Source code for mlinsights.sklapi.sklearn_base_learner
from .sklearn_base import SkBase
[docs]
class SkBaseLearner(SkBase):
"""
Pattern of a *learner* qui suit la même API que :epkg:`scikit-learn`.
"""
def __init__(self, **kwargs):
"""
constructor
"""
SkBase.__init__(self, **kwargs)
###################
# API scikit-learn
###################
[docs]
def fit(self, X, y=None, sample_weight=None):
"""
Trains a model.
@param X features
@param y targets
@param sample_weight weight
@return self
"""
raise NotImplementedError()
[docs]
def predict(self, X):
"""
Predicts.
@param X features
@return prédictions
"""
raise NotImplementedError()
[docs]
def decision_function(self, X):
"""
Output of the model in case of a regressor,
matrix with a score for each class and each sample
for a classifier.
:param X: Samples, {array-like, sparse matrix},
shape = (n_samples, n_features)
:return: array, shape = (n_samples,.), Returns predicted values.
"""
raise NotImplementedError()
[docs]
def score(self, X, y=None, sample_weight=None):
"""
Returns the mean accuracy on the given test data and labels.
:param X: Training data, numpy array or sparse matrix of
shape [n_samples,n_features]
:param y: Target values, numpy array of shape [n_samples, n_targets] (optional)
:param sample_weight: Weight values, numpy array of
shape [n_samples, n_targets] (optional)
:return: score : float, Mean accuracy of self.predict(X) wrt. y.
"""
raise NotImplementedError()