubOp.clean_nodes] remove node " "i=%d: %d - id=%d" % (it, i, idn) ) del self._ops[i] del self._nodes[idn] return len(i_rem) > 0 it = 1 while iteration(it): it += 1 self.last_op = None self.last_added_op = None
[docs] def simplify_mm_nodes(self, verbose: bool = False): """ Node name suffixed by `mm` are an artifact to keep the graph consistent while building it. They can now be replaced by the equivalent node without suffix `mm`. :param verbose: display intermediate information """ for op in self: if not isinstance(op, EinsumSubOp): continue if op.name.endswith("_mm"): if verbose: print( "[GraphEinsumSubOp.simplify_mm_nodes] node %r" " - id=%d" % (op.name, id(op)) ) assert ( len(op.inputs) == 2 ), "Expecting 2 inputs for node %r not %r id=%r." % ( op.name, len(op.inputs), id(op), ) op.name = op.name[:-3] op.inputs = op.inputs[:1]
def _get_forward_nodes(self) -> Dict[int, EinsumSubOp]: """ Returns the forward nodes. """ forward: Dict[int, EinsumSubOp] = {} for op in self: if isinstance(op, int): continue for inp in op.inputs: key = inp if isinstance(inp, int) else id(inp) if key in forward: forward[key].append(op) else: forward[key] = [op] return forward def _pprint_forward(self) -> str: rows = [] for op in self: line = "%r <- %s(%s)" % ( id(op), op.name, ", ".join(map(str, [id(_) for _ in op.inputs])), ) rows.append(line) return "\n".join(rows) def _replace_node_sequence( self, added: List[EinsumSubOp], deleted: List[EinsumSubOp] ): """ Removes a sequence of nodes. The method does not check that the graph remains consistent. """ forward = self._get_forward_nodes() key = id(deleted[-1]) assert key in forward, ( "Key {} missing in all forward nodes (other keys {}), " "all keys:\n{}".format( key, [id(_) for _ in deleted], self._pprint_forward() ) ) # deletion mark_input = None for d in deleted: del self._nodes[id(d)] if id(d) in self._mark: del self._mark[id(d)] dels = [] for k, v in self._mark.items(): if id(v) == id(d): mark_input = k dels.append(k) assert ( len(dels) == 1 ), "Input %d has more than one marked operator " "(%r)." % (id(d), dels) del self._mark[dels[0]] dels = set(id(o) for o in deleted) rem = [] for i, op in enumerate(self._ops): if id(op) in dels: rem.append(i) assert len(rem) == len( deleted ), f"Mismatched length {rem!r}, {dels!r}, len={len(deleted)!r}." for i in reversed(rem): del self._ops[i] self.last_add_op = None # insertion if added is not None: self._ops.insert(rem[0], added) self._nodes[id(added)] = added for op in forward[key]: new_inputs = list(op.inputs) for i in range(len(op.inputs)): if id(op.inputs[i]) == key: new_inputs[i] = added op.inputs = tuple(new_inputs) if mark_input is not None: self.mark(mark_input, added) else: inps = deleted[0].inputs assert len(inps) == 1, "More than one input. Call another method." inp = inps[0] for op in forward[key]: new_inputs = list(op.inputs) for i in range(len(op.inputs)): if id(op.inputs[i]) == key: new_inputs[i] = inp op.inputs = tuple(new_inputs) if mark_input is not None: self.mark(mark_input, inp)
[docs] def remove_duplicate_transpose(self, verbose: bool = False): """ Removes consecutive transpose by merging them. :param verbose: display intermediate information """ modif = 1 while modif > 0: modif = 0 candidates = [] forward = self._get_forward_nodes() for op in self: if op.name == "transpose": inp = op.inputs[0] if ( isinstance(inp, EinsumSubOp) and inp.name == "transpose" and len(forward[id(inp)]) == 1 ): candidates.append(op) if len(candidates) > 0: modif = 1 # Not efficient to take the first one and to # start again but the graph should not be too big. cand = candidates[0] op2 = cand op1 = cand.inputs[0] perm1 = op1.kwargs["perm"] perm2 = op2.kwargs["perm"] assert len(perm1) == len( perm2 ), "Transposition should have the same length " "%r, %r." % ( perm1, perm2, ) perm = list(perm1) for i in range(len(perm)): perm[i] = perm1[perm2[i]] if list(range(len(perm))) == perm: # identity, everything needs to be removed new_op = None else: new_op = op2.__class__( op2.full_dim, op2.name, op1.inputs[0], perm=tuple(perm) ) self._replace_node_sequence(new_op, [op1, op2]) if verbose: print( "[GraphEinsumSubOp.remove_duplicate_transpose] remove nodes %r" " - id=%d,%d + %d perm1=%r perm2=%r -> perm=%r" % ( op2.name, id(op1), id(op2), id(new_op) if new_op is not None else -1, perm1, perm2, perm, ) )
[docs] def to_onnx( self, output: str, *inputs: List[str], dtype: Optional[Any] = None, verbose: bool = False, opset: Optional[int] = None, **kwargs: Dict[str, Any], ) -> ModelProto: """ Converts the graph into ONNX. :param output: output name :param inputs: input names :param dtype: type used for all operators :param opset: desired opset, None for the last one :param verbose: display intermediate operators :param kwargs: additional parameter to use when building the ONNX graph, list of supported parameters: *name*, *ir_version*, *producer_name*, *producer_version*, *initializer* :return: ONNX graph Not all graphs can be converted into ONNX. Only graphs produced with `strategy='numpy'` can be converted otherwise the following error shows up: :: NotImplementedError: to_onnx not implemented for 'matmul'. """ from ..onnx_nodes import onnx_remove_node_unused # inputs if opset is None: opset = DEFAULT_OPSET if verbose: print( "[GraphEinsumSubOp.to_onnx] %r -> %s opset=%r " "dtype=%r" % (inputs, output, opset, dtype) ) onx_inputs = [] proto = guess_proto_dtype(numpy.float32 if dtype is None else dtype) lengths = self.metadata["lengths"] names: Dict[int, str] = {} for inp, le in zip(inputs, lengths): if isinstance(inp, tuple): name, (typ, shape) = inp assert le == len( shape ), "Irreconcialable shapes for input %r: " "%r != len(%r)." % ( name, le, typ.shape, ) onx_inputs.append(helper.make_tensor_value_info(name, typ, shape)) names[len(names)] = name else: onx_inputs.append( helper.make_tensor_value_info(inp, proto, [None for i in range(le)]) ) names[len(names)] = inp # output onx_output = helper.make_tensor_value_info( output, proto, [None for i in range(lengths[-1])] ) # nodes nodes = [] inits: List[TensorProto] = [] if "initializer" in kwargs: inits.extend(kwargs["initializer"]) for op in self: for onx_node in op.to_onnx(names, verbose=verbose, opset=opset): if hasattr(onx_node, "output"): nodes.append(onx_node) else: inits.append(onx_node) # last node last_node = nodes[-1] nodes.append(helper.make_node("Identity", [last_node.output[0]], [output])) # Builds the graph model = helper.make_model( opset_imports=[helper.make_operatorsetid("", opset)], ir_version=kwargs.get("ir_version", DEFAULT_IR_VERSION), producer_name=kwargs.get("producer_name", "onnx_extended"), producer_version=kwargs.get("producer_version", "0.0.dev"), graph=helper.make_graph( name=kwargs.get("name", "einsum"), inputs=onx_inputs, outputs=[onx_output], initializer=inits, nodes=nodes, ), ) return onnx_remove_node_unused(model)