Source code for onnx_extended.ortops.optim.optimize

import time
from itertools import product
from typing import Any, Callable, Dict, List, Optional, Union
import numpy
from onnx import AttributeProto, ModelProto, NodeProto, GraphProto, FunctionProto
from onnx.helper import make_model, make_node, make_graph, make_opsetid
from ...ext_test_case import measure_time


def has_subgraph(node: NodeProto) -> bool:
    """
    Tells if a node has a subgraph as an attribute.
    """
    for att in node.attribute:
        if att.type == AttributeProto.GRAPH:
            return True
    return False


def get_node_attribute(node: NodeProto, name: str) -> AttributeProto:
    """
    Returns the value of one attribute.

    :param node: node
    :param name: attribute name
    :return: value
    """
    for att in node.attribute:
        if att.name == name:
            return att
    raise KeyError(
        f"Unable to find {name!r} among {list(att.name for att in node.attribute)}."
    )


[docs] def change_onnx_operator_domain( onx: Union[ModelProto, GraphProto, FunctionProto], op_type: str, op_domain: str = "", new_op_type: Optional[str] = None, new_op_domain: Optional[str] = None, new_opset: Optional[int] = None, **kwargs: Dict[str, Any], ) -> Union[ModelProto, GraphProto, FunctionProto]: """ Replaces an operator by another one in the same domain or another one. :param onx: proto to modify :param op_type: operator to look for :param op_domain: domain to look for :param new_op_type: new operator name or None for the same name :param new_op_domain: new domain name or None the for the same domain :param new_opset: new opset for the new domain, if not specified, it is 1 for any opset other than "" :param kwargs: modified parameters, set it to None to remove them :return: same type as the input The function is not recursive yet. """ def change_node(node): atts = [] new_kwargs = {} for att in node.attribute: if att.name in kwargs: v = kwargs[att.name] if v is None: continue new_kwargs[att.name] = v continue atts.append(att) for k, v in kwargs.items(): if v is None or k in new_kwargs: continue new_kwargs[k] = v new_node = make_node( new_op_type or node.op_type, node.input, node.output, domain=new_op_domain or node.domain, **new_kwargs, ) if len(atts) > 0: new_node.attribute.extend(atts) return new_node if isinstance(onx, GraphProto): new_nodes = [] modified = False for node in onx.node: if has_subgraph(node): raise NotImplementedError( f"The function is not recursive yet and cannot " f"handle node {node.op_type!r} from domain " f"{node.domain!r}." ) if node.op_type == op_type and node.domain == op_domain: new_node = change_node(node) new_nodes.append(new_node) modified = True continue new_nodes.append(node) if not modified: return onx return make_graph( new_nodes, onx.name, onx.input, onx.output, onx.initializer, onx.sparse_initializer, ) if isinstance(onx, FunctionProto): raise NotImplementedError("onx is FunctionProto, not implemented yet.") if not isinstance(onx, ModelProto): raise TypeError(f"Unexpected type for onx {type(onx)}.") new_graph = change_onnx_operator_domain( onx.graph, op_type=op_type, op_domain=op_domain, new_opset=new_opset, new_op_type=new_op_type, new_op_domain=new_op_domain, **kwargs, ) if id(new_graph) == id(onx.graph): # no change return onx if new_op_domain is None: new_op_domain = op_domain assert new_op_domain != op_domain or new_opset is None, ( f"If new_op_domain=={new_op_domain!r}, " f"new_opset must be None not {new_opset}." ) opsets = list(onx.opset_import) if new_op_domain != op_domain: opsets.append(make_opsetid(new_op_domain, new_opset or 1)) new_model = make_model( new_graph, functions=onx.functions, ir_version=onx.ir_version, producer_name=onx.producer_name, producer_version=onx.producer_version, model_version=onx.model_version, doc_string=onx.doc_string, opset_imports=opsets, domain=onx.domain, ) return new_model
[docs] def optimize_model( onx: ModelProto, feeds: Dict[str, numpy.ndarray], transform: Callable[[ModelProto], ModelProto], session: Callable[[ModelProto], Any], params: Dict[str, List[Any]], baseline: Optional[Callable[[ModelProto], Any]] = None, verbose: bool = False, number: int = 10, repeat: int = 10, warmup: int = 5, n_tries: int = 2, sleep: float = 0.1, ) -> List[Dict[str, Union[str, float]]]: """ Optimizes a model by trying out many possibilities. :param onx: ModelProto :param feeds: inputs as a dictionary of numpy arrays :param transform: function taking a ModelProto and returning a ModelProto based on the values coming from *params* :param session: function which takes a modifed ModelProto and return a session :param params: dictionary of values to test `{ param_name: [ param_values ] }` :param baseline: function which takes a modifed ModelProto and return a session, identified as the baseline :param verbose: use :epkg:`tqdm` to show improvment :param number: parameter to :func:`measure_time <onnx_extended.ext_test_case.measure_time>` :param repeat: parameter to :func:`measure_time <onnx_extended.ext_test_case.measure_time>` :param warmup: parameter to :func:`measure_time <onnx_extended.ext_test_case.measure_time>` :param n_tries: number of times to measure, if the measurements returns very different results, values for *number* or *repeat* should be increased :param sleep: time to sleep between two measurements :return: list of results returned by :func:`measure_time <onnx_extended.ext_test_case.measure_time>` See example :ref:`l-plot-optim-tree-ensemble` for an example. """ assert sleep < 1, f"sleep={sleep} >= 1, probably a mistake." keys = ["TRY"] + list(params.keys()) sets = [list(range(n_tries))] + [params[k] for k in keys[1:]] loops = list(product(*sets)) if verbose: from tqdm import tqdm loop = tqdm(loops) else: loop = loops res = [] if baseline is not None: sess = baseline(onx) # one run to make run it is working sess.run(None, feeds) if sleep > 0: time.sleep(sleep) obs: Dict[str, Any] = measure_time( lambda sess=sess: sess.run(None, feeds), number=number, repeat=repeat, warmup=warmup, ) obs["n_exp"] = 0 obs["n_exp_name"] = "TRY=0,baseline" obs["short_name"] = "0,baseline" obs["TRY"] = 0 obs["name"] = "baseline" res.append(obs) base_perf = obs["average"] else: base_perf = None min_perf = None _s = dict( parallel_tree="//tree", parallel_tree_N="//tree_N", parallel_N="//N", batch_size_tree="bs_tree", batch_size_ows="bs_rows", use_node3="n3", ) for it, values in enumerate(loop): if verbose: msg = [f"i={it+1}/{len(loops)}"] msg.extend([f"{_s.get(k,k)}={v}" for k, v in zip(keys, values)]) if min_perf and base_perf: msg.append(f" ~={base_perf/min_perf:1.2f}x") loop.set_description(" ".join(msg)) kwargs = dict(zip(keys, values)) del kwargs["TRY"] onx_modified = transform(onx, **kwargs) sess = session(onx_modified) if sleep > 0: time.sleep(sleep) obsl: Dict[str, Any] = measure_time( lambda sess=sess: sess.run(None, feeds), number=number, repeat=repeat, warmup=warmup, ) if not min_perf or min_perf > obsl["average"]: min_perf = obsl["average"] obsl.update(kwargs) obsl["n_exp"] = it obsl["n_exp_name"] = ",".join(f"{k}={v}" for k, v in zip(keys, values)) obsl["short_name"] = ",".join(f"{v}" for v in values) obsl["name"] = ",".join(f"{v}" for v in values[1:]) res.append(obsl) if baseline is not None: for n in range(1, n_tries): sess = baseline(onx) if sleep > 0: time.sleep(sleep) obsf: Dict[str, Any] = measure_time( lambda sess=sess: sess.run(None, feeds), number=number, repeat=repeat, warmup=warmup, ) obsf["n_exp"] = 0 obsf["n_exp_name"] = f"TRY={n},baseline" obsf["short_name"] = f"{n},baseline" obsf["name"] = "baseline" obsf["TRY"] = n res.append(obsf) return res