Note
Go to the end to download the full example code.
Export with dynamic dimensions in {0,1}
¶
The first version of torch.export.export()
did not support
any tensor with a dimension equal to 0, 1 if the dimension was expected
to be dynamic. The latest versions offers more options. Let’s check it works.
The experiments consists in exporting the model with different sets of inputs
and checking the exported models works with all set of inputs.
Available input sets¶
import itertools
from tqdm import tqdm
import numpy as np
import pandas
import torch
from onnx_diagnostic import doc
from onnx_diagnostic.helpers import max_diff, string_type
from onnx_diagnostic.helpers.torch_helper import torch_deepcopy
from onnx_diagnostic.torch_models.hghub.model_inputs import get_untrained_model_with_inputs
from onnx_diagnostic.torch_export_patches.patch_inputs import use_dyn_not_str
from onnx_diagnostic.torch_export_patches import (
torch_export_patches,
register_additional_serialization_functions,
)
data = get_untrained_model_with_inputs("arnir0/Tiny-LLM", add_second_input=True)
model, dynamic_shapes = data["model"], data["dynamic_shapes"]
The trained model can be obtained with:
MODEL_NAME = "arnir0/Tiny-LLM"
tokenizer = transformers.AutoTokenizer.from_pretrained(MODEL_NAME)
model = transformers.AutoModelForCausalLM.from_pretrained(MODEL_NAME)
input_sets = {k: v for k, v in data.items() if k.startswith("inputs")}
for k, v in input_sets.items():
print(f"{k:20}: {string_type(v, with_shape=True)}")
inputs : dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
inputs2 : dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
inputs_empty_cache : dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
inputs_batch1 : dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
The dynamic shapes are:
print(f"dynamic_shapes: {string_type(dynamic_shapes)}")
dynamic_shapes: dict(input_ids:{0:DYN(batch),1:DYN(seq_length)},attention_mask:{0:DYN(batch),1:DYN(cache+seq)},position_ids:{0:DYN(batch),1:DYN(cache+seq)},past_key_values:#2[#1[{0:DYN(batch),2:DYN(cache_length)}],#1[{0:DYN(batch),2:DYN(cache_length)}]])
dynamic_shapes = use_dyn_not_str(dynamic_shapes)
print(f"dynamic_shapes: {string_type(dynamic_shapes)}")
dynamic_shapes: dict(input_ids:{0:DYNAMIC,1:DYNAMIC},attention_mask:{0:DYNAMIC,1:DYNAMIC},position_ids:{0:DYNAMIC,1:DYNAMIC},past_key_values:#2[#1[{0:DYNAMIC,2:DYNAMIC}],#1[{0:DYNAMIC,2:DYNAMIC}]])
Let’s check they all work and compute the expected values. We use deepcopy because caches are usually modified inplace.
expected = {}
for k, v in input_sets.items():
expected[k] = model(**torch_deepcopy(v))
print(f"{k:20}: {string_type(expected[k], with_shape=True)}")
inputs : CausalLMOutputWithPast(logits:T1s2x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s2x1x33x96], value_cache=#1[T1s2x1x33x96]))
inputs2 : CausalLMOutputWithPast(logits:T1s3x4x32000,past_key_values:DynamicCache(key_cache=#1[T1s3x1x35x96], value_cache=#1[T1s3x1x35x96]))
inputs_empty_cache : CausalLMOutputWithPast(logits:T1s2x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s2x1x3x96], value_cache=#1[T1s2x1x3x96]))
inputs_batch1 : CausalLMOutputWithPast(logits:T1s1x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s1x1x33x96], value_cache=#1[T1s1x1x33x96]))
Export with options¶
We try to export with the following options:
cache registration: register cache serialization with
onnx_diagnostic.torch_export_patches.register_additional_serialization_functions()
oblivious: an option to remove some the exception raises by the exporter
rt: see
prefer_deferred_runtime_asserts_over_guards
intorch.export.export()
cache_patch: patches the model before exporting with
onnx_diagnostic.torch_export_patches.torch_export_patches()
Some function first.
def export_model(
model,
dynamic_shapes,
inputs,
cache=False,
oblivious=False,
rt=False,
cache_patch=False,
strict=False,
):
if cache and not cache_patch:
with register_additional_serialization_functions(patch_transformers=True):
return export_model(
model, dynamic_shapes, inputs, oblivious=oblivious, rt=rt, strict=strict
)
if cache_patch:
with torch_export_patches(
patch_torch=cache_patch in ("all", "torch", True, 1),
patch_transformers=cache_patch in ("all", "transformers", True, 1),
):
return export_model(
model, dynamic_shapes, inputs, oblivious=oblivious, rt=rt, strict=strict
)
if oblivious:
with torch.fx.experimental._config.patch(backed_size_oblivious=True):
return export_model(model, dynamic_shapes, inputs, rt=rt, strict=strict)
return torch.export.export(
model,
(),
inputs,
dynamic_shapes=dynamic_shapes,
strict=strict,
prefer_deferred_runtime_asserts_over_guards=rt,
)
def try_export_model(
model,
dynamic_shapes,
inputs,
cache=False,
oblivious=False,
rt=False,
cache_patch=False,
strict=False,
):
try:
return export_model(
model,
dynamic_shapes,
inputs,
cache=cache,
oblivious=oblivious,
rt=rt,
cache_patch=cache_patch,
strict=strict,
)
except Exception as e:
return e
def validation(ep, input_sets, expected):
mod = ep.module()
for k, v in input_sets.items():
try:
got = mod(**torch_deepcopy(v))
except Exception as e:
yield k, e
continue
yield k, max_diff(expected[k], got, verbose=0)
The main loop¶
results = []
possibilities = [*[[0, 1] for _ in range(5)], list(input_sets)]
possibilities[1] = [0, "all", "torch", "transformers"]
with tqdm(list(itertools.product(*possibilities))) as pbar:
for cache, cache_patch, strict, oblivious, rt, inputs in pbar:
if cache_patch and not cache:
# patches include caches.
continue
kwargs = dict(
cache=cache, cache_patch=cache_patch, strict=strict, oblivious=oblivious, rt=rt
)
legend = "-".join(
(k if isinstance(v, int) else f"{k}:{v}") for k, v in kwargs.items() if v
)
legend = f"{legend}/{inputs}"
pbar.set_description(f"{legend} EXPORT")
# export
ep = try_export_model(
model, dynamic_shapes, torch_deepcopy(input_sets[inputs]), **kwargs
)
if isinstance(ep, Exception):
obs = {
**kwargs,
"export_with": inputs,
"EXPORT": 0,
"ERR-EXPORT": str(ep).split("\n")[0],
}
results.append(obs)
continue
pbar.set_description(f"{legend} VALIDATE")
common = {**kwargs, "export_with": inputs, "EXPORT": 1}
for inp, res in validation(ep, input_sets, expected):
if isinstance(res, Exception):
obs = {
**common,
"run_with": inp,
"ERR-RUN": str(res).split("\n")[0],
"WORKS": 0,
}
else:
obs = {
**common,
"run_with": inp,
"WORKS": int(~np.isnan(res["abs"]) and res["abs"] < 1e-3),
}
results.append(obs)
0%| | 0/256 [00:00<?, ?it/s]
/inputs EXPORT: 0%| | 0/256 [00:00<?, ?it/s]
/inputs EXPORT: 0%| | 1/256 [00:00<01:05, 3.90it/s]
/inputs2 EXPORT: 0%| | 1/256 [00:00<01:05, 3.90it/s]
/inputs_empty_cache EXPORT: 0%| | 1/256 [00:00<01:05, 3.90it/s]
/inputs_batch1 EXPORT: 0%| | 1/256 [00:00<01:05, 3.90it/s]
rt/inputs EXPORT: 0%| | 1/256 [00:00<01:05, 3.90it/s]
rt/inputs2 EXPORT: 0%| | 1/256 [00:00<01:05, 3.90it/s]
rt/inputs_empty_cache EXPORT: 0%| | 1/256 [00:00<01:05, 3.90it/s]
rt/inputs_batch1 EXPORT: 0%| | 1/256 [00:00<01:05, 3.90it/s]
oblivious/inputs EXPORT: 0%| | 1/256 [00:00<01:05, 3.90it/s]
oblivious/inputs2 EXPORT: 0%| | 1/256 [00:00<01:05, 3.90it/s]
oblivious/inputs_empty_cache EXPORT: 0%| | 1/256 [00:00<01:05, 3.90it/s]
oblivious/inputs_batch1 EXPORT: 0%| | 1/256 [00:00<01:05, 3.90it/s]
oblivious-rt/inputs EXPORT: 0%| | 1/256 [00:00<01:05, 3.90it/s]
oblivious-rt/inputs2 EXPORT: 0%| | 1/256 [00:00<01:05, 3.90it/s]
oblivious-rt/inputs_empty_cache EXPORT: 0%| | 1/256 [00:00<01:05, 3.90it/s]
oblivious-rt/inputs_batch1 EXPORT: 0%| | 1/256 [00:00<01:05, 3.90it/s]
strict/inputs EXPORT: 0%| | 1/256 [00:00<01:05, 3.90it/s]
strict/inputs2 EXPORT: 0%| | 1/256 [00:00<01:05, 3.90it/s]
strict/inputs_empty_cache EXPORT: 0%| | 1/256 [00:00<01:05, 3.90it/s]
strict/inputs_batch1 EXPORT: 0%| | 1/256 [00:00<01:05, 3.90it/s]
strict-rt/inputs EXPORT: 0%| | 1/256 [00:00<01:05, 3.90it/s]
strict-rt/inputs2 EXPORT: 0%| | 1/256 [00:00<01:05, 3.90it/s]
strict-rt/inputs_empty_cache EXPORT: 0%| | 1/256 [00:00<01:05, 3.90it/s]
strict-rt/inputs_batch1 EXPORT: 0%| | 1/256 [00:00<01:05, 3.90it/s]
strict-oblivious/inputs EXPORT: 0%| | 1/256 [00:00<01:05, 3.90it/s]
strict-oblivious/inputs2 EXPORT: 0%| | 1/256 [00:00<01:05, 3.90it/s]
strict-oblivious/inputs_empty_cache EXPORT: 0%| | 1/256 [00:00<01:05, 3.90it/s]
strict-oblivious/inputs_batch1 EXPORT: 0%| | 1/256 [00:00<01:05, 3.90it/s]
strict-oblivious-rt/inputs EXPORT: 0%| | 1/256 [00:00<01:05, 3.90it/s]
strict-oblivious-rt/inputs2 EXPORT: 0%| | 1/256 [00:00<01:05, 3.90it/s]
strict-oblivious-rt/inputs_empty_cache EXPORT: 0%| | 1/256 [00:00<01:05, 3.90it/s]
strict-oblivious-rt/inputs_batch1 EXPORT: 0%| | 1/256 [00:00<01:05, 3.90it/s]
cache/inputs EXPORT: 0%| | 1/256 [00:00<01:05, 3.90it/s]
cache/inputs EXPORT: 50%|█████ | 129/256 [00:00<00:00, 161.61it/s]
cache/inputs2 EXPORT: 50%|█████ | 129/256 [00:00<00:00, 161.61it/s]
cache/inputs_empty_cache EXPORT: 50%|█████ | 129/256 [00:01<00:00, 161.61it/s]
cache/inputs_batch1 EXPORT: 50%|█████ | 129/256 [00:01<00:00, 161.61it/s]
cache-rt/inputs EXPORT: 50%|█████ | 129/256 [00:01<00:00, 161.61it/s]
cache-rt/inputs2 EXPORT: 50%|█████ | 129/256 [00:01<00:00, 161.61it/s]
cache-rt/inputs_empty_cache EXPORT: 50%|█████ | 129/256 [00:01<00:00, 161.61it/s]
cache-rt/inputs_batch1 EXPORT: 50%|█████ | 129/256 [00:02<00:00, 161.61it/s]
cache-oblivious/inputs EXPORT: 50%|█████ | 129/256 [00:02<00:00, 161.61it/s]
cache-oblivious/inputs2 EXPORT: 50%|█████ | 129/256 [00:02<00:00, 161.61it/s]
cache-oblivious/inputs_empty_cache EXPORT: 50%|█████ | 129/256 [00:02<00:00, 161.61it/s]
cache-oblivious/inputs_batch1 EXPORT: 50%|█████ | 129/256 [00:02<00:00, 161.61it/s]
cache-oblivious-rt/inputs EXPORT: 50%|█████ | 129/256 [00:03<00:00, 161.61it/s]
cache-oblivious-rt/inputs2 EXPORT: 50%|█████ | 129/256 [00:03<00:00, 161.61it/s]
cache-oblivious-rt/inputs2 EXPORT: 55%|█████▌ | 142/256 [00:03<00:03, 33.24it/s]
cache-oblivious-rt/inputs_empty_cache EXPORT: 55%|█████▌ | 142/256 [00:03<00:03, 33.24it/s]
cache-oblivious-rt/inputs_batch1 EXPORT: 55%|█████▌ | 142/256 [00:03<00:03, 33.24it/s]
cache-strict/inputs EXPORT: 55%|█████▌ | 142/256 [00:03<00:03, 33.24it/s]
cache-strict/inputs2 EXPORT: 55%|█████▌ | 142/256 [00:04<00:03, 33.24it/s]
cache-strict/inputs_empty_cache EXPORT: 55%|█████▌ | 142/256 [00:04<00:03, 33.24it/s]
cache-strict/inputs_batch1 EXPORT: 55%|█████▌ | 142/256 [00:05<00:03, 33.24it/s]
cache-strict-rt/inputs EXPORT: 55%|█████▌ | 142/256 [00:05<00:03, 33.24it/s]
cache-strict-rt/inputs EXPORT: 58%|█████▊ | 149/256 [00:06<00:06, 16.22it/s]
cache-strict-rt/inputs2 EXPORT: 58%|█████▊ | 149/256 [00:06<00:06, 16.22it/s]
cache-strict-rt/inputs_empty_cache EXPORT: 58%|█████▊ | 149/256 [00:06<00:06, 16.22it/s]
cache-strict-rt/inputs_batch1 EXPORT: 58%|█████▊ | 149/256 [00:06<00:06, 16.22it/s]
cache-strict-oblivious/inputs EXPORT: 58%|█████▊ | 149/256 [00:07<00:06, 16.22it/s]
cache-strict-oblivious/inputs2 EXPORT: 58%|█████▊ | 149/256 [00:07<00:06, 16.22it/s]
cache-strict-oblivious/inputs2 EXPORT: 60%|██████ | 154/256 [00:07<00:08, 11.78it/s]
cache-strict-oblivious/inputs_empty_cache EXPORT: 60%|██████ | 154/256 [00:07<00:08, 11.78it/s]
cache-strict-oblivious/inputs_batch1 EXPORT: 60%|██████ | 154/256 [00:08<00:08, 11.78it/s]
cache-strict-oblivious-rt/inputs EXPORT: 60%|██████ | 154/256 [00:08<00:08, 11.78it/s]
cache-strict-oblivious-rt/inputs EXPORT: 61%|██████▏ | 157/256 [00:08<00:10, 9.77it/s]
cache-strict-oblivious-rt/inputs2 EXPORT: 61%|██████▏ | 157/256 [00:08<00:10, 9.77it/s]
cache-strict-oblivious-rt/inputs_empty_cache EXPORT: 61%|██████▏ | 157/256 [00:09<00:10, 9.77it/s]
cache-strict-oblivious-rt/inputs_empty_cache EXPORT: 62%|██████▏ | 159/256 [00:09<00:11, 8.51it/s]
cache-strict-oblivious-rt/inputs_batch1 EXPORT: 62%|██████▏ | 159/256 [00:09<00:11, 8.51it/s]
cache-cache_patch:all/inputs EXPORT: 62%|██████▏ | 159/256 [00:09<00:11, 8.51it/s]
cache-cache_patch:all/inputs VALIDATE: 62%|██████▏ | 159/256 [00:09<00:11, 8.51it/s]
cache-cache_patch:all/inputs2 EXPORT: 62%|██████▏ | 159/256 [00:09<00:11, 8.51it/s]
cache-cache_patch:all/inputs2 VALIDATE: 62%|██████▏ | 159/256 [00:10<00:11, 8.51it/s]
cache-cache_patch:all/inputs2 VALIDATE: 63%|██████▎ | 162/256 [00:11<00:15, 6.23it/s]
cache-cache_patch:all/inputs_empty_cache EXPORT: 63%|██████▎ | 162/256 [00:11<00:15, 6.23it/s]
cache-cache_patch:all/inputs_empty_cache VALIDATE: 63%|██████▎ | 162/256 [00:11<00:15, 6.23it/s]
cache-cache_patch:all/inputs_batch1 EXPORT: 63%|██████▎ | 162/256 [00:11<00:15, 6.23it/s]
cache-cache_patch:all/inputs_batch1 VALIDATE: 63%|██████▎ | 162/256 [00:12<00:15, 6.23it/s]
cache-cache_patch:all/inputs_batch1 VALIDATE: 64%|██████▍ | 164/256 [00:12<00:20, 4.44it/s]
cache-cache_patch:all-rt/inputs EXPORT: 64%|██████▍ | 164/256 [00:12<00:20, 4.44it/s]
cache-cache_patch:all-rt/inputs VALIDATE: 64%|██████▍ | 164/256 [00:13<00:20, 4.44it/s]
cache-cache_patch:all-rt/inputs VALIDATE: 64%|██████▍ | 165/256 [00:13<00:24, 3.70it/s]
cache-cache_patch:all-rt/inputs2 EXPORT: 64%|██████▍ | 165/256 [00:13<00:24, 3.70it/s]
cache-cache_patch:all-rt/inputs2 VALIDATE: 64%|██████▍ | 165/256 [00:14<00:24, 3.70it/s]
cache-cache_patch:all-rt/inputs2 VALIDATE: 65%|██████▍ | 166/256 [00:14<00:29, 3.05it/s]
cache-cache_patch:all-rt/inputs_empty_cache EXPORT: 65%|██████▍ | 166/256 [00:14<00:29, 3.05it/s]
cache-cache_patch:all-rt/inputs_empty_cache VALIDATE: 65%|██████▍ | 166/256 [00:15<00:29, 3.05it/s]
cache-cache_patch:all-rt/inputs_empty_cache VALIDATE: 65%|██████▌ | 167/256 [00:15<00:33, 2.62it/s]
cache-cache_patch:all-rt/inputs_batch1 EXPORT: 65%|██████▌ | 167/256 [00:15<00:33, 2.62it/s]
cache-cache_patch:all-rt/inputs_batch1 VALIDATE: 65%|██████▌ | 167/256 [00:16<00:33, 2.62it/s]
cache-cache_patch:all-rt/inputs_batch1 VALIDATE: 66%|██████▌ | 168/256 [00:16<00:37, 2.34it/s]
cache-cache_patch:all-oblivious/inputs EXPORT: 66%|██████▌ | 168/256 [00:16<00:37, 2.34it/s]
cache-cache_patch:all-oblivious/inputs VALIDATE: 66%|██████▌ | 168/256 [00:17<00:37, 2.34it/s]
cache-cache_patch:all-oblivious/inputs VALIDATE: 66%|██████▌ | 169/256 [00:17<00:44, 1.95it/s]
cache-cache_patch:all-oblivious/inputs2 EXPORT: 66%|██████▌ | 169/256 [00:17<00:44, 1.95it/s]
cache-cache_patch:all-oblivious/inputs2 VALIDATE: 66%|██████▌ | 169/256 [00:17<00:44, 1.95it/s]
cache-cache_patch:all-oblivious/inputs2 VALIDATE: 66%|██████▋ | 170/256 [00:17<00:49, 1.73it/s]
cache-cache_patch:all-oblivious/inputs_empty_cache EXPORT: 66%|██████▋ | 170/256 [00:17<00:49, 1.73it/s]
cache-cache_patch:all-oblivious/inputs_empty_cache VALIDATE: 66%|██████▋ | 170/256 [00:19<00:49, 1.73it/s]
cache-cache_patch:all-oblivious/inputs_empty_cache VALIDATE: 67%|██████▋ | 171/256 [00:19<01:02, 1.36it/s]
cache-cache_patch:all-oblivious/inputs_batch1 EXPORT: 67%|██████▋ | 171/256 [00:19<01:02, 1.36it/s]
cache-cache_patch:all-oblivious/inputs_batch1 VALIDATE: 67%|██████▋ | 171/256 [00:20<01:02, 1.36it/s]
cache-cache_patch:all-oblivious/inputs_batch1 VALIDATE: 67%|██████▋ | 172/256 [00:20<01:04, 1.30it/s]
cache-cache_patch:all-oblivious-rt/inputs EXPORT: 67%|██████▋ | 172/256 [00:20<01:04, 1.30it/s]
cache-cache_patch:all-oblivious-rt/inputs VALIDATE: 67%|██████▋ | 172/256 [00:21<01:04, 1.30it/s]
cache-cache_patch:all-oblivious-rt/inputs VALIDATE: 68%|██████▊ | 173/256 [00:21<01:07, 1.22it/s]
cache-cache_patch:all-oblivious-rt/inputs2 EXPORT: 68%|██████▊ | 173/256 [00:21<01:07, 1.22it/s]
cache-cache_patch:all-oblivious-rt/inputs2 VALIDATE: 68%|██████▊ | 173/256 [00:22<01:07, 1.22it/s]
cache-cache_patch:all-oblivious-rt/inputs2 VALIDATE: 68%|██████▊ | 174/256 [00:22<01:10, 1.16it/s]
cache-cache_patch:all-oblivious-rt/inputs_empty_cache EXPORT: 68%|██████▊ | 174/256 [00:22<01:10, 1.16it/s]
cache-cache_patch:all-oblivious-rt/inputs_empty_cache VALIDATE: 68%|██████▊ | 174/256 [00:22<01:10, 1.16it/s]
cache-cache_patch:all-oblivious-rt/inputs_empty_cache VALIDATE: 68%|██████▊ | 175/256 [00:23<01:11, 1.14it/s]
cache-cache_patch:all-oblivious-rt/inputs_batch1 EXPORT: 68%|██████▊ | 175/256 [00:23<01:11, 1.14it/s]
cache-cache_patch:all-oblivious-rt/inputs_batch1 VALIDATE: 68%|██████▊ | 175/256 [00:23<01:11, 1.14it/s]
cache-cache_patch:all-oblivious-rt/inputs_batch1 VALIDATE: 69%|██████▉ | 176/256 [00:23<01:09, 1.16it/s]
cache-cache_patch:all-strict/inputs EXPORT: 69%|██████▉ | 176/256 [00:23<01:09, 1.16it/s] ~/vv/this312/lib/python3.12/site-packages/torch/_dynamo/output_graph.py:1824: UserWarning: While exporting, we found certain side effects happened in the model.forward. Here are the list of potential sources you can double check: ["L['kwargs']['past_key_values'].layers[0]"]
warnings.warn(
cache-cache_patch:all-strict/inputs EXPORT: 69%|██████▉ | 177/256 [00:25<01:15, 1.04it/s]
cache-cache_patch:all-strict/inputs2 EXPORT: 69%|██████▉ | 177/256 [00:25<01:15, 1.04it/s]
cache-cache_patch:all-strict/inputs2 EXPORT: 70%|██████▉ | 178/256 [00:26<01:17, 1.01it/s]
cache-cache_patch:all-strict/inputs_empty_cache EXPORT: 70%|██████▉ | 178/256 [00:26<01:17, 1.01it/s]
cache-cache_patch:all-strict/inputs_empty_cache EXPORT: 70%|██████▉ | 179/256 [00:27<01:30, 1.17s/it]
cache-cache_patch:all-strict/inputs_batch1 EXPORT: 70%|██████▉ | 179/256 [00:27<01:30, 1.17s/it]
cache-cache_patch:all-strict/inputs_batch1 EXPORT: 70%|███████ | 180/256 [00:33<03:07, 2.46s/it]
cache-cache_patch:all-strict-rt/inputs EXPORT: 70%|███████ | 180/256 [00:33<03:07, 2.46s/it] ~/vv/this312/lib/python3.12/site-packages/torch/_dynamo/output_graph.py:1824: UserWarning: While exporting, we found certain side effects happened in the model.forward. Here are the list of potential sources you can double check: ["L['kwargs']['past_key_values'].layers[0]"]
warnings.warn(
cache-cache_patch:all-strict-rt/inputs EXPORT: 71%|███████ | 181/256 [00:35<02:49, 2.27s/it]
cache-cache_patch:all-strict-rt/inputs2 EXPORT: 71%|███████ | 181/256 [00:35<02:49, 2.27s/it]~/vv/this312/lib/python3.12/site-packages/torch/_dynamo/output_graph.py:1824: UserWarning: While exporting, we found certain side effects happened in the model.forward. Here are the list of potential sources you can double check: ["L['kwargs']['past_key_values'].layers[0]"]
warnings.warn(
cache-cache_patch:all-strict-rt/inputs2 EXPORT: 71%|███████ | 182/256 [00:36<02:38, 2.14s/it]
cache-cache_patch:all-strict-rt/inputs_empty_cache EXPORT: 71%|███████ | 182/256 [00:36<02:38, 2.14s/it]~/vv/this312/lib/python3.12/site-packages/torch/_dynamo/output_graph.py:1824: UserWarning: While exporting, we found certain side effects happened in the model.forward. Here are the list of potential sources you can double check: ["L['kwargs']['past_key_values'].layers[0]"]
warnings.warn(
cache-cache_patch:all-strict-rt/inputs_empty_cache EXPORT: 71%|███████▏ | 183/256 [00:38<02:29, 2.04s/it]
cache-cache_patch:all-strict-rt/inputs_batch1 EXPORT: 71%|███████▏ | 183/256 [00:38<02:29, 2.04s/it] ~/vv/this312/lib/python3.12/site-packages/torch/_dynamo/output_graph.py:1824: UserWarning: While exporting, we found certain side effects happened in the model.forward. Here are the list of potential sources you can double check: ["L['kwargs']['past_key_values'].layers[0]"]
warnings.warn(
cache-cache_patch:all-strict-rt/inputs_batch1 EXPORT: 72%|███████▏ | 184/256 [00:40<02:18, 1.92s/it]
cache-cache_patch:all-strict-oblivious/inputs EXPORT: 72%|███████▏ | 184/256 [00:40<02:18, 1.92s/it]~/vv/this312/lib/python3.12/site-packages/torch/_dynamo/output_graph.py:1824: UserWarning: While exporting, we found certain side effects happened in the model.forward. Here are the list of potential sources you can double check: ["L['kwargs']['past_key_values'].layers[0]"]
warnings.warn(
cache-cache_patch:all-strict-oblivious/inputs2 EXPORT: 72%|███████▏ | 184/256 [00:40<02:18, 1.92s/it]
cache-cache_patch:all-strict-oblivious/inputs2 EXPORT: 73%|███████▎ | 186/256 [00:42<01:39, 1.42s/it]
cache-cache_patch:all-strict-oblivious/inputs_empty_cache EXPORT: 73%|███████▎ | 186/256 [00:42<01:39, 1.42s/it]
cache-cache_patch:all-strict-oblivious/inputs_empty_cache EXPORT: 73%|███████▎ | 187/256 [00:43<01:33, 1.35s/it]
cache-cache_patch:all-strict-oblivious/inputs_batch1 EXPORT: 73%|███████▎ | 187/256 [00:43<01:33, 1.35s/it]
cache-cache_patch:all-strict-oblivious/inputs_batch1 EXPORT: 73%|███████▎ | 188/256 [00:45<01:45, 1.55s/it]
cache-cache_patch:all-strict-oblivious-rt/inputs EXPORT: 73%|███████▎ | 188/256 [00:45<01:45, 1.55s/it] ~/vv/this312/lib/python3.12/site-packages/torch/_dynamo/output_graph.py:1824: UserWarning: While exporting, we found certain side effects happened in the model.forward. Here are the list of potential sources you can double check: ["L['kwargs']['past_key_values'].layers[0]"]
warnings.warn(
cache-cache_patch:all-strict-oblivious-rt/inputs EXPORT: 74%|███████▍ | 189/256 [00:47<01:52, 1.68s/it]
cache-cache_patch:all-strict-oblivious-rt/inputs2 EXPORT: 74%|███████▍ | 189/256 [00:47<01:52, 1.68s/it]~/vv/this312/lib/python3.12/site-packages/torch/_dynamo/output_graph.py:1824: UserWarning: While exporting, we found certain side effects happened in the model.forward. Here are the list of potential sources you can double check: ["L['kwargs']['past_key_values'].layers[0]"]
warnings.warn(
cache-cache_patch:all-strict-oblivious-rt/inputs2 EXPORT: 74%|███████▍ | 190/256 [00:49<01:59, 1.80s/it]
cache-cache_patch:all-strict-oblivious-rt/inputs_empty_cache EXPORT: 74%|███████▍ | 190/256 [00:49<01:59, 1.80s/it]~/vv/this312/lib/python3.12/site-packages/torch/_dynamo/output_graph.py:1824: UserWarning: While exporting, we found certain side effects happened in the model.forward. Here are the list of potential sources you can double check: ["L['kwargs']['past_key_values'].layers[0]"]
warnings.warn(
cache-cache_patch:all-strict-oblivious-rt/inputs_empty_cache EXPORT: 75%|███████▍ | 191/256 [00:51<02:04, 1.91s/it]
cache-cache_patch:all-strict-oblivious-rt/inputs_batch1 EXPORT: 75%|███████▍ | 191/256 [00:51<02:04, 1.91s/it] ~/vv/this312/lib/python3.12/site-packages/torch/_dynamo/output_graph.py:1824: UserWarning: While exporting, we found certain side effects happened in the model.forward. Here are the list of potential sources you can double check: ["L['kwargs']['past_key_values'].layers[0]"]
warnings.warn(
cache-cache_patch:all-strict-oblivious-rt/inputs_batch1 EXPORT: 75%|███████▌ | 192/256 [00:53<02:02, 1.91s/it]
cache-cache_patch:torch/inputs EXPORT: 75%|███████▌ | 192/256 [00:53<02:02, 1.91s/it]
def forward(self, arg0_1: "f32[32000, 192]", arg1_1: "f32[192, 192]", arg2_1: "f32[96, 192]", arg3_1: "f32[96, 192]", arg4_1: "f32[192, 192]", arg5_1: "f32[1024, 192]", arg6_1: "f32[1024, 192]", arg7_1: "f32[192, 1024]", arg8_1: "f32[192]", arg9_1: "f32[192]", arg10_1: "f32[192]", arg11_1: "f32[32000, 192]", arg12_1: "f32[48]", arg13_1: "i64[s72, s70]", arg14_1: "i64[s43, s53]", arg15_1: "i64[s44, s9]", arg16_1: "f32[s23, 1, s31, 96]", arg17_1: "f32[s4, 1, s11, 96]"):
# No stacktrace found for following nodes
_tensor_constant0: "f32[0]" = self._tensor_constant0
lift_fresh_copy: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant0); _tensor_constant0 = None
detach_: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy); lift_fresh_copy = None
_tensor_constant1: "f32[0]" = self._tensor_constant1
lift_fresh_copy_1: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant1); _tensor_constant1 = None
detach__1: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy_1); lift_fresh_copy_1 = None
cat: "f32[s23, 1, s31, 96]" = torch.ops.aten.cat.default([detach_, arg16_1], -2); detach_ = arg16_1 = None
cat_1: "f32[s4, 1, s11, 96]" = torch.ops.aten.cat.default([detach__1, arg17_1], -2); detach__1 = arg17_1 = cat_1 = None
# File: ~/vv/this312/lib/python3.12/site-packages/torch/nn/modules/sparse.py:192 in forward, code: return F.embedding(
embedding: "f32[s72, s70, 192]" = torch.ops.aten.embedding.default(arg0_1, arg13_1); arg0_1 = embedding = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:371 in forward, code: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
sym_numel_default: "Sym(96*s23*s31)" = torch.ops.aten.sym_numel.default(cat)
eq: "Sym(False)" = sym_numel_default == 0; eq = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:373 in forward, code: past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
sym_size_int: "Sym(s31)" = torch.ops.aten.sym_size.int(cat, 2); cat = None
sym_size_int_1: "Sym(s70)" = torch.ops.aten.sym_size.int(arg13_1, 1)
add: "Sym(s31 + s70)" = sym_size_int + sym_size_int_1; sym_size_int_1 = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:372 in forward, code: cache_position: torch.Tensor = torch.arange(
arange: "i64[s70]" = torch.ops.aten.arange.start(sym_size_int, add, device = device(type='cpu'), pin_memory = False); add = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:379 in forward, code: causal_mask = create_causal_mask(
to: "b8[s43, s53]" = torch.ops.aten.to.device(arg14_1, device(type='cpu'), torch.bool); to = None
eq_1: "Sym(False)" = sym_numel_default == 0; sym_numel_default = eq_1 = None
sym_size_int_2: "Sym(s70)" = torch.ops.aten.sym_size.int(arange, 0)
add_1: "Sym(s31 + s70)" = sym_size_int + sym_size_int_2; sym_size_int = None
add_2: "Sym(s31 + s70)" = add_1 + 0
sym_size_int_3: "Sym(s53)" = torch.ops.aten.sym_size.int(arg14_1, 1); arg14_1 = None
sub: "Sym(s31 - s53 + s70)" = add_2 - sym_size_int_3; add_2 = None
gt: "Sym(s31 - s53 + s70 > 0)" = sub > 0; sub = gt = None
gt_1: "Sym(s53 > s31 + s70)" = sym_size_int_3 > add_1; sym_size_int_3 = gt_1 = None
arange_1: "i64[s31 + s70]" = torch.ops.aten.arange.default(add_1, device = device(type='cpu'), pin_memory = False); add_1 = None
add_: "i64[s31 + s70]" = torch.ops.aten.add_.Tensor(arange_1, 0)
sym_size_int_4: "Sym(s72)" = torch.ops.aten.sym_size.int(arg13_1, 0); arg13_1 = None
arange_2: "i64[s72]" = torch.ops.aten.arange.default(sym_size_int_4, device = device(type='cpu'), pin_memory = False); sym_size_int_4 = None
arange_3: "i64[1]" = torch.ops.aten.arange.default(1, device = device(type='cpu'), pin_memory = False)
movedim: "i64[s72]" = torch.ops.aten.movedim.int(arange_2, 0, 0); movedim = None
unsqueeze: "i64[1, 1]" = torch.ops.aten.unsqueeze.default(arange_3, 0); arange_3 = None
sym_size_int_5: "Sym(s72)" = torch.ops.aten.sym_size.int(arange_2, 0); arange_2 = None
expand: "i64[s72, 1]" = torch.ops.aten.expand.default(unsqueeze, [sym_size_int_5, 1]); unsqueeze = expand = None
unsqueeze_1: "i64[1, s70]" = torch.ops.aten.unsqueeze.default(arange, 0); arange = None
expand_1: "i64[s72, s70]" = torch.ops.aten.expand.default(unsqueeze_1, [sym_size_int_5, sym_size_int_2]); unsqueeze_1 = sym_size_int_2 = expand_1 = None
unsqueeze_2: "i64[1, s31 + s70]" = torch.ops.aten.unsqueeze.default(add_, 0); add_ = None
sym_size_int_6: "Sym(s31 + s70)" = torch.ops.aten.sym_size.int(arange_1, 0); arange_1 = None
expand_2: "i64[s72, s31 + s70]" = torch.ops.aten.expand.default(unsqueeze_2, [sym_size_int_5, sym_size_int_6]); unsqueeze_2 = sym_size_int_5 = sym_size_int_6 = expand_2 = None
def forward(self, arg0_1: "f32[32000, 192]", arg1_1: "f32[192, 192]", arg2_1: "f32[96, 192]", arg3_1: "f32[96, 192]", arg4_1: "f32[192, 192]", arg5_1: "f32[1024, 192]", arg6_1: "f32[1024, 192]", arg7_1: "f32[192, 1024]", arg8_1: "f32[192]", arg9_1: "f32[192]", arg10_1: "f32[192]", arg11_1: "f32[32000, 192]", arg12_1: "f32[48]", arg13_1: "i64[s72, s70]", arg14_1: "i64[s43, s53]", arg15_1: "i64[s44, s9]", arg16_1: "f32[s23, 1, s31, 96]", arg17_1: "f32[s4, 1, s11, 96]"):
# No stacktrace found for following nodes
_tensor_constant0: "f32[0]" = self._tensor_constant0
lift_fresh_copy: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant0); _tensor_constant0 = None
detach_: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy); lift_fresh_copy = None
_tensor_constant1: "f32[0]" = self._tensor_constant1
lift_fresh_copy_1: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant1); _tensor_constant1 = None
detach__1: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy_1); lift_fresh_copy_1 = None
cat: "f32[s23, 1, s31, 96]" = torch.ops.aten.cat.default([detach_, arg16_1], -2); detach_ = arg16_1 = None
cat_1: "f32[s4, 1, s11, 96]" = torch.ops.aten.cat.default([detach__1, arg17_1], -2); detach__1 = arg17_1 = cat_1 = None
# File: ~/vv/this312/lib/python3.12/site-packages/torch/nn/modules/sparse.py:192 in forward, code: return F.embedding(
embedding: "f32[s72, s70, 192]" = torch.ops.aten.embedding.default(arg0_1, arg13_1); arg0_1 = embedding = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:371 in forward, code: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
sym_numel_default: "Sym(96*s23*s31)" = torch.ops.aten.sym_numel.default(cat)
eq: "Sym(False)" = sym_numel_default == 0; eq = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:373 in forward, code: past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
sym_size_int: "Sym(s31)" = torch.ops.aten.sym_size.int(cat, 2); cat = None
sym_size_int_1: "Sym(s70)" = torch.ops.aten.sym_size.int(arg13_1, 1)
add: "Sym(s31 + s70)" = sym_size_int + sym_size_int_1; sym_size_int_1 = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:372 in forward, code: cache_position: torch.Tensor = torch.arange(
arange: "i64[s70]" = torch.ops.aten.arange.start(sym_size_int, add, device = device(type='cpu'), pin_memory = False); add = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:379 in forward, code: causal_mask = create_causal_mask(
to: "b8[s43, s53]" = torch.ops.aten.to.device(arg14_1, device(type='cpu'), torch.bool); to = None
eq_1: "Sym(False)" = sym_numel_default == 0; sym_numel_default = eq_1 = None
sym_size_int_2: "Sym(s70)" = torch.ops.aten.sym_size.int(arange, 0)
add_1: "Sym(s31 + s70)" = sym_size_int + sym_size_int_2; sym_size_int = None
add_2: "Sym(s31 + s70)" = add_1 + 0
sym_size_int_3: "Sym(s53)" = torch.ops.aten.sym_size.int(arg14_1, 1); arg14_1 = None
sub: "Sym(s31 - s53 + s70)" = add_2 - sym_size_int_3; add_2 = None
gt: "Sym(s31 - s53 + s70 > 0)" = sub > 0; sub = gt = None
gt_1: "Sym(s53 > s31 + s70)" = sym_size_int_3 > add_1; sym_size_int_3 = gt_1 = None
arange_1: "i64[s31 + s70]" = torch.ops.aten.arange.default(add_1, device = device(type='cpu'), pin_memory = False); add_1 = None
add_: "i64[s31 + s70]" = torch.ops.aten.add_.Tensor(arange_1, 0)
sym_size_int_4: "Sym(s72)" = torch.ops.aten.sym_size.int(arg13_1, 0); arg13_1 = None
arange_2: "i64[s72]" = torch.ops.aten.arange.default(sym_size_int_4, device = device(type='cpu'), pin_memory = False); sym_size_int_4 = None
arange_3: "i64[1]" = torch.ops.aten.arange.default(1, device = device(type='cpu'), pin_memory = False)
movedim: "i64[s72]" = torch.ops.aten.movedim.int(arange_2, 0, 0); movedim = None
unsqueeze: "i64[1, 1]" = torch.ops.aten.unsqueeze.default(arange_3, 0); arange_3 = None
sym_size_int_5: "Sym(s72)" = torch.ops.aten.sym_size.int(arange_2, 0); arange_2 = None
expand: "i64[s72, 1]" = torch.ops.aten.expand.default(unsqueeze, [sym_size_int_5, 1]); unsqueeze = expand = None
unsqueeze_1: "i64[1, s70]" = torch.ops.aten.unsqueeze.default(arange, 0); arange = None
expand_1: "i64[s72, s70]" = torch.ops.aten.expand.default(unsqueeze_1, [sym_size_int_5, sym_size_int_2]); unsqueeze_1 = sym_size_int_2 = expand_1 = None
unsqueeze_2: "i64[1, s31 + s70]" = torch.ops.aten.unsqueeze.default(add_, 0); add_ = None
sym_size_int_6: "Sym(s31 + s70)" = torch.ops.aten.sym_size.int(arange_1, 0); arange_1 = None
expand_2: "i64[s72, s31 + s70]" = torch.ops.aten.expand.default(unsqueeze_2, [sym_size_int_5, sym_size_int_6]); unsqueeze_2 = sym_size_int_5 = sym_size_int_6 = expand_2 = None
cache-cache_patch:torch/inputs EXPORT: 75%|███████▌ | 193/256 [00:53<01:30, 1.43s/it]
cache-cache_patch:torch/inputs2 EXPORT: 75%|███████▌ | 193/256 [00:53<01:30, 1.43s/it]
def forward(self, arg0_1: "f32[32000, 192]", arg1_1: "f32[192, 192]", arg2_1: "f32[96, 192]", arg3_1: "f32[96, 192]", arg4_1: "f32[192, 192]", arg5_1: "f32[1024, 192]", arg6_1: "f32[1024, 192]", arg7_1: "f32[192, 1024]", arg8_1: "f32[192]", arg9_1: "f32[192]", arg10_1: "f32[192]", arg11_1: "f32[32000, 192]", arg12_1: "f32[48]", arg13_1: "i64[s72, s70]", arg14_1: "i64[s43, s53]", arg15_1: "i64[s44, s9]", arg16_1: "f32[s23, 1, s31, 96]", arg17_1: "f32[s4, 1, s11, 96]"):
# No stacktrace found for following nodes
_tensor_constant0: "f32[0]" = self._tensor_constant0
lift_fresh_copy: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant0); _tensor_constant0 = None
detach_: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy); lift_fresh_copy = None
_tensor_constant1: "f32[0]" = self._tensor_constant1
lift_fresh_copy_1: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant1); _tensor_constant1 = None
detach__1: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy_1); lift_fresh_copy_1 = None
cat: "f32[s23, 1, s31, 96]" = torch.ops.aten.cat.default([detach_, arg16_1], -2); detach_ = arg16_1 = None
cat_1: "f32[s4, 1, s11, 96]" = torch.ops.aten.cat.default([detach__1, arg17_1], -2); detach__1 = arg17_1 = cat_1 = None
# File: ~/vv/this312/lib/python3.12/site-packages/torch/nn/modules/sparse.py:192 in forward, code: return F.embedding(
embedding: "f32[s72, s70, 192]" = torch.ops.aten.embedding.default(arg0_1, arg13_1); arg0_1 = embedding = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:371 in forward, code: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
sym_numel_default: "Sym(96*s23*s31)" = torch.ops.aten.sym_numel.default(cat)
eq: "Sym(False)" = sym_numel_default == 0; eq = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:373 in forward, code: past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
sym_size_int: "Sym(s31)" = torch.ops.aten.sym_size.int(cat, 2); cat = None
sym_size_int_1: "Sym(s70)" = torch.ops.aten.sym_size.int(arg13_1, 1)
add: "Sym(s31 + s70)" = sym_size_int + sym_size_int_1; sym_size_int_1 = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:372 in forward, code: cache_position: torch.Tensor = torch.arange(
arange: "i64[s70]" = torch.ops.aten.arange.start(sym_size_int, add, device = device(type='cpu'), pin_memory = False); add = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:379 in forward, code: causal_mask = create_causal_mask(
to: "b8[s43, s53]" = torch.ops.aten.to.device(arg14_1, device(type='cpu'), torch.bool); to = None
eq_1: "Sym(False)" = sym_numel_default == 0; sym_numel_default = eq_1 = None
sym_size_int_2: "Sym(s70)" = torch.ops.aten.sym_size.int(arange, 0)
add_1: "Sym(s31 + s70)" = sym_size_int + sym_size_int_2; sym_size_int = None
add_2: "Sym(s31 + s70)" = add_1 + 0
sym_size_int_3: "Sym(s53)" = torch.ops.aten.sym_size.int(arg14_1, 1); arg14_1 = None
sub: "Sym(s31 - s53 + s70)" = add_2 - sym_size_int_3; add_2 = None
gt: "Sym(s31 - s53 + s70 > 0)" = sub > 0; sub = gt = None
gt_1: "Sym(s53 > s31 + s70)" = sym_size_int_3 > add_1; sym_size_int_3 = gt_1 = None
arange_1: "i64[s31 + s70]" = torch.ops.aten.arange.default(add_1, device = device(type='cpu'), pin_memory = False); add_1 = None
add_: "i64[s31 + s70]" = torch.ops.aten.add_.Tensor(arange_1, 0)
sym_size_int_4: "Sym(s72)" = torch.ops.aten.sym_size.int(arg13_1, 0); arg13_1 = None
arange_2: "i64[s72]" = torch.ops.aten.arange.default(sym_size_int_4, device = device(type='cpu'), pin_memory = False); sym_size_int_4 = None
arange_3: "i64[1]" = torch.ops.aten.arange.default(1, device = device(type='cpu'), pin_memory = False)
movedim: "i64[s72]" = torch.ops.aten.movedim.int(arange_2, 0, 0); movedim = None
unsqueeze: "i64[1, 1]" = torch.ops.aten.unsqueeze.default(arange_3, 0); arange_3 = None
sym_size_int_5: "Sym(s72)" = torch.ops.aten.sym_size.int(arange_2, 0); arange_2 = None
expand: "i64[s72, 1]" = torch.ops.aten.expand.default(unsqueeze, [sym_size_int_5, 1]); unsqueeze = expand = None
unsqueeze_1: "i64[1, s70]" = torch.ops.aten.unsqueeze.default(arange, 0); arange = None
expand_1: "i64[s72, s70]" = torch.ops.aten.expand.default(unsqueeze_1, [sym_size_int_5, sym_size_int_2]); unsqueeze_1 = sym_size_int_2 = expand_1 = None
unsqueeze_2: "i64[1, s31 + s70]" = torch.ops.aten.unsqueeze.default(add_, 0); add_ = None
sym_size_int_6: "Sym(s31 + s70)" = torch.ops.aten.sym_size.int(arange_1, 0); arange_1 = None
expand_2: "i64[s72, s31 + s70]" = torch.ops.aten.expand.default(unsqueeze_2, [sym_size_int_5, sym_size_int_6]); unsqueeze_2 = sym_size_int_5 = sym_size_int_6 = expand_2 = None
def forward(self, arg0_1: "f32[32000, 192]", arg1_1: "f32[192, 192]", arg2_1: "f32[96, 192]", arg3_1: "f32[96, 192]", arg4_1: "f32[192, 192]", arg5_1: "f32[1024, 192]", arg6_1: "f32[1024, 192]", arg7_1: "f32[192, 1024]", arg8_1: "f32[192]", arg9_1: "f32[192]", arg10_1: "f32[192]", arg11_1: "f32[32000, 192]", arg12_1: "f32[48]", arg13_1: "i64[s72, s70]", arg14_1: "i64[s43, s53]", arg15_1: "i64[s44, s9]", arg16_1: "f32[s23, 1, s31, 96]", arg17_1: "f32[s4, 1, s11, 96]"):
# No stacktrace found for following nodes
_tensor_constant0: "f32[0]" = self._tensor_constant0
lift_fresh_copy: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant0); _tensor_constant0 = None
detach_: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy); lift_fresh_copy = None
_tensor_constant1: "f32[0]" = self._tensor_constant1
lift_fresh_copy_1: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant1); _tensor_constant1 = None
detach__1: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy_1); lift_fresh_copy_1 = None
cat: "f32[s23, 1, s31, 96]" = torch.ops.aten.cat.default([detach_, arg16_1], -2); detach_ = arg16_1 = None
cat_1: "f32[s4, 1, s11, 96]" = torch.ops.aten.cat.default([detach__1, arg17_1], -2); detach__1 = arg17_1 = cat_1 = None
# File: ~/vv/this312/lib/python3.12/site-packages/torch/nn/modules/sparse.py:192 in forward, code: return F.embedding(
embedding: "f32[s72, s70, 192]" = torch.ops.aten.embedding.default(arg0_1, arg13_1); arg0_1 = embedding = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:371 in forward, code: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
sym_numel_default: "Sym(96*s23*s31)" = torch.ops.aten.sym_numel.default(cat)
eq: "Sym(False)" = sym_numel_default == 0; eq = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:373 in forward, code: past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
sym_size_int: "Sym(s31)" = torch.ops.aten.sym_size.int(cat, 2); cat = None
sym_size_int_1: "Sym(s70)" = torch.ops.aten.sym_size.int(arg13_1, 1)
add: "Sym(s31 + s70)" = sym_size_int + sym_size_int_1; sym_size_int_1 = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:372 in forward, code: cache_position: torch.Tensor = torch.arange(
arange: "i64[s70]" = torch.ops.aten.arange.start(sym_size_int, add, device = device(type='cpu'), pin_memory = False); add = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:379 in forward, code: causal_mask = create_causal_mask(
to: "b8[s43, s53]" = torch.ops.aten.to.device(arg14_1, device(type='cpu'), torch.bool); to = None
eq_1: "Sym(False)" = sym_numel_default == 0; sym_numel_default = eq_1 = None
sym_size_int_2: "Sym(s70)" = torch.ops.aten.sym_size.int(arange, 0)
add_1: "Sym(s31 + s70)" = sym_size_int + sym_size_int_2; sym_size_int = None
add_2: "Sym(s31 + s70)" = add_1 + 0
sym_size_int_3: "Sym(s53)" = torch.ops.aten.sym_size.int(arg14_1, 1); arg14_1 = None
sub: "Sym(s31 - s53 + s70)" = add_2 - sym_size_int_3; add_2 = None
gt: "Sym(s31 - s53 + s70 > 0)" = sub > 0; sub = gt = None
gt_1: "Sym(s53 > s31 + s70)" = sym_size_int_3 > add_1; sym_size_int_3 = gt_1 = None
arange_1: "i64[s31 + s70]" = torch.ops.aten.arange.default(add_1, device = device(type='cpu'), pin_memory = False); add_1 = None
add_: "i64[s31 + s70]" = torch.ops.aten.add_.Tensor(arange_1, 0)
sym_size_int_4: "Sym(s72)" = torch.ops.aten.sym_size.int(arg13_1, 0); arg13_1 = None
arange_2: "i64[s72]" = torch.ops.aten.arange.default(sym_size_int_4, device = device(type='cpu'), pin_memory = False); sym_size_int_4 = None
arange_3: "i64[1]" = torch.ops.aten.arange.default(1, device = device(type='cpu'), pin_memory = False)
movedim: "i64[s72]" = torch.ops.aten.movedim.int(arange_2, 0, 0); movedim = None
unsqueeze: "i64[1, 1]" = torch.ops.aten.unsqueeze.default(arange_3, 0); arange_3 = None
sym_size_int_5: "Sym(s72)" = torch.ops.aten.sym_size.int(arange_2, 0); arange_2 = None
expand: "i64[s72, 1]" = torch.ops.aten.expand.default(unsqueeze, [sym_size_int_5, 1]); unsqueeze = expand = None
unsqueeze_1: "i64[1, s70]" = torch.ops.aten.unsqueeze.default(arange, 0); arange = None
expand_1: "i64[s72, s70]" = torch.ops.aten.expand.default(unsqueeze_1, [sym_size_int_5, sym_size_int_2]); unsqueeze_1 = sym_size_int_2 = expand_1 = None
unsqueeze_2: "i64[1, s31 + s70]" = torch.ops.aten.unsqueeze.default(add_, 0); add_ = None
sym_size_int_6: "Sym(s31 + s70)" = torch.ops.aten.sym_size.int(arange_1, 0); arange_1 = None
expand_2: "i64[s72, s31 + s70]" = torch.ops.aten.expand.default(unsqueeze_2, [sym_size_int_5, sym_size_int_6]); unsqueeze_2 = sym_size_int_5 = sym_size_int_6 = expand_2 = None
cache-cache_patch:torch/inputs2 EXPORT: 76%|███████▌ | 194/256 [00:54<01:06, 1.08s/it]
cache-cache_patch:torch/inputs_empty_cache EXPORT: 76%|███████▌ | 194/256 [00:54<01:06, 1.08s/it]
def forward(self, arg0_1: "f32[32000, 192]", arg1_1: "f32[192, 192]", arg2_1: "f32[96, 192]", arg3_1: "f32[96, 192]", arg4_1: "f32[192, 192]", arg5_1: "f32[1024, 192]", arg6_1: "f32[1024, 192]", arg7_1: "f32[192, 1024]", arg8_1: "f32[192]", arg9_1: "f32[192]", arg10_1: "f32[192]", arg11_1: "f32[32000, 192]", arg12_1: "f32[48]", arg13_1: "i64[s72, s70]", arg14_1: "i64[s43, s53]", arg15_1: "i64[s44, s9]", arg16_1: "f32[s23, 1, 0, 96]", arg17_1: "f32[s4, 1, 0, 96]"):
# No stacktrace found for following nodes
_tensor_constant0: "f32[0]" = self._tensor_constant0
lift_fresh_copy: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant0); _tensor_constant0 = None
detach_: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy); lift_fresh_copy = None
_tensor_constant1: "f32[0]" = self._tensor_constant1
lift_fresh_copy_1: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant1); _tensor_constant1 = None
detach__1: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy_1); lift_fresh_copy_1 = None
cat: "f32[s23, 1, 0, 96]" = torch.ops.aten.cat.default([detach_, arg16_1], -2); detach_ = arg16_1 = cat = None
cat_1: "f32[s4, 1, 0, 96]" = torch.ops.aten.cat.default([detach__1, arg17_1], -2); detach__1 = arg17_1 = cat_1 = None
# File: ~/vv/this312/lib/python3.12/site-packages/torch/nn/modules/sparse.py:192 in forward, code: return F.embedding(
embedding: "f32[s72, s70, 192]" = torch.ops.aten.embedding.default(arg0_1, arg13_1); arg0_1 = embedding = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:373 in forward, code: past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
sym_size_int: "Sym(s70)" = torch.ops.aten.sym_size.int(arg13_1, 1)
add: "Sym(s70)" = 0 + sym_size_int; sym_size_int = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:372 in forward, code: cache_position: torch.Tensor = torch.arange(
arange: "i64[s70]" = torch.ops.aten.arange.start(0, add, device = device(type='cpu'), pin_memory = False); add = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:379 in forward, code: causal_mask = create_causal_mask(
to: "b8[s43, s53]" = torch.ops.aten.to.device(arg14_1, device(type='cpu'), torch.bool); to = None
sym_size_int_1: "Sym(s70)" = torch.ops.aten.sym_size.int(arange, 0)
add_1: "Sym(s70)" = 0 + sym_size_int_1
add_2: "Sym(s70)" = add_1 + 0
sym_size_int_2: "Sym(s53)" = torch.ops.aten.sym_size.int(arg14_1, 1); arg14_1 = None
sub: "Sym(-s53 + s70)" = add_2 - sym_size_int_2; add_2 = None
gt: "Sym(-s53 + s70 > 0)" = sub > 0; sub = gt = None
gt_1: "Sym(s53 > s70)" = sym_size_int_2 > add_1; sym_size_int_2 = gt_1 = None
arange_1: "i64[s70]" = torch.ops.aten.arange.default(add_1, device = device(type='cpu'), pin_memory = False); add_1 = None
add_: "i64[s70]" = torch.ops.aten.add_.Tensor(arange_1, 0)
sym_size_int_3: "Sym(s72)" = torch.ops.aten.sym_size.int(arg13_1, 0); arg13_1 = None
arange_2: "i64[s72]" = torch.ops.aten.arange.default(sym_size_int_3, device = device(type='cpu'), pin_memory = False); sym_size_int_3 = None
arange_3: "i64[1]" = torch.ops.aten.arange.default(1, device = device(type='cpu'), pin_memory = False)
movedim: "i64[s72]" = torch.ops.aten.movedim.int(arange_2, 0, 0); movedim = None
unsqueeze: "i64[1, 1]" = torch.ops.aten.unsqueeze.default(arange_3, 0); arange_3 = None
sym_size_int_4: "Sym(s72)" = torch.ops.aten.sym_size.int(arange_2, 0); arange_2 = None
expand: "i64[s72, 1]" = torch.ops.aten.expand.default(unsqueeze, [sym_size_int_4, 1]); unsqueeze = expand = None
unsqueeze_1: "i64[1, s70]" = torch.ops.aten.unsqueeze.default(arange, 0); arange = None
expand_1: "i64[s72, s70]" = torch.ops.aten.expand.default(unsqueeze_1, [sym_size_int_4, sym_size_int_1]); unsqueeze_1 = sym_size_int_1 = expand_1 = None
unsqueeze_2: "i64[1, s70]" = torch.ops.aten.unsqueeze.default(add_, 0); add_ = None
sym_size_int_5: "Sym(s70)" = torch.ops.aten.sym_size.int(arange_1, 0); arange_1 = None
expand_2: "i64[s72, s70]" = torch.ops.aten.expand.default(unsqueeze_2, [sym_size_int_4, sym_size_int_5]); unsqueeze_2 = sym_size_int_4 = sym_size_int_5 = expand_2 = None
def forward(self, arg0_1: "f32[32000, 192]", arg1_1: "f32[192, 192]", arg2_1: "f32[96, 192]", arg3_1: "f32[96, 192]", arg4_1: "f32[192, 192]", arg5_1: "f32[1024, 192]", arg6_1: "f32[1024, 192]", arg7_1: "f32[192, 1024]", arg8_1: "f32[192]", arg9_1: "f32[192]", arg10_1: "f32[192]", arg11_1: "f32[32000, 192]", arg12_1: "f32[48]", arg13_1: "i64[s72, s70]", arg14_1: "i64[s43, s53]", arg15_1: "i64[s44, s9]", arg16_1: "f32[s23, 1, 0, 96]", arg17_1: "f32[s4, 1, 0, 96]"):
# No stacktrace found for following nodes
_tensor_constant0: "f32[0]" = self._tensor_constant0
lift_fresh_copy: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant0); _tensor_constant0 = None
detach_: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy); lift_fresh_copy = None
_tensor_constant1: "f32[0]" = self._tensor_constant1
lift_fresh_copy_1: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant1); _tensor_constant1 = None
detach__1: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy_1); lift_fresh_copy_1 = None
cat: "f32[s23, 1, 0, 96]" = torch.ops.aten.cat.default([detach_, arg16_1], -2); detach_ = arg16_1 = cat = None
cat_1: "f32[s4, 1, 0, 96]" = torch.ops.aten.cat.default([detach__1, arg17_1], -2); detach__1 = arg17_1 = cat_1 = None
# File: ~/vv/this312/lib/python3.12/site-packages/torch/nn/modules/sparse.py:192 in forward, code: return F.embedding(
embedding: "f32[s72, s70, 192]" = torch.ops.aten.embedding.default(arg0_1, arg13_1); arg0_1 = embedding = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:373 in forward, code: past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
sym_size_int: "Sym(s70)" = torch.ops.aten.sym_size.int(arg13_1, 1)
add: "Sym(s70)" = 0 + sym_size_int; sym_size_int = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:372 in forward, code: cache_position: torch.Tensor = torch.arange(
arange: "i64[s70]" = torch.ops.aten.arange.start(0, add, device = device(type='cpu'), pin_memory = False); add = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:379 in forward, code: causal_mask = create_causal_mask(
to: "b8[s43, s53]" = torch.ops.aten.to.device(arg14_1, device(type='cpu'), torch.bool); to = None
sym_size_int_1: "Sym(s70)" = torch.ops.aten.sym_size.int(arange, 0)
add_1: "Sym(s70)" = 0 + sym_size_int_1
add_2: "Sym(s70)" = add_1 + 0
sym_size_int_2: "Sym(s53)" = torch.ops.aten.sym_size.int(arg14_1, 1); arg14_1 = None
sub: "Sym(-s53 + s70)" = add_2 - sym_size_int_2; add_2 = None
gt: "Sym(-s53 + s70 > 0)" = sub > 0; sub = gt = None
gt_1: "Sym(s53 > s70)" = sym_size_int_2 > add_1; sym_size_int_2 = gt_1 = None
arange_1: "i64[s70]" = torch.ops.aten.arange.default(add_1, device = device(type='cpu'), pin_memory = False); add_1 = None
add_: "i64[s70]" = torch.ops.aten.add_.Tensor(arange_1, 0)
sym_size_int_3: "Sym(s72)" = torch.ops.aten.sym_size.int(arg13_1, 0); arg13_1 = None
arange_2: "i64[s72]" = torch.ops.aten.arange.default(sym_size_int_3, device = device(type='cpu'), pin_memory = False); sym_size_int_3 = None
arange_3: "i64[1]" = torch.ops.aten.arange.default(1, device = device(type='cpu'), pin_memory = False)
movedim: "i64[s72]" = torch.ops.aten.movedim.int(arange_2, 0, 0); movedim = None
unsqueeze: "i64[1, 1]" = torch.ops.aten.unsqueeze.default(arange_3, 0); arange_3 = None
sym_size_int_4: "Sym(s72)" = torch.ops.aten.sym_size.int(arange_2, 0); arange_2 = None
expand: "i64[s72, 1]" = torch.ops.aten.expand.default(unsqueeze, [sym_size_int_4, 1]); unsqueeze = expand = None
unsqueeze_1: "i64[1, s70]" = torch.ops.aten.unsqueeze.default(arange, 0); arange = None
expand_1: "i64[s72, s70]" = torch.ops.aten.expand.default(unsqueeze_1, [sym_size_int_4, sym_size_int_1]); unsqueeze_1 = sym_size_int_1 = expand_1 = None
unsqueeze_2: "i64[1, s70]" = torch.ops.aten.unsqueeze.default(add_, 0); add_ = None
sym_size_int_5: "Sym(s70)" = torch.ops.aten.sym_size.int(arange_1, 0); arange_1 = None
expand_2: "i64[s72, s70]" = torch.ops.aten.expand.default(unsqueeze_2, [sym_size_int_4, sym_size_int_5]); unsqueeze_2 = sym_size_int_4 = sym_size_int_5 = expand_2 = None
cache-cache_patch:torch/inputs_empty_cache EXPORT: 76%|███████▌ | 195/256 [00:55<01:09, 1.13s/it]
cache-cache_patch:torch/inputs_batch1 EXPORT: 76%|███████▌ | 195/256 [00:55<01:09, 1.13s/it]
def forward(self, arg0_1: "f32[32000, 192]", arg1_1: "f32[192, 192]", arg2_1: "f32[96, 192]", arg3_1: "f32[96, 192]", arg4_1: "f32[192, 192]", arg5_1: "f32[1024, 192]", arg6_1: "f32[1024, 192]", arg7_1: "f32[192, 1024]", arg8_1: "f32[192]", arg9_1: "f32[192]", arg10_1: "f32[192]", arg11_1: "f32[32000, 192]", arg12_1: "f32[48]", arg13_1: "i64[1, s70]", arg14_1: "i64[1, s53]", arg15_1: "i64[1, s9]", arg16_1: "f32[1, 1, s31, 96]", arg17_1: "f32[1, 1, s11, 96]"):
# No stacktrace found for following nodes
_tensor_constant0: "f32[0]" = self._tensor_constant0
lift_fresh_copy: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant0); _tensor_constant0 = None
detach_: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy); lift_fresh_copy = None
_tensor_constant1: "f32[0]" = self._tensor_constant1
lift_fresh_copy_1: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant1); _tensor_constant1 = None
detach__1: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy_1); lift_fresh_copy_1 = None
cat: "f32[1, 1, s31, 96]" = torch.ops.aten.cat.default([detach_, arg16_1], -2); detach_ = arg16_1 = None
cat_1: "f32[1, 1, s11, 96]" = torch.ops.aten.cat.default([detach__1, arg17_1], -2); detach__1 = arg17_1 = cat_1 = None
# File: ~/vv/this312/lib/python3.12/site-packages/torch/nn/modules/sparse.py:192 in forward, code: return F.embedding(
embedding: "f32[1, s70, 192]" = torch.ops.aten.embedding.default(arg0_1, arg13_1); arg0_1 = embedding = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:371 in forward, code: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
sym_numel_default: "Sym(96*s31)" = torch.ops.aten.sym_numel.default(cat)
eq: "Sym(False)" = sym_numel_default == 0; eq = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:373 in forward, code: past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
sym_size_int: "Sym(s31)" = torch.ops.aten.sym_size.int(cat, 2); cat = None
sym_size_int_1: "Sym(s70)" = torch.ops.aten.sym_size.int(arg13_1, 1); arg13_1 = None
add: "Sym(s31 + s70)" = sym_size_int + sym_size_int_1; sym_size_int_1 = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:372 in forward, code: cache_position: torch.Tensor = torch.arange(
arange: "i64[s70]" = torch.ops.aten.arange.start(sym_size_int, add, device = device(type='cpu'), pin_memory = False); add = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:379 in forward, code: causal_mask = create_causal_mask(
to: "b8[1, s53]" = torch.ops.aten.to.device(arg14_1, device(type='cpu'), torch.bool); to = None
eq_1: "Sym(False)" = sym_numel_default == 0; sym_numel_default = eq_1 = None
sym_size_int_2: "Sym(s70)" = torch.ops.aten.sym_size.int(arange, 0)
add_1: "Sym(s31 + s70)" = sym_size_int + sym_size_int_2; sym_size_int = None
add_2: "Sym(s31 + s70)" = add_1 + 0
sym_size_int_3: "Sym(s53)" = torch.ops.aten.sym_size.int(arg14_1, 1); arg14_1 = None
sub: "Sym(s31 - s53 + s70)" = add_2 - sym_size_int_3; add_2 = None
gt: "Sym(s31 - s53 + s70 > 0)" = sub > 0; sub = gt = None
gt_1: "Sym(s53 > s31 + s70)" = sym_size_int_3 > add_1; sym_size_int_3 = gt_1 = None
arange_1: "i64[s31 + s70]" = torch.ops.aten.arange.default(add_1, device = device(type='cpu'), pin_memory = False); add_1 = None
add_: "i64[s31 + s70]" = torch.ops.aten.add_.Tensor(arange_1, 0)
arange_2: "i64[1]" = torch.ops.aten.arange.default(1, device = device(type='cpu'), pin_memory = False)
arange_3: "i64[1]" = torch.ops.aten.arange.default(1, device = device(type='cpu'), pin_memory = False)
movedim: "i64[1]" = torch.ops.aten.movedim.int(arange_2, 0, 0); arange_2 = None
select: "i64[]" = torch.ops.aten.select.int(movedim, 0, 0); movedim = None
movedim_1: "i64[1]" = torch.ops.aten.movedim.int(arange_3, 0, 0); arange_3 = None
select_1: "i64[]" = torch.ops.aten.select.int(movedim_1, 0, 0); movedim_1 = None
movedim_2: "i64[s70]" = torch.ops.aten.movedim.int(arange, 0, 0); arange = movedim_2 = None
unsqueeze: "i64[1]" = torch.ops.aten.unsqueeze.default(select, 0); select = None
expand: "i64[s70]" = torch.ops.aten.expand.default(unsqueeze, [sym_size_int_2]); unsqueeze = expand = None
unsqueeze_1: "i64[1]" = torch.ops.aten.unsqueeze.default(select_1, 0); select_1 = None
expand_1: "i64[s70]" = torch.ops.aten.expand.default(unsqueeze_1, [sym_size_int_2]); unsqueeze_1 = expand_1 = None
unsqueeze_2: "i64[1, s31 + s70]" = torch.ops.aten.unsqueeze.default(add_, 0); add_ = None
sym_size_int_4: "Sym(s31 + s70)" = torch.ops.aten.sym_size.int(arange_1, 0); arange_1 = None
expand_2: "i64[s70, s31 + s70]" = torch.ops.aten.expand.default(unsqueeze_2, [sym_size_int_2, sym_size_int_4]); unsqueeze_2 = sym_size_int_2 = sym_size_int_4 = expand_2 = None
def forward(self, arg0_1: "f32[32000, 192]", arg1_1: "f32[192, 192]", arg2_1: "f32[96, 192]", arg3_1: "f32[96, 192]", arg4_1: "f32[192, 192]", arg5_1: "f32[1024, 192]", arg6_1: "f32[1024, 192]", arg7_1: "f32[192, 1024]", arg8_1: "f32[192]", arg9_1: "f32[192]", arg10_1: "f32[192]", arg11_1: "f32[32000, 192]", arg12_1: "f32[48]", arg13_1: "i64[1, s70]", arg14_1: "i64[1, s53]", arg15_1: "i64[1, s9]", arg16_1: "f32[1, 1, s31, 96]", arg17_1: "f32[1, 1, s11, 96]"):
# No stacktrace found for following nodes
_tensor_constant0: "f32[0]" = self._tensor_constant0
lift_fresh_copy: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant0); _tensor_constant0 = None
detach_: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy); lift_fresh_copy = None
_tensor_constant1: "f32[0]" = self._tensor_constant1
lift_fresh_copy_1: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant1); _tensor_constant1 = None
detach__1: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy_1); lift_fresh_copy_1 = None
cat: "f32[1, 1, s31, 96]" = torch.ops.aten.cat.default([detach_, arg16_1], -2); detach_ = arg16_1 = None
cat_1: "f32[1, 1, s11, 96]" = torch.ops.aten.cat.default([detach__1, arg17_1], -2); detach__1 = arg17_1 = cat_1 = None
# File: ~/vv/this312/lib/python3.12/site-packages/torch/nn/modules/sparse.py:192 in forward, code: return F.embedding(
embedding: "f32[1, s70, 192]" = torch.ops.aten.embedding.default(arg0_1, arg13_1); arg0_1 = embedding = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:371 in forward, code: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
sym_numel_default: "Sym(96*s31)" = torch.ops.aten.sym_numel.default(cat)
eq: "Sym(False)" = sym_numel_default == 0; eq = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:373 in forward, code: past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
sym_size_int: "Sym(s31)" = torch.ops.aten.sym_size.int(cat, 2); cat = None
sym_size_int_1: "Sym(s70)" = torch.ops.aten.sym_size.int(arg13_1, 1); arg13_1 = None
add: "Sym(s31 + s70)" = sym_size_int + sym_size_int_1; sym_size_int_1 = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:372 in forward, code: cache_position: torch.Tensor = torch.arange(
arange: "i64[s70]" = torch.ops.aten.arange.start(sym_size_int, add, device = device(type='cpu'), pin_memory = False); add = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:379 in forward, code: causal_mask = create_causal_mask(
to: "b8[1, s53]" = torch.ops.aten.to.device(arg14_1, device(type='cpu'), torch.bool); to = None
eq_1: "Sym(False)" = sym_numel_default == 0; sym_numel_default = eq_1 = None
sym_size_int_2: "Sym(s70)" = torch.ops.aten.sym_size.int(arange, 0)
add_1: "Sym(s31 + s70)" = sym_size_int + sym_size_int_2; sym_size_int = None
add_2: "Sym(s31 + s70)" = add_1 + 0
sym_size_int_3: "Sym(s53)" = torch.ops.aten.sym_size.int(arg14_1, 1); arg14_1 = None
sub: "Sym(s31 - s53 + s70)" = add_2 - sym_size_int_3; add_2 = None
gt: "Sym(s31 - s53 + s70 > 0)" = sub > 0; sub = gt = None
gt_1: "Sym(s53 > s31 + s70)" = sym_size_int_3 > add_1; sym_size_int_3 = gt_1 = None
arange_1: "i64[s31 + s70]" = torch.ops.aten.arange.default(add_1, device = device(type='cpu'), pin_memory = False); add_1 = None
add_: "i64[s31 + s70]" = torch.ops.aten.add_.Tensor(arange_1, 0)
arange_2: "i64[1]" = torch.ops.aten.arange.default(1, device = device(type='cpu'), pin_memory = False)
arange_3: "i64[1]" = torch.ops.aten.arange.default(1, device = device(type='cpu'), pin_memory = False)
movedim: "i64[1]" = torch.ops.aten.movedim.int(arange_2, 0, 0); arange_2 = None
select: "i64[]" = torch.ops.aten.select.int(movedim, 0, 0); movedim = None
movedim_1: "i64[1]" = torch.ops.aten.movedim.int(arange_3, 0, 0); arange_3 = None
select_1: "i64[]" = torch.ops.aten.select.int(movedim_1, 0, 0); movedim_1 = None
movedim_2: "i64[s70]" = torch.ops.aten.movedim.int(arange, 0, 0); arange = movedim_2 = None
unsqueeze: "i64[1]" = torch.ops.aten.unsqueeze.default(select, 0); select = None
expand: "i64[s70]" = torch.ops.aten.expand.default(unsqueeze, [sym_size_int_2]); unsqueeze = expand = None
unsqueeze_1: "i64[1]" = torch.ops.aten.unsqueeze.default(select_1, 0); select_1 = None
expand_1: "i64[s70]" = torch.ops.aten.expand.default(unsqueeze_1, [sym_size_int_2]); unsqueeze_1 = expand_1 = None
unsqueeze_2: "i64[1, s31 + s70]" = torch.ops.aten.unsqueeze.default(add_, 0); add_ = None
sym_size_int_4: "Sym(s31 + s70)" = torch.ops.aten.sym_size.int(arange_1, 0); arange_1 = None
expand_2: "i64[s70, s31 + s70]" = torch.ops.aten.expand.default(unsqueeze_2, [sym_size_int_2, sym_size_int_4]); unsqueeze_2 = sym_size_int_2 = sym_size_int_4 = expand_2 = None
cache-cache_patch:torch/inputs_batch1 EXPORT: 77%|███████▋ | 196/256 [00:55<00:51, 1.17it/s]
cache-cache_patch:torch-rt/inputs EXPORT: 77%|███████▋ | 196/256 [00:55<00:51, 1.17it/s]
def forward(self, arg0_1: "f32[32000, 192]", arg1_1: "f32[192, 192]", arg2_1: "f32[96, 192]", arg3_1: "f32[96, 192]", arg4_1: "f32[192, 192]", arg5_1: "f32[1024, 192]", arg6_1: "f32[1024, 192]", arg7_1: "f32[192, 1024]", arg8_1: "f32[192]", arg9_1: "f32[192]", arg10_1: "f32[192]", arg11_1: "f32[32000, 192]", arg12_1: "f32[48]", arg13_1: "i64[s72, s70]", arg14_1: "i64[s43, s53]", arg15_1: "i64[s44, s9]", arg16_1: "f32[s23, 1, s31, 96]", arg17_1: "f32[s4, 1, s11, 96]"):
# No stacktrace found for following nodes
_tensor_constant0: "f32[0]" = self._tensor_constant0
lift_fresh_copy: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant0); _tensor_constant0 = None
detach_: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy); lift_fresh_copy = None
_tensor_constant1: "f32[0]" = self._tensor_constant1
lift_fresh_copy_1: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant1); _tensor_constant1 = None
detach__1: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy_1); lift_fresh_copy_1 = None
cat: "f32[s23, 1, s31, 96]" = torch.ops.aten.cat.default([detach_, arg16_1], -2); detach_ = arg16_1 = None
cat_1: "f32[s4, 1, s11, 96]" = torch.ops.aten.cat.default([detach__1, arg17_1], -2); detach__1 = arg17_1 = cat_1 = None
# File: ~/vv/this312/lib/python3.12/site-packages/torch/nn/modules/sparse.py:192 in forward, code: return F.embedding(
embedding: "f32[s72, s70, 192]" = torch.ops.aten.embedding.default(arg0_1, arg13_1); arg0_1 = embedding = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:371 in forward, code: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
sym_numel_default: "Sym(96*s23*s31)" = torch.ops.aten.sym_numel.default(cat)
eq: "Sym(False)" = sym_numel_default == 0; eq = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:373 in forward, code: past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
sym_size_int: "Sym(s31)" = torch.ops.aten.sym_size.int(cat, 2); cat = None
sym_size_int_1: "Sym(s70)" = torch.ops.aten.sym_size.int(arg13_1, 1)
add: "Sym(s31 + s70)" = sym_size_int + sym_size_int_1; sym_size_int_1 = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:372 in forward, code: cache_position: torch.Tensor = torch.arange(
arange: "i64[s70]" = torch.ops.aten.arange.start(sym_size_int, add, device = device(type='cpu'), pin_memory = False); add = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:379 in forward, code: causal_mask = create_causal_mask(
to: "b8[s43, s53]" = torch.ops.aten.to.device(arg14_1, device(type='cpu'), torch.bool); to = None
eq_1: "Sym(False)" = sym_numel_default == 0; sym_numel_default = eq_1 = None
sym_size_int_2: "Sym(s70)" = torch.ops.aten.sym_size.int(arange, 0)
add_1: "Sym(s31 + s70)" = sym_size_int + sym_size_int_2; sym_size_int = None
add_2: "Sym(s31 + s70)" = add_1 + 0
sym_size_int_3: "Sym(s53)" = torch.ops.aten.sym_size.int(arg14_1, 1); arg14_1 = None
sub: "Sym(s31 - s53 + s70)" = add_2 - sym_size_int_3; add_2 = None
gt: "Sym(s31 - s53 + s70 > 0)" = sub > 0; sub = gt = None
gt_1: "Sym(s53 > s31 + s70)" = sym_size_int_3 > add_1; sym_size_int_3 = gt_1 = None
arange_1: "i64[s31 + s70]" = torch.ops.aten.arange.default(add_1, device = device(type='cpu'), pin_memory = False); add_1 = None
add_: "i64[s31 + s70]" = torch.ops.aten.add_.Tensor(arange_1, 0)
sym_size_int_4: "Sym(s72)" = torch.ops.aten.sym_size.int(arg13_1, 0); arg13_1 = None
arange_2: "i64[s72]" = torch.ops.aten.arange.default(sym_size_int_4, device = device(type='cpu'), pin_memory = False); sym_size_int_4 = None
arange_3: "i64[1]" = torch.ops.aten.arange.default(1, device = device(type='cpu'), pin_memory = False)
movedim: "i64[s72]" = torch.ops.aten.movedim.int(arange_2, 0, 0); movedim = None
unsqueeze: "i64[1, 1]" = torch.ops.aten.unsqueeze.default(arange_3, 0); arange_3 = None
sym_size_int_5: "Sym(s72)" = torch.ops.aten.sym_size.int(arange_2, 0); arange_2 = None
expand: "i64[s72, 1]" = torch.ops.aten.expand.default(unsqueeze, [sym_size_int_5, 1]); unsqueeze = expand = None
unsqueeze_1: "i64[1, s70]" = torch.ops.aten.unsqueeze.default(arange, 0); arange = None
expand_1: "i64[s72, s70]" = torch.ops.aten.expand.default(unsqueeze_1, [sym_size_int_5, sym_size_int_2]); unsqueeze_1 = sym_size_int_2 = expand_1 = None
unsqueeze_2: "i64[1, s31 + s70]" = torch.ops.aten.unsqueeze.default(add_, 0); add_ = None
sym_size_int_6: "Sym(s31 + s70)" = torch.ops.aten.sym_size.int(arange_1, 0); arange_1 = None
expand_2: "i64[s72, s31 + s70]" = torch.ops.aten.expand.default(unsqueeze_2, [sym_size_int_5, sym_size_int_6]); unsqueeze_2 = sym_size_int_5 = sym_size_int_6 = expand_2 = None
def forward(self, arg0_1: "f32[32000, 192]", arg1_1: "f32[192, 192]", arg2_1: "f32[96, 192]", arg3_1: "f32[96, 192]", arg4_1: "f32[192, 192]", arg5_1: "f32[1024, 192]", arg6_1: "f32[1024, 192]", arg7_1: "f32[192, 1024]", arg8_1: "f32[192]", arg9_1: "f32[192]", arg10_1: "f32[192]", arg11_1: "f32[32000, 192]", arg12_1: "f32[48]", arg13_1: "i64[s72, s70]", arg14_1: "i64[s43, s53]", arg15_1: "i64[s44, s9]", arg16_1: "f32[s23, 1, s31, 96]", arg17_1: "f32[s4, 1, s11, 96]"):
# No stacktrace found for following nodes
_tensor_constant0: "f32[0]" = self._tensor_constant0
lift_fresh_copy: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant0); _tensor_constant0 = None
detach_: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy); lift_fresh_copy = None
_tensor_constant1: "f32[0]" = self._tensor_constant1
lift_fresh_copy_1: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant1); _tensor_constant1 = None
detach__1: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy_1); lift_fresh_copy_1 = None
cat: "f32[s23, 1, s31, 96]" = torch.ops.aten.cat.default([detach_, arg16_1], -2); detach_ = arg16_1 = None
cat_1: "f32[s4, 1, s11, 96]" = torch.ops.aten.cat.default([detach__1, arg17_1], -2); detach__1 = arg17_1 = cat_1 = None
# File: ~/vv/this312/lib/python3.12/site-packages/torch/nn/modules/sparse.py:192 in forward, code: return F.embedding(
embedding: "f32[s72, s70, 192]" = torch.ops.aten.embedding.default(arg0_1, arg13_1); arg0_1 = embedding = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:371 in forward, code: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
sym_numel_default: "Sym(96*s23*s31)" = torch.ops.aten.sym_numel.default(cat)
eq: "Sym(False)" = sym_numel_default == 0; eq = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:373 in forward, code: past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
sym_size_int: "Sym(s31)" = torch.ops.aten.sym_size.int(cat, 2); cat = None
sym_size_int_1: "Sym(s70)" = torch.ops.aten.sym_size.int(arg13_1, 1)
add: "Sym(s31 + s70)" = sym_size_int + sym_size_int_1; sym_size_int_1 = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:372 in forward, code: cache_position: torch.Tensor = torch.arange(
arange: "i64[s70]" = torch.ops.aten.arange.start(sym_size_int, add, device = device(type='cpu'), pin_memory = False); add = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:379 in forward, code: causal_mask = create_causal_mask(
to: "b8[s43, s53]" = torch.ops.aten.to.device(arg14_1, device(type='cpu'), torch.bool); to = None
eq_1: "Sym(False)" = sym_numel_default == 0; sym_numel_default = eq_1 = None
sym_size_int_2: "Sym(s70)" = torch.ops.aten.sym_size.int(arange, 0)
add_1: "Sym(s31 + s70)" = sym_size_int + sym_size_int_2; sym_size_int = None
add_2: "Sym(s31 + s70)" = add_1 + 0
sym_size_int_3: "Sym(s53)" = torch.ops.aten.sym_size.int(arg14_1, 1); arg14_1 = None
sub: "Sym(s31 - s53 + s70)" = add_2 - sym_size_int_3; add_2 = None
gt: "Sym(s31 - s53 + s70 > 0)" = sub > 0; sub = gt = None
gt_1: "Sym(s53 > s31 + s70)" = sym_size_int_3 > add_1; sym_size_int_3 = gt_1 = None
arange_1: "i64[s31 + s70]" = torch.ops.aten.arange.default(add_1, device = device(type='cpu'), pin_memory = False); add_1 = None
add_: "i64[s31 + s70]" = torch.ops.aten.add_.Tensor(arange_1, 0)
sym_size_int_4: "Sym(s72)" = torch.ops.aten.sym_size.int(arg13_1, 0); arg13_1 = None
arange_2: "i64[s72]" = torch.ops.aten.arange.default(sym_size_int_4, device = device(type='cpu'), pin_memory = False); sym_size_int_4 = None
arange_3: "i64[1]" = torch.ops.aten.arange.default(1, device = device(type='cpu'), pin_memory = False)
movedim: "i64[s72]" = torch.ops.aten.movedim.int(arange_2, 0, 0); movedim = None
unsqueeze: "i64[1, 1]" = torch.ops.aten.unsqueeze.default(arange_3, 0); arange_3 = None
sym_size_int_5: "Sym(s72)" = torch.ops.aten.sym_size.int(arange_2, 0); arange_2 = None
expand: "i64[s72, 1]" = torch.ops.aten.expand.default(unsqueeze, [sym_size_int_5, 1]); unsqueeze = expand = None
unsqueeze_1: "i64[1, s70]" = torch.ops.aten.unsqueeze.default(arange, 0); arange = None
expand_1: "i64[s72, s70]" = torch.ops.aten.expand.default(unsqueeze_1, [sym_size_int_5, sym_size_int_2]); unsqueeze_1 = sym_size_int_2 = expand_1 = None
unsqueeze_2: "i64[1, s31 + s70]" = torch.ops.aten.unsqueeze.default(add_, 0); add_ = None
sym_size_int_6: "Sym(s31 + s70)" = torch.ops.aten.sym_size.int(arange_1, 0); arange_1 = None
expand_2: "i64[s72, s31 + s70]" = torch.ops.aten.expand.default(unsqueeze_2, [sym_size_int_5, sym_size_int_6]); unsqueeze_2 = sym_size_int_5 = sym_size_int_6 = expand_2 = None
cache-cache_patch:torch-rt/inputs EXPORT: 77%|███████▋ | 197/256 [00:55<00:41, 1.41it/s]
cache-cache_patch:torch-rt/inputs2 EXPORT: 77%|███████▋ | 197/256 [00:55<00:41, 1.41it/s]
def forward(self, arg0_1: "f32[32000, 192]", arg1_1: "f32[192, 192]", arg2_1: "f32[96, 192]", arg3_1: "f32[96, 192]", arg4_1: "f32[192, 192]", arg5_1: "f32[1024, 192]", arg6_1: "f32[1024, 192]", arg7_1: "f32[192, 1024]", arg8_1: "f32[192]", arg9_1: "f32[192]", arg10_1: "f32[192]", arg11_1: "f32[32000, 192]", arg12_1: "f32[48]", arg13_1: "i64[s72, s70]", arg14_1: "i64[s43, s53]", arg15_1: "i64[s44, s9]", arg16_1: "f32[s23, 1, s31, 96]", arg17_1: "f32[s4, 1, s11, 96]"):
# No stacktrace found for following nodes
_tensor_constant0: "f32[0]" = self._tensor_constant0
lift_fresh_copy: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant0); _tensor_constant0 = None
detach_: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy); lift_fresh_copy = None
_tensor_constant1: "f32[0]" = self._tensor_constant1
lift_fresh_copy_1: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant1); _tensor_constant1 = None
detach__1: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy_1); lift_fresh_copy_1 = None
cat: "f32[s23, 1, s31, 96]" = torch.ops.aten.cat.default([detach_, arg16_1], -2); detach_ = arg16_1 = None
cat_1: "f32[s4, 1, s11, 96]" = torch.ops.aten.cat.default([detach__1, arg17_1], -2); detach__1 = arg17_1 = cat_1 = None
# File: ~/vv/this312/lib/python3.12/site-packages/torch/nn/modules/sparse.py:192 in forward, code: return F.embedding(
embedding: "f32[s72, s70, 192]" = torch.ops.aten.embedding.default(arg0_1, arg13_1); arg0_1 = embedding = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:371 in forward, code: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
sym_numel_default: "Sym(96*s23*s31)" = torch.ops.aten.sym_numel.default(cat)
eq: "Sym(False)" = sym_numel_default == 0; eq = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:373 in forward, code: past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
sym_size_int: "Sym(s31)" = torch.ops.aten.sym_size.int(cat, 2); cat = None
sym_size_int_1: "Sym(s70)" = torch.ops.aten.sym_size.int(arg13_1, 1)
add: "Sym(s31 + s70)" = sym_size_int + sym_size_int_1; sym_size_int_1 = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:372 in forward, code: cache_position: torch.Tensor = torch.arange(
arange: "i64[s70]" = torch.ops.aten.arange.start(sym_size_int, add, device = device(type='cpu'), pin_memory = False); add = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:379 in forward, code: causal_mask = create_causal_mask(
to: "b8[s43, s53]" = torch.ops.aten.to.device(arg14_1, device(type='cpu'), torch.bool); to = None
eq_1: "Sym(False)" = sym_numel_default == 0; sym_numel_default = eq_1 = None
sym_size_int_2: "Sym(s70)" = torch.ops.aten.sym_size.int(arange, 0)
add_1: "Sym(s31 + s70)" = sym_size_int + sym_size_int_2; sym_size_int = None
add_2: "Sym(s31 + s70)" = add_1 + 0
sym_size_int_3: "Sym(s53)" = torch.ops.aten.sym_size.int(arg14_1, 1); arg14_1 = None
sub: "Sym(s31 - s53 + s70)" = add_2 - sym_size_int_3; add_2 = None
gt: "Sym(s31 - s53 + s70 > 0)" = sub > 0; sub = gt = None
gt_1: "Sym(s53 > s31 + s70)" = sym_size_int_3 > add_1; sym_size_int_3 = gt_1 = None
arange_1: "i64[s31 + s70]" = torch.ops.aten.arange.default(add_1, device = device(type='cpu'), pin_memory = False); add_1 = None
add_: "i64[s31 + s70]" = torch.ops.aten.add_.Tensor(arange_1, 0)
sym_size_int_4: "Sym(s72)" = torch.ops.aten.sym_size.int(arg13_1, 0); arg13_1 = None
arange_2: "i64[s72]" = torch.ops.aten.arange.default(sym_size_int_4, device = device(type='cpu'), pin_memory = False); sym_size_int_4 = None
arange_3: "i64[1]" = torch.ops.aten.arange.default(1, device = device(type='cpu'), pin_memory = False)
movedim: "i64[s72]" = torch.ops.aten.movedim.int(arange_2, 0, 0); movedim = None
unsqueeze: "i64[1, 1]" = torch.ops.aten.unsqueeze.default(arange_3, 0); arange_3 = None
sym_size_int_5: "Sym(s72)" = torch.ops.aten.sym_size.int(arange_2, 0); arange_2 = None
expand: "i64[s72, 1]" = torch.ops.aten.expand.default(unsqueeze, [sym_size_int_5, 1]); unsqueeze = expand = None
unsqueeze_1: "i64[1, s70]" = torch.ops.aten.unsqueeze.default(arange, 0); arange = None
expand_1: "i64[s72, s70]" = torch.ops.aten.expand.default(unsqueeze_1, [sym_size_int_5, sym_size_int_2]); unsqueeze_1 = sym_size_int_2 = expand_1 = None
unsqueeze_2: "i64[1, s31 + s70]" = torch.ops.aten.unsqueeze.default(add_, 0); add_ = None
sym_size_int_6: "Sym(s31 + s70)" = torch.ops.aten.sym_size.int(arange_1, 0); arange_1 = None
expand_2: "i64[s72, s31 + s70]" = torch.ops.aten.expand.default(unsqueeze_2, [sym_size_int_5, sym_size_int_6]); unsqueeze_2 = sym_size_int_5 = sym_size_int_6 = expand_2 = None
def forward(self, arg0_1: "f32[32000, 192]", arg1_1: "f32[192, 192]", arg2_1: "f32[96, 192]", arg3_1: "f32[96, 192]", arg4_1: "f32[192, 192]", arg5_1: "f32[1024, 192]", arg6_1: "f32[1024, 192]", arg7_1: "f32[192, 1024]", arg8_1: "f32[192]", arg9_1: "f32[192]", arg10_1: "f32[192]", arg11_1: "f32[32000, 192]", arg12_1: "f32[48]", arg13_1: "i64[s72, s70]", arg14_1: "i64[s43, s53]", arg15_1: "i64[s44, s9]", arg16_1: "f32[s23, 1, s31, 96]", arg17_1: "f32[s4, 1, s11, 96]"):
# No stacktrace found for following nodes
_tensor_constant0: "f32[0]" = self._tensor_constant0
lift_fresh_copy: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant0); _tensor_constant0 = None
detach_: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy); lift_fresh_copy = None
_tensor_constant1: "f32[0]" = self._tensor_constant1
lift_fresh_copy_1: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant1); _tensor_constant1 = None
detach__1: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy_1); lift_fresh_copy_1 = None
cat: "f32[s23, 1, s31, 96]" = torch.ops.aten.cat.default([detach_, arg16_1], -2); detach_ = arg16_1 = None
cat_1: "f32[s4, 1, s11, 96]" = torch.ops.aten.cat.default([detach__1, arg17_1], -2); detach__1 = arg17_1 = cat_1 = None
# File: ~/vv/this312/lib/python3.12/site-packages/torch/nn/modules/sparse.py:192 in forward, code: return F.embedding(
embedding: "f32[s72, s70, 192]" = torch.ops.aten.embedding.default(arg0_1, arg13_1); arg0_1 = embedding = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:371 in forward, code: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
sym_numel_default: "Sym(96*s23*s31)" = torch.ops.aten.sym_numel.default(cat)
eq: "Sym(False)" = sym_numel_default == 0; eq = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:373 in forward, code: past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
sym_size_int: "Sym(s31)" = torch.ops.aten.sym_size.int(cat, 2); cat = None
sym_size_int_1: "Sym(s70)" = torch.ops.aten.sym_size.int(arg13_1, 1)
add: "Sym(s31 + s70)" = sym_size_int + sym_size_int_1; sym_size_int_1 = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:372 in forward, code: cache_position: torch.Tensor = torch.arange(
arange: "i64[s70]" = torch.ops.aten.arange.start(sym_size_int, add, device = device(type='cpu'), pin_memory = False); add = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:379 in forward, code: causal_mask = create_causal_mask(
to: "b8[s43, s53]" = torch.ops.aten.to.device(arg14_1, device(type='cpu'), torch.bool); to = None
eq_1: "Sym(False)" = sym_numel_default == 0; sym_numel_default = eq_1 = None
sym_size_int_2: "Sym(s70)" = torch.ops.aten.sym_size.int(arange, 0)
add_1: "Sym(s31 + s70)" = sym_size_int + sym_size_int_2; sym_size_int = None
add_2: "Sym(s31 + s70)" = add_1 + 0
sym_size_int_3: "Sym(s53)" = torch.ops.aten.sym_size.int(arg14_1, 1); arg14_1 = None
sub: "Sym(s31 - s53 + s70)" = add_2 - sym_size_int_3; add_2 = None
gt: "Sym(s31 - s53 + s70 > 0)" = sub > 0; sub = gt = None
gt_1: "Sym(s53 > s31 + s70)" = sym_size_int_3 > add_1; sym_size_int_3 = gt_1 = None
arange_1: "i64[s31 + s70]" = torch.ops.aten.arange.default(add_1, device = device(type='cpu'), pin_memory = False); add_1 = None
add_: "i64[s31 + s70]" = torch.ops.aten.add_.Tensor(arange_1, 0)
sym_size_int_4: "Sym(s72)" = torch.ops.aten.sym_size.int(arg13_1, 0); arg13_1 = None
arange_2: "i64[s72]" = torch.ops.aten.arange.default(sym_size_int_4, device = device(type='cpu'), pin_memory = False); sym_size_int_4 = None
arange_3: "i64[1]" = torch.ops.aten.arange.default(1, device = device(type='cpu'), pin_memory = False)
movedim: "i64[s72]" = torch.ops.aten.movedim.int(arange_2, 0, 0); movedim = None
unsqueeze: "i64[1, 1]" = torch.ops.aten.unsqueeze.default(arange_3, 0); arange_3 = None
sym_size_int_5: "Sym(s72)" = torch.ops.aten.sym_size.int(arange_2, 0); arange_2 = None
expand: "i64[s72, 1]" = torch.ops.aten.expand.default(unsqueeze, [sym_size_int_5, 1]); unsqueeze = expand = None
unsqueeze_1: "i64[1, s70]" = torch.ops.aten.unsqueeze.default(arange, 0); arange = None
expand_1: "i64[s72, s70]" = torch.ops.aten.expand.default(unsqueeze_1, [sym_size_int_5, sym_size_int_2]); unsqueeze_1 = sym_size_int_2 = expand_1 = None
unsqueeze_2: "i64[1, s31 + s70]" = torch.ops.aten.unsqueeze.default(add_, 0); add_ = None
sym_size_int_6: "Sym(s31 + s70)" = torch.ops.aten.sym_size.int(arange_1, 0); arange_1 = None
expand_2: "i64[s72, s31 + s70]" = torch.ops.aten.expand.default(unsqueeze_2, [sym_size_int_5, sym_size_int_6]); unsqueeze_2 = sym_size_int_5 = sym_size_int_6 = expand_2 = None
cache-cache_patch:torch-rt/inputs2 EXPORT: 77%|███████▋ | 198/256 [00:56<00:35, 1.63it/s]
cache-cache_patch:torch-rt/inputs_empty_cache EXPORT: 77%|███████▋ | 198/256 [00:56<00:35, 1.63it/s]
def forward(self, arg0_1: "f32[32000, 192]", arg1_1: "f32[192, 192]", arg2_1: "f32[96, 192]", arg3_1: "f32[96, 192]", arg4_1: "f32[192, 192]", arg5_1: "f32[1024, 192]", arg6_1: "f32[1024, 192]", arg7_1: "f32[192, 1024]", arg8_1: "f32[192]", arg9_1: "f32[192]", arg10_1: "f32[192]", arg11_1: "f32[32000, 192]", arg12_1: "f32[48]", arg13_1: "i64[s72, s70]", arg14_1: "i64[s43, s53]", arg15_1: "i64[s44, s9]", arg16_1: "f32[s23, 1, 0, 96]", arg17_1: "f32[s4, 1, 0, 96]"):
# No stacktrace found for following nodes
_tensor_constant0: "f32[0]" = self._tensor_constant0
lift_fresh_copy: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant0); _tensor_constant0 = None
detach_: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy); lift_fresh_copy = None
_tensor_constant1: "f32[0]" = self._tensor_constant1
lift_fresh_copy_1: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant1); _tensor_constant1 = None
detach__1: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy_1); lift_fresh_copy_1 = None
cat: "f32[s23, 1, 0, 96]" = torch.ops.aten.cat.default([detach_, arg16_1], -2); detach_ = arg16_1 = cat = None
cat_1: "f32[s4, 1, 0, 96]" = torch.ops.aten.cat.default([detach__1, arg17_1], -2); detach__1 = arg17_1 = cat_1 = None
# File: ~/vv/this312/lib/python3.12/site-packages/torch/nn/modules/sparse.py:192 in forward, code: return F.embedding(
embedding: "f32[s72, s70, 192]" = torch.ops.aten.embedding.default(arg0_1, arg13_1); arg0_1 = embedding = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:373 in forward, code: past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
sym_size_int: "Sym(s70)" = torch.ops.aten.sym_size.int(arg13_1, 1)
add: "Sym(s70)" = 0 + sym_size_int; sym_size_int = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:372 in forward, code: cache_position: torch.Tensor = torch.arange(
arange: "i64[s70]" = torch.ops.aten.arange.start(0, add, device = device(type='cpu'), pin_memory = False); add = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:379 in forward, code: causal_mask = create_causal_mask(
to: "b8[s43, s53]" = torch.ops.aten.to.device(arg14_1, device(type='cpu'), torch.bool); to = None
sym_size_int_1: "Sym(s70)" = torch.ops.aten.sym_size.int(arange, 0)
add_1: "Sym(s70)" = 0 + sym_size_int_1
add_2: "Sym(s70)" = add_1 + 0
sym_size_int_2: "Sym(s53)" = torch.ops.aten.sym_size.int(arg14_1, 1); arg14_1 = None
sub: "Sym(-s53 + s70)" = add_2 - sym_size_int_2; add_2 = None
gt: "Sym(-s53 + s70 > 0)" = sub > 0; sub = gt = None
gt_1: "Sym(s53 > s70)" = sym_size_int_2 > add_1; sym_size_int_2 = gt_1 = None
arange_1: "i64[s70]" = torch.ops.aten.arange.default(add_1, device = device(type='cpu'), pin_memory = False); add_1 = None
add_: "i64[s70]" = torch.ops.aten.add_.Tensor(arange_1, 0)
sym_size_int_3: "Sym(s72)" = torch.ops.aten.sym_size.int(arg13_1, 0); arg13_1 = None
arange_2: "i64[s72]" = torch.ops.aten.arange.default(sym_size_int_3, device = device(type='cpu'), pin_memory = False); sym_size_int_3 = None
arange_3: "i64[1]" = torch.ops.aten.arange.default(1, device = device(type='cpu'), pin_memory = False)
movedim: "i64[s72]" = torch.ops.aten.movedim.int(arange_2, 0, 0); movedim = None
unsqueeze: "i64[1, 1]" = torch.ops.aten.unsqueeze.default(arange_3, 0); arange_3 = None
sym_size_int_4: "Sym(s72)" = torch.ops.aten.sym_size.int(arange_2, 0); arange_2 = None
expand: "i64[s72, 1]" = torch.ops.aten.expand.default(unsqueeze, [sym_size_int_4, 1]); unsqueeze = expand = None
unsqueeze_1: "i64[1, s70]" = torch.ops.aten.unsqueeze.default(arange, 0); arange = None
expand_1: "i64[s72, s70]" = torch.ops.aten.expand.default(unsqueeze_1, [sym_size_int_4, sym_size_int_1]); unsqueeze_1 = sym_size_int_1 = expand_1 = None
unsqueeze_2: "i64[1, s70]" = torch.ops.aten.unsqueeze.default(add_, 0); add_ = None
sym_size_int_5: "Sym(s70)" = torch.ops.aten.sym_size.int(arange_1, 0); arange_1 = None
expand_2: "i64[s72, s70]" = torch.ops.aten.expand.default(unsqueeze_2, [sym_size_int_4, sym_size_int_5]); unsqueeze_2 = sym_size_int_4 = sym_size_int_5 = expand_2 = None
def forward(self, arg0_1: "f32[32000, 192]", arg1_1: "f32[192, 192]", arg2_1: "f32[96, 192]", arg3_1: "f32[96, 192]", arg4_1: "f32[192, 192]", arg5_1: "f32[1024, 192]", arg6_1: "f32[1024, 192]", arg7_1: "f32[192, 1024]", arg8_1: "f32[192]", arg9_1: "f32[192]", arg10_1: "f32[192]", arg11_1: "f32[32000, 192]", arg12_1: "f32[48]", arg13_1: "i64[s72, s70]", arg14_1: "i64[s43, s53]", arg15_1: "i64[s44, s9]", arg16_1: "f32[s23, 1, 0, 96]", arg17_1: "f32[s4, 1, 0, 96]"):
# No stacktrace found for following nodes
_tensor_constant0: "f32[0]" = self._tensor_constant0
lift_fresh_copy: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant0); _tensor_constant0 = None
detach_: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy); lift_fresh_copy = None
_tensor_constant1: "f32[0]" = self._tensor_constant1
lift_fresh_copy_1: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant1); _tensor_constant1 = None
detach__1: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy_1); lift_fresh_copy_1 = None
cat: "f32[s23, 1, 0, 96]" = torch.ops.aten.cat.default([detach_, arg16_1], -2); detach_ = arg16_1 = cat = None
cat_1: "f32[s4, 1, 0, 96]" = torch.ops.aten.cat.default([detach__1, arg17_1], -2); detach__1 = arg17_1 = cat_1 = None
# File: ~/vv/this312/lib/python3.12/site-packages/torch/nn/modules/sparse.py:192 in forward, code: return F.embedding(
embedding: "f32[s72, s70, 192]" = torch.ops.aten.embedding.default(arg0_1, arg13_1); arg0_1 = embedding = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:373 in forward, code: past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
sym_size_int: "Sym(s70)" = torch.ops.aten.sym_size.int(arg13_1, 1)
add: "Sym(s70)" = 0 + sym_size_int; sym_size_int = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:372 in forward, code: cache_position: torch.Tensor = torch.arange(
arange: "i64[s70]" = torch.ops.aten.arange.start(0, add, device = device(type='cpu'), pin_memory = False); add = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:379 in forward, code: causal_mask = create_causal_mask(
to: "b8[s43, s53]" = torch.ops.aten.to.device(arg14_1, device(type='cpu'), torch.bool); to = None
sym_size_int_1: "Sym(s70)" = torch.ops.aten.sym_size.int(arange, 0)
add_1: "Sym(s70)" = 0 + sym_size_int_1
add_2: "Sym(s70)" = add_1 + 0
sym_size_int_2: "Sym(s53)" = torch.ops.aten.sym_size.int(arg14_1, 1); arg14_1 = None
sub: "Sym(-s53 + s70)" = add_2 - sym_size_int_2; add_2 = None
gt: "Sym(-s53 + s70 > 0)" = sub > 0; sub = gt = None
gt_1: "Sym(s53 > s70)" = sym_size_int_2 > add_1; sym_size_int_2 = gt_1 = None
arange_1: "i64[s70]" = torch.ops.aten.arange.default(add_1, device = device(type='cpu'), pin_memory = False); add_1 = None
add_: "i64[s70]" = torch.ops.aten.add_.Tensor(arange_1, 0)
sym_size_int_3: "Sym(s72)" = torch.ops.aten.sym_size.int(arg13_1, 0); arg13_1 = None
arange_2: "i64[s72]" = torch.ops.aten.arange.default(sym_size_int_3, device = device(type='cpu'), pin_memory = False); sym_size_int_3 = None
arange_3: "i64[1]" = torch.ops.aten.arange.default(1, device = device(type='cpu'), pin_memory = False)
movedim: "i64[s72]" = torch.ops.aten.movedim.int(arange_2, 0, 0); movedim = None
unsqueeze: "i64[1, 1]" = torch.ops.aten.unsqueeze.default(arange_3, 0); arange_3 = None
sym_size_int_4: "Sym(s72)" = torch.ops.aten.sym_size.int(arange_2, 0); arange_2 = None
expand: "i64[s72, 1]" = torch.ops.aten.expand.default(unsqueeze, [sym_size_int_4, 1]); unsqueeze = expand = None
unsqueeze_1: "i64[1, s70]" = torch.ops.aten.unsqueeze.default(arange, 0); arange = None
expand_1: "i64[s72, s70]" = torch.ops.aten.expand.default(unsqueeze_1, [sym_size_int_4, sym_size_int_1]); unsqueeze_1 = sym_size_int_1 = expand_1 = None
unsqueeze_2: "i64[1, s70]" = torch.ops.aten.unsqueeze.default(add_, 0); add_ = None
sym_size_int_5: "Sym(s70)" = torch.ops.aten.sym_size.int(arange_1, 0); arange_1 = None
expand_2: "i64[s72, s70]" = torch.ops.aten.expand.default(unsqueeze_2, [sym_size_int_4, sym_size_int_5]); unsqueeze_2 = sym_size_int_4 = sym_size_int_5 = expand_2 = None
cache-cache_patch:torch-rt/inputs_empty_cache EXPORT: 78%|███████▊ | 199/256 [00:56<00:28, 2.01it/s]
cache-cache_patch:torch-rt/inputs_batch1 EXPORT: 78%|███████▊ | 199/256 [00:56<00:28, 2.01it/s]
def forward(self, arg0_1: "f32[32000, 192]", arg1_1: "f32[192, 192]", arg2_1: "f32[96, 192]", arg3_1: "f32[96, 192]", arg4_1: "f32[192, 192]", arg5_1: "f32[1024, 192]", arg6_1: "f32[1024, 192]", arg7_1: "f32[192, 1024]", arg8_1: "f32[192]", arg9_1: "f32[192]", arg10_1: "f32[192]", arg11_1: "f32[32000, 192]", arg12_1: "f32[48]", arg13_1: "i64[1, s70]", arg14_1: "i64[1, s53]", arg15_1: "i64[1, s9]", arg16_1: "f32[1, 1, s31, 96]", arg17_1: "f32[1, 1, s11, 96]"):
# No stacktrace found for following nodes
_tensor_constant0: "f32[0]" = self._tensor_constant0
lift_fresh_copy: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant0); _tensor_constant0 = None
detach_: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy); lift_fresh_copy = None
_tensor_constant1: "f32[0]" = self._tensor_constant1
lift_fresh_copy_1: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant1); _tensor_constant1 = None
detach__1: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy_1); lift_fresh_copy_1 = None
cat: "f32[1, 1, s31, 96]" = torch.ops.aten.cat.default([detach_, arg16_1], -2); detach_ = arg16_1 = None
cat_1: "f32[1, 1, s11, 96]" = torch.ops.aten.cat.default([detach__1, arg17_1], -2); detach__1 = arg17_1 = cat_1 = None
# File: ~/vv/this312/lib/python3.12/site-packages/torch/nn/modules/sparse.py:192 in forward, code: return F.embedding(
embedding: "f32[1, s70, 192]" = torch.ops.aten.embedding.default(arg0_1, arg13_1); arg0_1 = embedding = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:371 in forward, code: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
sym_numel_default: "Sym(96*s31)" = torch.ops.aten.sym_numel.default(cat)
eq: "Sym(False)" = sym_numel_default == 0; eq = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:373 in forward, code: past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
sym_size_int: "Sym(s31)" = torch.ops.aten.sym_size.int(cat, 2); cat = None
sym_size_int_1: "Sym(s70)" = torch.ops.aten.sym_size.int(arg13_1, 1); arg13_1 = None
add: "Sym(s31 + s70)" = sym_size_int + sym_size_int_1; sym_size_int_1 = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:372 in forward, code: cache_position: torch.Tensor = torch.arange(
arange: "i64[s70]" = torch.ops.aten.arange.start(sym_size_int, add, device = device(type='cpu'), pin_memory = False); add = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:379 in forward, code: causal_mask = create_causal_mask(
to: "b8[1, s53]" = torch.ops.aten.to.device(arg14_1, device(type='cpu'), torch.bool); to = None
eq_1: "Sym(False)" = sym_numel_default == 0; sym_numel_default = eq_1 = None
sym_size_int_2: "Sym(s70)" = torch.ops.aten.sym_size.int(arange, 0)
add_1: "Sym(s31 + s70)" = sym_size_int + sym_size_int_2; sym_size_int = None
add_2: "Sym(s31 + s70)" = add_1 + 0
sym_size_int_3: "Sym(s53)" = torch.ops.aten.sym_size.int(arg14_1, 1); arg14_1 = None
sub: "Sym(s31 - s53 + s70)" = add_2 - sym_size_int_3; add_2 = None
gt: "Sym(s31 - s53 + s70 > 0)" = sub > 0; sub = gt = None
gt_1: "Sym(s53 > s31 + s70)" = sym_size_int_3 > add_1; sym_size_int_3 = gt_1 = None
arange_1: "i64[s31 + s70]" = torch.ops.aten.arange.default(add_1, device = device(type='cpu'), pin_memory = False); add_1 = None
add_: "i64[s31 + s70]" = torch.ops.aten.add_.Tensor(arange_1, 0)
arange_2: "i64[1]" = torch.ops.aten.arange.default(1, device = device(type='cpu'), pin_memory = False)
arange_3: "i64[1]" = torch.ops.aten.arange.default(1, device = device(type='cpu'), pin_memory = False)
movedim: "i64[1]" = torch.ops.aten.movedim.int(arange_2, 0, 0); arange_2 = None
select: "i64[]" = torch.ops.aten.select.int(movedim, 0, 0); movedim = None
movedim_1: "i64[1]" = torch.ops.aten.movedim.int(arange_3, 0, 0); arange_3 = None
select_1: "i64[]" = torch.ops.aten.select.int(movedim_1, 0, 0); movedim_1 = None
movedim_2: "i64[s70]" = torch.ops.aten.movedim.int(arange, 0, 0); arange = movedim_2 = None
unsqueeze: "i64[1]" = torch.ops.aten.unsqueeze.default(select, 0); select = None
expand: "i64[s70]" = torch.ops.aten.expand.default(unsqueeze, [sym_size_int_2]); unsqueeze = expand = None
unsqueeze_1: "i64[1]" = torch.ops.aten.unsqueeze.default(select_1, 0); select_1 = None
expand_1: "i64[s70]" = torch.ops.aten.expand.default(unsqueeze_1, [sym_size_int_2]); unsqueeze_1 = expand_1 = None
unsqueeze_2: "i64[1, s31 + s70]" = torch.ops.aten.unsqueeze.default(add_, 0); add_ = None
sym_size_int_4: "Sym(s31 + s70)" = torch.ops.aten.sym_size.int(arange_1, 0); arange_1 = None
expand_2: "i64[s70, s31 + s70]" = torch.ops.aten.expand.default(unsqueeze_2, [sym_size_int_2, sym_size_int_4]); unsqueeze_2 = sym_size_int_2 = sym_size_int_4 = expand_2 = None
def forward(self, arg0_1: "f32[32000, 192]", arg1_1: "f32[192, 192]", arg2_1: "f32[96, 192]", arg3_1: "f32[96, 192]", arg4_1: "f32[192, 192]", arg5_1: "f32[1024, 192]", arg6_1: "f32[1024, 192]", arg7_1: "f32[192, 1024]", arg8_1: "f32[192]", arg9_1: "f32[192]", arg10_1: "f32[192]", arg11_1: "f32[32000, 192]", arg12_1: "f32[48]", arg13_1: "i64[1, s70]", arg14_1: "i64[1, s53]", arg15_1: "i64[1, s9]", arg16_1: "f32[1, 1, s31, 96]", arg17_1: "f32[1, 1, s11, 96]"):
# No stacktrace found for following nodes
_tensor_constant0: "f32[0]" = self._tensor_constant0
lift_fresh_copy: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant0); _tensor_constant0 = None
detach_: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy); lift_fresh_copy = None
_tensor_constant1: "f32[0]" = self._tensor_constant1
lift_fresh_copy_1: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant1); _tensor_constant1 = None
detach__1: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy_1); lift_fresh_copy_1 = None
cat: "f32[1, 1, s31, 96]" = torch.ops.aten.cat.default([detach_, arg16_1], -2); detach_ = arg16_1 = None
cat_1: "f32[1, 1, s11, 96]" = torch.ops.aten.cat.default([detach__1, arg17_1], -2); detach__1 = arg17_1 = cat_1 = None
# File: ~/vv/this312/lib/python3.12/site-packages/torch/nn/modules/sparse.py:192 in forward, code: return F.embedding(
embedding: "f32[1, s70, 192]" = torch.ops.aten.embedding.default(arg0_1, arg13_1); arg0_1 = embedding = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:371 in forward, code: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
sym_numel_default: "Sym(96*s31)" = torch.ops.aten.sym_numel.default(cat)
eq: "Sym(False)" = sym_numel_default == 0; eq = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:373 in forward, code: past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
sym_size_int: "Sym(s31)" = torch.ops.aten.sym_size.int(cat, 2); cat = None
sym_size_int_1: "Sym(s70)" = torch.ops.aten.sym_size.int(arg13_1, 1); arg13_1 = None
add: "Sym(s31 + s70)" = sym_size_int + sym_size_int_1; sym_size_int_1 = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:372 in forward, code: cache_position: torch.Tensor = torch.arange(
arange: "i64[s70]" = torch.ops.aten.arange.start(sym_size_int, add, device = device(type='cpu'), pin_memory = False); add = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:379 in forward, code: causal_mask = create_causal_mask(
to: "b8[1, s53]" = torch.ops.aten.to.device(arg14_1, device(type='cpu'), torch.bool); to = None
eq_1: "Sym(False)" = sym_numel_default == 0; sym_numel_default = eq_1 = None
sym_size_int_2: "Sym(s70)" = torch.ops.aten.sym_size.int(arange, 0)
add_1: "Sym(s31 + s70)" = sym_size_int + sym_size_int_2; sym_size_int = None
add_2: "Sym(s31 + s70)" = add_1 + 0
sym_size_int_3: "Sym(s53)" = torch.ops.aten.sym_size.int(arg14_1, 1); arg14_1 = None
sub: "Sym(s31 - s53 + s70)" = add_2 - sym_size_int_3; add_2 = None
gt: "Sym(s31 - s53 + s70 > 0)" = sub > 0; sub = gt = None
gt_1: "Sym(s53 > s31 + s70)" = sym_size_int_3 > add_1; sym_size_int_3 = gt_1 = None
arange_1: "i64[s31 + s70]" = torch.ops.aten.arange.default(add_1, device = device(type='cpu'), pin_memory = False); add_1 = None
add_: "i64[s31 + s70]" = torch.ops.aten.add_.Tensor(arange_1, 0)
arange_2: "i64[1]" = torch.ops.aten.arange.default(1, device = device(type='cpu'), pin_memory = False)
arange_3: "i64[1]" = torch.ops.aten.arange.default(1, device = device(type='cpu'), pin_memory = False)
movedim: "i64[1]" = torch.ops.aten.movedim.int(arange_2, 0, 0); arange_2 = None
select: "i64[]" = torch.ops.aten.select.int(movedim, 0, 0); movedim = None
movedim_1: "i64[1]" = torch.ops.aten.movedim.int(arange_3, 0, 0); arange_3 = None
select_1: "i64[]" = torch.ops.aten.select.int(movedim_1, 0, 0); movedim_1 = None
movedim_2: "i64[s70]" = torch.ops.aten.movedim.int(arange, 0, 0); arange = movedim_2 = None
unsqueeze: "i64[1]" = torch.ops.aten.unsqueeze.default(select, 0); select = None
expand: "i64[s70]" = torch.ops.aten.expand.default(unsqueeze, [sym_size_int_2]); unsqueeze = expand = None
unsqueeze_1: "i64[1]" = torch.ops.aten.unsqueeze.default(select_1, 0); select_1 = None
expand_1: "i64[s70]" = torch.ops.aten.expand.default(unsqueeze_1, [sym_size_int_2]); unsqueeze_1 = expand_1 = None
unsqueeze_2: "i64[1, s31 + s70]" = torch.ops.aten.unsqueeze.default(add_, 0); add_ = None
sym_size_int_4: "Sym(s31 + s70)" = torch.ops.aten.sym_size.int(arange_1, 0); arange_1 = None
expand_2: "i64[s70, s31 + s70]" = torch.ops.aten.expand.default(unsqueeze_2, [sym_size_int_2, sym_size_int_4]); unsqueeze_2 = sym_size_int_2 = sym_size_int_4 = expand_2 = None
cache-cache_patch:torch-rt/inputs_batch1 EXPORT: 78%|███████▊ | 200/256 [00:56<00:23, 2.40it/s]
cache-cache_patch:torch-oblivious/inputs EXPORT: 78%|███████▊ | 200/256 [00:56<00:23, 2.40it/s]
def forward(self, arg0_1: "f32[32000, 192]", arg1_1: "f32[192, 192]", arg2_1: "f32[96, 192]", arg3_1: "f32[96, 192]", arg4_1: "f32[192, 192]", arg5_1: "f32[1024, 192]", arg6_1: "f32[1024, 192]", arg7_1: "f32[192, 1024]", arg8_1: "f32[192]", arg9_1: "f32[192]", arg10_1: "f32[192]", arg11_1: "f32[32000, 192]", arg12_1: "f32[48]", arg13_1: "i64[s72, s70]", arg14_1: "i64[s43, s53]", arg15_1: "i64[s44, s9]", arg16_1: "f32[s23, 1, s31, 96]", arg17_1: "f32[s4, 1, s11, 96]"):
# No stacktrace found for following nodes
_tensor_constant0: "f32[0]" = self._tensor_constant0
lift_fresh_copy: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant0); _tensor_constant0 = None
detach_: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy); lift_fresh_copy = None
_tensor_constant1: "f32[0]" = self._tensor_constant1
lift_fresh_copy_1: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant1); _tensor_constant1 = None
detach__1: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy_1); lift_fresh_copy_1 = None
cat: "f32[s23, 1, s31, 96]" = torch.ops.aten.cat.default([detach_, arg16_1], -2); detach_ = arg16_1 = None
cat_1: "f32[s4, 1, s11, 96]" = torch.ops.aten.cat.default([detach__1, arg17_1], -2); detach__1 = arg17_1 = cat_1 = None
# File: ~/vv/this312/lib/python3.12/site-packages/torch/nn/modules/sparse.py:192 in forward, code: return F.embedding(
embedding: "f32[s72, s70, 192]" = torch.ops.aten.embedding.default(arg0_1, arg13_1); arg0_1 = embedding = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:371 in forward, code: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
sym_numel_default: "Sym(96*s23*s31)" = torch.ops.aten.sym_numel.default(cat)
eq: "Sym(False)" = sym_numel_default == 0; eq = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:373 in forward, code: past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
sym_size_int: "Sym(s31)" = torch.ops.aten.sym_size.int(cat, 2); cat = None
sym_size_int_1: "Sym(s70)" = torch.ops.aten.sym_size.int(arg13_1, 1)
add: "Sym(s31 + s70)" = sym_size_int + sym_size_int_1; sym_size_int_1 = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:372 in forward, code: cache_position: torch.Tensor = torch.arange(
arange: "i64[s70]" = torch.ops.aten.arange.start(sym_size_int, add, device = device(type='cpu'), pin_memory = False); add = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:379 in forward, code: causal_mask = create_causal_mask(
to: "b8[s43, s53]" = torch.ops.aten.to.device(arg14_1, device(type='cpu'), torch.bool); to = None
eq_1: "Sym(False)" = sym_numel_default == 0; sym_numel_default = eq_1 = None
sym_size_int_2: "Sym(s70)" = torch.ops.aten.sym_size.int(arange, 0)
add_1: "Sym(s31 + s70)" = sym_size_int + sym_size_int_2; sym_size_int = None
add_2: "Sym(s31 + s70)" = add_1 + 0
sym_size_int_3: "Sym(s53)" = torch.ops.aten.sym_size.int(arg14_1, 1); arg14_1 = None
sub: "Sym(s31 - s53 + s70)" = add_2 - sym_size_int_3; add_2 = None
gt: "Sym(s31 - s53 + s70 > 0)" = sub > 0; sub = gt = None
gt_1: "Sym(s53 > s31 + s70)" = sym_size_int_3 > add_1; sym_size_int_3 = gt_1 = None
arange_1: "i64[s31 + s70]" = torch.ops.aten.arange.default(add_1, device = device(type='cpu'), pin_memory = False); add_1 = None
add_: "i64[s31 + s70]" = torch.ops.aten.add_.Tensor(arange_1, 0)
sym_size_int_4: "Sym(s72)" = torch.ops.aten.sym_size.int(arg13_1, 0); arg13_1 = None
arange_2: "i64[s72]" = torch.ops.aten.arange.default(sym_size_int_4, device = device(type='cpu'), pin_memory = False); sym_size_int_4 = None
arange_3: "i64[1]" = torch.ops.aten.arange.default(1, device = device(type='cpu'), pin_memory = False)
movedim: "i64[s72]" = torch.ops.aten.movedim.int(arange_2, 0, 0); movedim = None
unsqueeze: "i64[1, 1]" = torch.ops.aten.unsqueeze.default(arange_3, 0); arange_3 = None
sym_size_int_5: "Sym(s72)" = torch.ops.aten.sym_size.int(arange_2, 0); arange_2 = None
expand: "i64[s72, 1]" = torch.ops.aten.expand.default(unsqueeze, [sym_size_int_5, 1]); unsqueeze = expand = None
unsqueeze_1: "i64[1, s70]" = torch.ops.aten.unsqueeze.default(arange, 0); arange = None
expand_1: "i64[s72, s70]" = torch.ops.aten.expand.default(unsqueeze_1, [sym_size_int_5, sym_size_int_2]); unsqueeze_1 = sym_size_int_2 = expand_1 = None
unsqueeze_2: "i64[1, s31 + s70]" = torch.ops.aten.unsqueeze.default(add_, 0); add_ = None
sym_size_int_6: "Sym(s31 + s70)" = torch.ops.aten.sym_size.int(arange_1, 0); arange_1 = None
expand_2: "i64[s72, s31 + s70]" = torch.ops.aten.expand.default(unsqueeze_2, [sym_size_int_5, sym_size_int_6]); unsqueeze_2 = sym_size_int_5 = sym_size_int_6 = expand_2 = None
def forward(self, arg0_1: "f32[32000, 192]", arg1_1: "f32[192, 192]", arg2_1: "f32[96, 192]", arg3_1: "f32[96, 192]", arg4_1: "f32[192, 192]", arg5_1: "f32[1024, 192]", arg6_1: "f32[1024, 192]", arg7_1: "f32[192, 1024]", arg8_1: "f32[192]", arg9_1: "f32[192]", arg10_1: "f32[192]", arg11_1: "f32[32000, 192]", arg12_1: "f32[48]", arg13_1: "i64[s72, s70]", arg14_1: "i64[s43, s53]", arg15_1: "i64[s44, s9]", arg16_1: "f32[s23, 1, s31, 96]", arg17_1: "f32[s4, 1, s11, 96]"):
# No stacktrace found for following nodes
_tensor_constant0: "f32[0]" = self._tensor_constant0
lift_fresh_copy: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant0); _tensor_constant0 = None
detach_: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy); lift_fresh_copy = None
_tensor_constant1: "f32[0]" = self._tensor_constant1
lift_fresh_copy_1: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant1); _tensor_constant1 = None
detach__1: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy_1); lift_fresh_copy_1 = None
cat: "f32[s23, 1, s31, 96]" = torch.ops.aten.cat.default([detach_, arg16_1], -2); detach_ = arg16_1 = None
cat_1: "f32[s4, 1, s11, 96]" = torch.ops.aten.cat.default([detach__1, arg17_1], -2); detach__1 = arg17_1 = cat_1 = None
# File: ~/vv/this312/lib/python3.12/site-packages/torch/nn/modules/sparse.py:192 in forward, code: return F.embedding(
embedding: "f32[s72, s70, 192]" = torch.ops.aten.embedding.default(arg0_1, arg13_1); arg0_1 = embedding = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:371 in forward, code: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
sym_numel_default: "Sym(96*s23*s31)" = torch.ops.aten.sym_numel.default(cat)
eq: "Sym(False)" = sym_numel_default == 0; eq = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:373 in forward, code: past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
sym_size_int: "Sym(s31)" = torch.ops.aten.sym_size.int(cat, 2); cat = None
sym_size_int_1: "Sym(s70)" = torch.ops.aten.sym_size.int(arg13_1, 1)
add: "Sym(s31 + s70)" = sym_size_int + sym_size_int_1; sym_size_int_1 = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:372 in forward, code: cache_position: torch.Tensor = torch.arange(
arange: "i64[s70]" = torch.ops.aten.arange.start(sym_size_int, add, device = device(type='cpu'), pin_memory = False); add = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:379 in forward, code: causal_mask = create_causal_mask(
to: "b8[s43, s53]" = torch.ops.aten.to.device(arg14_1, device(type='cpu'), torch.bool); to = None
eq_1: "Sym(False)" = sym_numel_default == 0; sym_numel_default = eq_1 = None
sym_size_int_2: "Sym(s70)" = torch.ops.aten.sym_size.int(arange, 0)
add_1: "Sym(s31 + s70)" = sym_size_int + sym_size_int_2; sym_size_int = None
add_2: "Sym(s31 + s70)" = add_1 + 0
sym_size_int_3: "Sym(s53)" = torch.ops.aten.sym_size.int(arg14_1, 1); arg14_1 = None
sub: "Sym(s31 - s53 + s70)" = add_2 - sym_size_int_3; add_2 = None
gt: "Sym(s31 - s53 + s70 > 0)" = sub > 0; sub = gt = None
gt_1: "Sym(s53 > s31 + s70)" = sym_size_int_3 > add_1; sym_size_int_3 = gt_1 = None
arange_1: "i64[s31 + s70]" = torch.ops.aten.arange.default(add_1, device = device(type='cpu'), pin_memory = False); add_1 = None
add_: "i64[s31 + s70]" = torch.ops.aten.add_.Tensor(arange_1, 0)
sym_size_int_4: "Sym(s72)" = torch.ops.aten.sym_size.int(arg13_1, 0); arg13_1 = None
arange_2: "i64[s72]" = torch.ops.aten.arange.default(sym_size_int_4, device = device(type='cpu'), pin_memory = False); sym_size_int_4 = None
arange_3: "i64[1]" = torch.ops.aten.arange.default(1, device = device(type='cpu'), pin_memory = False)
movedim: "i64[s72]" = torch.ops.aten.movedim.int(arange_2, 0, 0); movedim = None
unsqueeze: "i64[1, 1]" = torch.ops.aten.unsqueeze.default(arange_3, 0); arange_3 = None
sym_size_int_5: "Sym(s72)" = torch.ops.aten.sym_size.int(arange_2, 0); arange_2 = None
expand: "i64[s72, 1]" = torch.ops.aten.expand.default(unsqueeze, [sym_size_int_5, 1]); unsqueeze = expand = None
unsqueeze_1: "i64[1, s70]" = torch.ops.aten.unsqueeze.default(arange, 0); arange = None
expand_1: "i64[s72, s70]" = torch.ops.aten.expand.default(unsqueeze_1, [sym_size_int_5, sym_size_int_2]); unsqueeze_1 = sym_size_int_2 = expand_1 = None
unsqueeze_2: "i64[1, s31 + s70]" = torch.ops.aten.unsqueeze.default(add_, 0); add_ = None
sym_size_int_6: "Sym(s31 + s70)" = torch.ops.aten.sym_size.int(arange_1, 0); arange_1 = None
expand_2: "i64[s72, s31 + s70]" = torch.ops.aten.expand.default(unsqueeze_2, [sym_size_int_5, sym_size_int_6]); unsqueeze_2 = sym_size_int_5 = sym_size_int_6 = expand_2 = None
cache-cache_patch:torch-oblivious/inputs EXPORT: 79%|███████▊ | 201/256 [00:57<00:21, 2.59it/s]
cache-cache_patch:torch-oblivious/inputs2 EXPORT: 79%|███████▊ | 201/256 [00:57<00:21, 2.59it/s]
def forward(self, arg0_1: "f32[32000, 192]", arg1_1: "f32[192, 192]", arg2_1: "f32[96, 192]", arg3_1: "f32[96, 192]", arg4_1: "f32[192, 192]", arg5_1: "f32[1024, 192]", arg6_1: "f32[1024, 192]", arg7_1: "f32[192, 1024]", arg8_1: "f32[192]", arg9_1: "f32[192]", arg10_1: "f32[192]", arg11_1: "f32[32000, 192]", arg12_1: "f32[48]", arg13_1: "i64[s72, s70]", arg14_1: "i64[s43, s53]", arg15_1: "i64[s44, s9]", arg16_1: "f32[s23, 1, s31, 96]", arg17_1: "f32[s4, 1, s11, 96]"):
# No stacktrace found for following nodes
_tensor_constant0: "f32[0]" = self._tensor_constant0
lift_fresh_copy: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant0); _tensor_constant0 = None
detach_: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy); lift_fresh_copy = None
_tensor_constant1: "f32[0]" = self._tensor_constant1
lift_fresh_copy_1: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant1); _tensor_constant1 = None
detach__1: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy_1); lift_fresh_copy_1 = None
cat: "f32[s23, 1, s31, 96]" = torch.ops.aten.cat.default([detach_, arg16_1], -2); detach_ = arg16_1 = None
cat_1: "f32[s4, 1, s11, 96]" = torch.ops.aten.cat.default([detach__1, arg17_1], -2); detach__1 = arg17_1 = cat_1 = None
# File: ~/vv/this312/lib/python3.12/site-packages/torch/nn/modules/sparse.py:192 in forward, code: return F.embedding(
embedding: "f32[s72, s70, 192]" = torch.ops.aten.embedding.default(arg0_1, arg13_1); arg0_1 = embedding = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:371 in forward, code: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
sym_numel_default: "Sym(96*s23*s31)" = torch.ops.aten.sym_numel.default(cat)
eq: "Sym(False)" = sym_numel_default == 0; eq = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:373 in forward, code: past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
sym_size_int: "Sym(s31)" = torch.ops.aten.sym_size.int(cat, 2); cat = None
sym_size_int_1: "Sym(s70)" = torch.ops.aten.sym_size.int(arg13_1, 1)
add: "Sym(s31 + s70)" = sym_size_int + sym_size_int_1; sym_size_int_1 = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:372 in forward, code: cache_position: torch.Tensor = torch.arange(
arange: "i64[s70]" = torch.ops.aten.arange.start(sym_size_int, add, device = device(type='cpu'), pin_memory = False); add = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:379 in forward, code: causal_mask = create_causal_mask(
to: "b8[s43, s53]" = torch.ops.aten.to.device(arg14_1, device(type='cpu'), torch.bool); to = None
eq_1: "Sym(False)" = sym_numel_default == 0; sym_numel_default = eq_1 = None
sym_size_int_2: "Sym(s70)" = torch.ops.aten.sym_size.int(arange, 0)
add_1: "Sym(s31 + s70)" = sym_size_int + sym_size_int_2; sym_size_int = None
add_2: "Sym(s31 + s70)" = add_1 + 0
sym_size_int_3: "Sym(s53)" = torch.ops.aten.sym_size.int(arg14_1, 1); arg14_1 = None
sub: "Sym(s31 - s53 + s70)" = add_2 - sym_size_int_3; add_2 = None
gt: "Sym(s31 - s53 + s70 > 0)" = sub > 0; sub = gt = None
gt_1: "Sym(s53 > s31 + s70)" = sym_size_int_3 > add_1; sym_size_int_3 = gt_1 = None
arange_1: "i64[s31 + s70]" = torch.ops.aten.arange.default(add_1, device = device(type='cpu'), pin_memory = False); add_1 = None
add_: "i64[s31 + s70]" = torch.ops.aten.add_.Tensor(arange_1, 0)
sym_size_int_4: "Sym(s72)" = torch.ops.aten.sym_size.int(arg13_1, 0); arg13_1 = None
arange_2: "i64[s72]" = torch.ops.aten.arange.default(sym_size_int_4, device = device(type='cpu'), pin_memory = False); sym_size_int_4 = None
arange_3: "i64[1]" = torch.ops.aten.arange.default(1, device = device(type='cpu'), pin_memory = False)
movedim: "i64[s72]" = torch.ops.aten.movedim.int(arange_2, 0, 0); movedim = None
unsqueeze: "i64[1, 1]" = torch.ops.aten.unsqueeze.default(arange_3, 0); arange_3 = None
sym_size_int_5: "Sym(s72)" = torch.ops.aten.sym_size.int(arange_2, 0); arange_2 = None
expand: "i64[s72, 1]" = torch.ops.aten.expand.default(unsqueeze, [sym_size_int_5, 1]); unsqueeze = expand = None
unsqueeze_1: "i64[1, s70]" = torch.ops.aten.unsqueeze.default(arange, 0); arange = None
expand_1: "i64[s72, s70]" = torch.ops.aten.expand.default(unsqueeze_1, [sym_size_int_5, sym_size_int_2]); unsqueeze_1 = sym_size_int_2 = expand_1 = None
unsqueeze_2: "i64[1, s31 + s70]" = torch.ops.aten.unsqueeze.default(add_, 0); add_ = None
sym_size_int_6: "Sym(s31 + s70)" = torch.ops.aten.sym_size.int(arange_1, 0); arange_1 = None
expand_2: "i64[s72, s31 + s70]" = torch.ops.aten.expand.default(unsqueeze_2, [sym_size_int_5, sym_size_int_6]); unsqueeze_2 = sym_size_int_5 = sym_size_int_6 = expand_2 = None
def forward(self, arg0_1: "f32[32000, 192]", arg1_1: "f32[192, 192]", arg2_1: "f32[96, 192]", arg3_1: "f32[96, 192]", arg4_1: "f32[192, 192]", arg5_1: "f32[1024, 192]", arg6_1: "f32[1024, 192]", arg7_1: "f32[192, 1024]", arg8_1: "f32[192]", arg9_1: "f32[192]", arg10_1: "f32[192]", arg11_1: "f32[32000, 192]", arg12_1: "f32[48]", arg13_1: "i64[s72, s70]", arg14_1: "i64[s43, s53]", arg15_1: "i64[s44, s9]", arg16_1: "f32[s23, 1, s31, 96]", arg17_1: "f32[s4, 1, s11, 96]"):
# No stacktrace found for following nodes
_tensor_constant0: "f32[0]" = self._tensor_constant0
lift_fresh_copy: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant0); _tensor_constant0 = None
detach_: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy); lift_fresh_copy = None
_tensor_constant1: "f32[0]" = self._tensor_constant1
lift_fresh_copy_1: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant1); _tensor_constant1 = None
detach__1: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy_1); lift_fresh_copy_1 = None
cat: "f32[s23, 1, s31, 96]" = torch.ops.aten.cat.default([detach_, arg16_1], -2); detach_ = arg16_1 = None
cat_1: "f32[s4, 1, s11, 96]" = torch.ops.aten.cat.default([detach__1, arg17_1], -2); detach__1 = arg17_1 = cat_1 = None
# File: ~/vv/this312/lib/python3.12/site-packages/torch/nn/modules/sparse.py:192 in forward, code: return F.embedding(
embedding: "f32[s72, s70, 192]" = torch.ops.aten.embedding.default(arg0_1, arg13_1); arg0_1 = embedding = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:371 in forward, code: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
sym_numel_default: "Sym(96*s23*s31)" = torch.ops.aten.sym_numel.default(cat)
eq: "Sym(False)" = sym_numel_default == 0; eq = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:373 in forward, code: past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
sym_size_int: "Sym(s31)" = torch.ops.aten.sym_size.int(cat, 2); cat = None
sym_size_int_1: "Sym(s70)" = torch.ops.aten.sym_size.int(arg13_1, 1)
add: "Sym(s31 + s70)" = sym_size_int + sym_size_int_1; sym_size_int_1 = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:372 in forward, code: cache_position: torch.Tensor = torch.arange(
arange: "i64[s70]" = torch.ops.aten.arange.start(sym_size_int, add, device = device(type='cpu'), pin_memory = False); add = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:379 in forward, code: causal_mask = create_causal_mask(
to: "b8[s43, s53]" = torch.ops.aten.to.device(arg14_1, device(type='cpu'), torch.bool); to = None
eq_1: "Sym(False)" = sym_numel_default == 0; sym_numel_default = eq_1 = None
sym_size_int_2: "Sym(s70)" = torch.ops.aten.sym_size.int(arange, 0)
add_1: "Sym(s31 + s70)" = sym_size_int + sym_size_int_2; sym_size_int = None
add_2: "Sym(s31 + s70)" = add_1 + 0
sym_size_int_3: "Sym(s53)" = torch.ops.aten.sym_size.int(arg14_1, 1); arg14_1 = None
sub: "Sym(s31 - s53 + s70)" = add_2 - sym_size_int_3; add_2 = None
gt: "Sym(s31 - s53 + s70 > 0)" = sub > 0; sub = gt = None
gt_1: "Sym(s53 > s31 + s70)" = sym_size_int_3 > add_1; sym_size_int_3 = gt_1 = None
arange_1: "i64[s31 + s70]" = torch.ops.aten.arange.default(add_1, device = device(type='cpu'), pin_memory = False); add_1 = None
add_: "i64[s31 + s70]" = torch.ops.aten.add_.Tensor(arange_1, 0)
sym_size_int_4: "Sym(s72)" = torch.ops.aten.sym_size.int(arg13_1, 0); arg13_1 = None
arange_2: "i64[s72]" = torch.ops.aten.arange.default(sym_size_int_4, device = device(type='cpu'), pin_memory = False); sym_size_int_4 = None
arange_3: "i64[1]" = torch.ops.aten.arange.default(1, device = device(type='cpu'), pin_memory = False)
movedim: "i64[s72]" = torch.ops.aten.movedim.int(arange_2, 0, 0); movedim = None
unsqueeze: "i64[1, 1]" = torch.ops.aten.unsqueeze.default(arange_3, 0); arange_3 = None
sym_size_int_5: "Sym(s72)" = torch.ops.aten.sym_size.int(arange_2, 0); arange_2 = None
expand: "i64[s72, 1]" = torch.ops.aten.expand.default(unsqueeze, [sym_size_int_5, 1]); unsqueeze = expand = None
unsqueeze_1: "i64[1, s70]" = torch.ops.aten.unsqueeze.default(arange, 0); arange = None
expand_1: "i64[s72, s70]" = torch.ops.aten.expand.default(unsqueeze_1, [sym_size_int_5, sym_size_int_2]); unsqueeze_1 = sym_size_int_2 = expand_1 = None
unsqueeze_2: "i64[1, s31 + s70]" = torch.ops.aten.unsqueeze.default(add_, 0); add_ = None
sym_size_int_6: "Sym(s31 + s70)" = torch.ops.aten.sym_size.int(arange_1, 0); arange_1 = None
expand_2: "i64[s72, s31 + s70]" = torch.ops.aten.expand.default(unsqueeze_2, [sym_size_int_5, sym_size_int_6]); unsqueeze_2 = sym_size_int_5 = sym_size_int_6 = expand_2 = None
cache-cache_patch:torch-oblivious/inputs2 EXPORT: 79%|███████▉ | 202/256 [00:57<00:20, 2.60it/s]
cache-cache_patch:torch-oblivious/inputs_empty_cache EXPORT: 79%|███████▉ | 202/256 [00:57<00:20, 2.60it/s]
def forward(self, arg0_1: "f32[32000, 192]", arg1_1: "f32[192, 192]", arg2_1: "f32[96, 192]", arg3_1: "f32[96, 192]", arg4_1: "f32[192, 192]", arg5_1: "f32[1024, 192]", arg6_1: "f32[1024, 192]", arg7_1: "f32[192, 1024]", arg8_1: "f32[192]", arg9_1: "f32[192]", arg10_1: "f32[192]", arg11_1: "f32[32000, 192]", arg12_1: "f32[48]", arg13_1: "i64[s72, s70]", arg14_1: "i64[s43, s53]", arg15_1: "i64[s44, s9]", arg16_1: "f32[s23, 1, s31, 96]", arg17_1: "f32[s4, 1, s11, 96]"):
# No stacktrace found for following nodes
_tensor_constant0: "f32[0]" = self._tensor_constant0
lift_fresh_copy: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant0); _tensor_constant0 = None
detach_: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy); lift_fresh_copy = None
_tensor_constant1: "f32[0]" = self._tensor_constant1
lift_fresh_copy_1: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant1); _tensor_constant1 = None
detach__1: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy_1); lift_fresh_copy_1 = None
cat: "f32[s23, 1, s31, 96]" = torch.ops.aten.cat.default([detach_, arg16_1], -2); detach_ = arg16_1 = None
cat_1: "f32[s4, 1, s11, 96]" = torch.ops.aten.cat.default([detach__1, arg17_1], -2); detach__1 = arg17_1 = cat_1 = None
# File: ~/vv/this312/lib/python3.12/site-packages/torch/nn/modules/sparse.py:192 in forward, code: return F.embedding(
embedding: "f32[s72, s70, 192]" = torch.ops.aten.embedding.default(arg0_1, arg13_1); arg0_1 = embedding = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:371 in forward, code: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
sym_numel_default: "Sym(96*s23*s31)" = torch.ops.aten.sym_numel.default(cat)
eq: "Sym(False)" = sym_numel_default == 0; eq = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:373 in forward, code: past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
sym_size_int: "Sym(s31)" = torch.ops.aten.sym_size.int(cat, 2); cat = None
sym_size_int_1: "Sym(s70)" = torch.ops.aten.sym_size.int(arg13_1, 1)
add: "Sym(s31 + s70)" = sym_size_int + sym_size_int_1; sym_size_int_1 = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:372 in forward, code: cache_position: torch.Tensor = torch.arange(
arange: "i64[s70]" = torch.ops.aten.arange.start(sym_size_int, add, device = device(type='cpu'), pin_memory = False); add = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:379 in forward, code: causal_mask = create_causal_mask(
to: "b8[s43, s53]" = torch.ops.aten.to.device(arg14_1, device(type='cpu'), torch.bool); to = None
eq_1: "Sym(False)" = sym_numel_default == 0; sym_numel_default = eq_1 = None
sym_size_int_2: "Sym(s70)" = torch.ops.aten.sym_size.int(arange, 0)
add_1: "Sym(s31 + s70)" = sym_size_int + sym_size_int_2; sym_size_int = None
add_2: "Sym(s31 + s70)" = add_1 + 0
sym_size_int_3: "Sym(s53)" = torch.ops.aten.sym_size.int(arg14_1, 1); arg14_1 = None
sub: "Sym(s31 - s53 + s70)" = add_2 - sym_size_int_3; add_2 = None
gt: "Sym(s31 - s53 + s70 > 0)" = sub > 0; sub = gt = None
gt_1: "Sym(s53 > s31 + s70)" = sym_size_int_3 > add_1; sym_size_int_3 = gt_1 = None
arange_1: "i64[s31 + s70]" = torch.ops.aten.arange.default(add_1, device = device(type='cpu'), pin_memory = False); add_1 = None
add_: "i64[s31 + s70]" = torch.ops.aten.add_.Tensor(arange_1, 0)
sym_size_int_4: "Sym(s72)" = torch.ops.aten.sym_size.int(arg13_1, 0); arg13_1 = None
arange_2: "i64[s72]" = torch.ops.aten.arange.default(sym_size_int_4, device = device(type='cpu'), pin_memory = False); sym_size_int_4 = None
arange_3: "i64[1]" = torch.ops.aten.arange.default(1, device = device(type='cpu'), pin_memory = False)
movedim: "i64[s72]" = torch.ops.aten.movedim.int(arange_2, 0, 0); movedim = None
unsqueeze: "i64[1, 1]" = torch.ops.aten.unsqueeze.default(arange_3, 0); arange_3 = None
sym_size_int_5: "Sym(s72)" = torch.ops.aten.sym_size.int(arange_2, 0); arange_2 = None
expand: "i64[s72, 1]" = torch.ops.aten.expand.default(unsqueeze, [sym_size_int_5, 1]); unsqueeze = expand = None
unsqueeze_1: "i64[1, s70]" = torch.ops.aten.unsqueeze.default(arange, 0); arange = None
expand_1: "i64[s72, s70]" = torch.ops.aten.expand.default(unsqueeze_1, [sym_size_int_5, sym_size_int_2]); unsqueeze_1 = sym_size_int_2 = expand_1 = None
unsqueeze_2: "i64[1, s31 + s70]" = torch.ops.aten.unsqueeze.default(add_, 0); add_ = None
sym_size_int_6: "Sym(s31 + s70)" = torch.ops.aten.sym_size.int(arange_1, 0); arange_1 = None
expand_2: "i64[s72, s31 + s70]" = torch.ops.aten.expand.default(unsqueeze_2, [sym_size_int_5, sym_size_int_6]); unsqueeze_2 = sym_size_int_5 = sym_size_int_6 = expand_2 = None
def forward(self, arg0_1: "f32[32000, 192]", arg1_1: "f32[192, 192]", arg2_1: "f32[96, 192]", arg3_1: "f32[96, 192]", arg4_1: "f32[192, 192]", arg5_1: "f32[1024, 192]", arg6_1: "f32[1024, 192]", arg7_1: "f32[192, 1024]", arg8_1: "f32[192]", arg9_1: "f32[192]", arg10_1: "f32[192]", arg11_1: "f32[32000, 192]", arg12_1: "f32[48]", arg13_1: "i64[s72, s70]", arg14_1: "i64[s43, s53]", arg15_1: "i64[s44, s9]", arg16_1: "f32[s23, 1, s31, 96]", arg17_1: "f32[s4, 1, s11, 96]"):
# No stacktrace found for following nodes
_tensor_constant0: "f32[0]" = self._tensor_constant0
lift_fresh_copy: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant0); _tensor_constant0 = None
detach_: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy); lift_fresh_copy = None
_tensor_constant1: "f32[0]" = self._tensor_constant1
lift_fresh_copy_1: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant1); _tensor_constant1 = None
detach__1: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy_1); lift_fresh_copy_1 = None
cat: "f32[s23, 1, s31, 96]" = torch.ops.aten.cat.default([detach_, arg16_1], -2); detach_ = arg16_1 = None
cat_1: "f32[s4, 1, s11, 96]" = torch.ops.aten.cat.default([detach__1, arg17_1], -2); detach__1 = arg17_1 = cat_1 = None
# File: ~/vv/this312/lib/python3.12/site-packages/torch/nn/modules/sparse.py:192 in forward, code: return F.embedding(
embedding: "f32[s72, s70, 192]" = torch.ops.aten.embedding.default(arg0_1, arg13_1); arg0_1 = embedding = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:371 in forward, code: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
sym_numel_default: "Sym(96*s23*s31)" = torch.ops.aten.sym_numel.default(cat)
eq: "Sym(False)" = sym_numel_default == 0; eq = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:373 in forward, code: past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
sym_size_int: "Sym(s31)" = torch.ops.aten.sym_size.int(cat, 2); cat = None
sym_size_int_1: "Sym(s70)" = torch.ops.aten.sym_size.int(arg13_1, 1)
add: "Sym(s31 + s70)" = sym_size_int + sym_size_int_1; sym_size_int_1 = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:372 in forward, code: cache_position: torch.Tensor = torch.arange(
arange: "i64[s70]" = torch.ops.aten.arange.start(sym_size_int, add, device = device(type='cpu'), pin_memory = False); add = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:379 in forward, code: causal_mask = create_causal_mask(
to: "b8[s43, s53]" = torch.ops.aten.to.device(arg14_1, device(type='cpu'), torch.bool); to = None
eq_1: "Sym(False)" = sym_numel_default == 0; sym_numel_default = eq_1 = None
sym_size_int_2: "Sym(s70)" = torch.ops.aten.sym_size.int(arange, 0)
add_1: "Sym(s31 + s70)" = sym_size_int + sym_size_int_2; sym_size_int = None
add_2: "Sym(s31 + s70)" = add_1 + 0
sym_size_int_3: "Sym(s53)" = torch.ops.aten.sym_size.int(arg14_1, 1); arg14_1 = None
sub: "Sym(s31 - s53 + s70)" = add_2 - sym_size_int_3; add_2 = None
gt: "Sym(s31 - s53 + s70 > 0)" = sub > 0; sub = gt = None
gt_1: "Sym(s53 > s31 + s70)" = sym_size_int_3 > add_1; sym_size_int_3 = gt_1 = None
arange_1: "i64[s31 + s70]" = torch.ops.aten.arange.default(add_1, device = device(type='cpu'), pin_memory = False); add_1 = None
add_: "i64[s31 + s70]" = torch.ops.aten.add_.Tensor(arange_1, 0)
sym_size_int_4: "Sym(s72)" = torch.ops.aten.sym_size.int(arg13_1, 0); arg13_1 = None
arange_2: "i64[s72]" = torch.ops.aten.arange.default(sym_size_int_4, device = device(type='cpu'), pin_memory = False); sym_size_int_4 = None
arange_3: "i64[1]" = torch.ops.aten.arange.default(1, device = device(type='cpu'), pin_memory = False)
movedim: "i64[s72]" = torch.ops.aten.movedim.int(arange_2, 0, 0); movedim = None
unsqueeze: "i64[1, 1]" = torch.ops.aten.unsqueeze.default(arange_3, 0); arange_3 = None
sym_size_int_5: "Sym(s72)" = torch.ops.aten.sym_size.int(arange_2, 0); arange_2 = None
expand: "i64[s72, 1]" = torch.ops.aten.expand.default(unsqueeze, [sym_size_int_5, 1]); unsqueeze = expand = None
unsqueeze_1: "i64[1, s70]" = torch.ops.aten.unsqueeze.default(arange, 0); arange = None
expand_1: "i64[s72, s70]" = torch.ops.aten.expand.default(unsqueeze_1, [sym_size_int_5, sym_size_int_2]); unsqueeze_1 = sym_size_int_2 = expand_1 = None
unsqueeze_2: "i64[1, s31 + s70]" = torch.ops.aten.unsqueeze.default(add_, 0); add_ = None
sym_size_int_6: "Sym(s31 + s70)" = torch.ops.aten.sym_size.int(arange_1, 0); arange_1 = None
expand_2: "i64[s72, s31 + s70]" = torch.ops.aten.expand.default(unsqueeze_2, [sym_size_int_5, sym_size_int_6]); unsqueeze_2 = sym_size_int_5 = sym_size_int_6 = expand_2 = None
cache-cache_patch:torch-oblivious/inputs_empty_cache EXPORT: 79%|███████▉ | 203/256 [00:57<00:20, 2.61it/s]
cache-cache_patch:torch-oblivious/inputs_batch1 EXPORT: 79%|███████▉ | 203/256 [00:57<00:20, 2.61it/s]
def forward(self, arg0_1: "f32[32000, 192]", arg1_1: "f32[192, 192]", arg2_1: "f32[96, 192]", arg3_1: "f32[96, 192]", arg4_1: "f32[192, 192]", arg5_1: "f32[1024, 192]", arg6_1: "f32[1024, 192]", arg7_1: "f32[192, 1024]", arg8_1: "f32[192]", arg9_1: "f32[192]", arg10_1: "f32[192]", arg11_1: "f32[32000, 192]", arg12_1: "f32[48]", arg13_1: "i64[s72, s70]", arg14_1: "i64[s43, s53]", arg15_1: "i64[s44, s9]", arg16_1: "f32[s23, 1, s31, 96]", arg17_1: "f32[s4, 1, s11, 96]"):
# No stacktrace found for following nodes
_tensor_constant0: "f32[0]" = self._tensor_constant0
lift_fresh_copy: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant0); _tensor_constant0 = None
detach_: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy); lift_fresh_copy = None
_tensor_constant1: "f32[0]" = self._tensor_constant1
lift_fresh_copy_1: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant1); _tensor_constant1 = None
detach__1: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy_1); lift_fresh_copy_1 = None
cat: "f32[s23, 1, s31, 96]" = torch.ops.aten.cat.default([detach_, arg16_1], -2); detach_ = arg16_1 = None
cat_1: "f32[s4, 1, s11, 96]" = torch.ops.aten.cat.default([detach__1, arg17_1], -2); detach__1 = arg17_1 = cat_1 = None
# File: ~/vv/this312/lib/python3.12/site-packages/torch/nn/modules/sparse.py:192 in forward, code: return F.embedding(
embedding: "f32[s72, s70, 192]" = torch.ops.aten.embedding.default(arg0_1, arg13_1); arg0_1 = embedding = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:371 in forward, code: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
sym_numel_default: "Sym(96*s23*s31)" = torch.ops.aten.sym_numel.default(cat)
eq: "Sym(False)" = sym_numel_default == 0; eq = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:373 in forward, code: past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
sym_size_int: "Sym(s31)" = torch.ops.aten.sym_size.int(cat, 2); cat = None
sym_size_int_1: "Sym(s70)" = torch.ops.aten.sym_size.int(arg13_1, 1)
add: "Sym(s31 + s70)" = sym_size_int + sym_size_int_1; sym_size_int_1 = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:372 in forward, code: cache_position: torch.Tensor = torch.arange(
arange: "i64[s70]" = torch.ops.aten.arange.start(sym_size_int, add, device = device(type='cpu'), pin_memory = False); add = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:379 in forward, code: causal_mask = create_causal_mask(
to: "b8[s43, s53]" = torch.ops.aten.to.device(arg14_1, device(type='cpu'), torch.bool); to = None
eq_1: "Sym(False)" = sym_numel_default == 0; sym_numel_default = eq_1 = None
sym_size_int_2: "Sym(s70)" = torch.ops.aten.sym_size.int(arange, 0)
add_1: "Sym(s31 + s70)" = sym_size_int + sym_size_int_2; sym_size_int = None
add_2: "Sym(s31 + s70)" = add_1 + 0
sym_size_int_3: "Sym(s53)" = torch.ops.aten.sym_size.int(arg14_1, 1); arg14_1 = None
sub: "Sym(s31 - s53 + s70)" = add_2 - sym_size_int_3; add_2 = None
gt: "Sym(s31 - s53 + s70 > 0)" = sub > 0; sub = gt = None
gt_1: "Sym(s53 > s31 + s70)" = sym_size_int_3 > add_1; sym_size_int_3 = gt_1 = None
arange_1: "i64[s31 + s70]" = torch.ops.aten.arange.default(add_1, device = device(type='cpu'), pin_memory = False); add_1 = None
add_: "i64[s31 + s70]" = torch.ops.aten.add_.Tensor(arange_1, 0)
sym_size_int_4: "Sym(s72)" = torch.ops.aten.sym_size.int(arg13_1, 0); arg13_1 = None
arange_2: "i64[s72]" = torch.ops.aten.arange.default(sym_size_int_4, device = device(type='cpu'), pin_memory = False); sym_size_int_4 = None
arange_3: "i64[1]" = torch.ops.aten.arange.default(1, device = device(type='cpu'), pin_memory = False)
movedim: "i64[s72]" = torch.ops.aten.movedim.int(arange_2, 0, 0); movedim = None
unsqueeze: "i64[1, 1]" = torch.ops.aten.unsqueeze.default(arange_3, 0); arange_3 = None
sym_size_int_5: "Sym(s72)" = torch.ops.aten.sym_size.int(arange_2, 0); arange_2 = None
expand: "i64[s72, 1]" = torch.ops.aten.expand.default(unsqueeze, [sym_size_int_5, 1]); unsqueeze = expand = None
unsqueeze_1: "i64[1, s70]" = torch.ops.aten.unsqueeze.default(arange, 0); arange = None
expand_1: "i64[s72, s70]" = torch.ops.aten.expand.default(unsqueeze_1, [sym_size_int_5, sym_size_int_2]); unsqueeze_1 = sym_size_int_2 = expand_1 = None
unsqueeze_2: "i64[1, s31 + s70]" = torch.ops.aten.unsqueeze.default(add_, 0); add_ = None
sym_size_int_6: "Sym(s31 + s70)" = torch.ops.aten.sym_size.int(arange_1, 0); arange_1 = None
expand_2: "i64[s72, s31 + s70]" = torch.ops.aten.expand.default(unsqueeze_2, [sym_size_int_5, sym_size_int_6]); unsqueeze_2 = sym_size_int_5 = sym_size_int_6 = expand_2 = None
def forward(self, arg0_1: "f32[32000, 192]", arg1_1: "f32[192, 192]", arg2_1: "f32[96, 192]", arg3_1: "f32[96, 192]", arg4_1: "f32[192, 192]", arg5_1: "f32[1024, 192]", arg6_1: "f32[1024, 192]", arg7_1: "f32[192, 1024]", arg8_1: "f32[192]", arg9_1: "f32[192]", arg10_1: "f32[192]", arg11_1: "f32[32000, 192]", arg12_1: "f32[48]", arg13_1: "i64[s72, s70]", arg14_1: "i64[s43, s53]", arg15_1: "i64[s44, s9]", arg16_1: "f32[s23, 1, s31, 96]", arg17_1: "f32[s4, 1, s11, 96]"):
# No stacktrace found for following nodes
_tensor_constant0: "f32[0]" = self._tensor_constant0
lift_fresh_copy: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant0); _tensor_constant0 = None
detach_: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy); lift_fresh_copy = None
_tensor_constant1: "f32[0]" = self._tensor_constant1
lift_fresh_copy_1: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant1); _tensor_constant1 = None
detach__1: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy_1); lift_fresh_copy_1 = None
cat: "f32[s23, 1, s31, 96]" = torch.ops.aten.cat.default([detach_, arg16_1], -2); detach_ = arg16_1 = None
cat_1: "f32[s4, 1, s11, 96]" = torch.ops.aten.cat.default([detach__1, arg17_1], -2); detach__1 = arg17_1 = cat_1 = None
# File: ~/vv/this312/lib/python3.12/site-packages/torch/nn/modules/sparse.py:192 in forward, code: return F.embedding(
embedding: "f32[s72, s70, 192]" = torch.ops.aten.embedding.default(arg0_1, arg13_1); arg0_1 = embedding = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:371 in forward, code: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
sym_numel_default: "Sym(96*s23*s31)" = torch.ops.aten.sym_numel.default(cat)
eq: "Sym(False)" = sym_numel_default == 0; eq = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:373 in forward, code: past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
sym_size_int: "Sym(s31)" = torch.ops.aten.sym_size.int(cat, 2); cat = None
sym_size_int_1: "Sym(s70)" = torch.ops.aten.sym_size.int(arg13_1, 1)
add: "Sym(s31 + s70)" = sym_size_int + sym_size_int_1; sym_size_int_1 = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:372 in forward, code: cache_position: torch.Tensor = torch.arange(
arange: "i64[s70]" = torch.ops.aten.arange.start(sym_size_int, add, device = device(type='cpu'), pin_memory = False); add = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:379 in forward, code: causal_mask = create_causal_mask(
to: "b8[s43, s53]" = torch.ops.aten.to.device(arg14_1, device(type='cpu'), torch.bool); to = None
eq_1: "Sym(False)" = sym_numel_default == 0; sym_numel_default = eq_1 = None
sym_size_int_2: "Sym(s70)" = torch.ops.aten.sym_size.int(arange, 0)
add_1: "Sym(s31 + s70)" = sym_size_int + sym_size_int_2; sym_size_int = None
add_2: "Sym(s31 + s70)" = add_1 + 0
sym_size_int_3: "Sym(s53)" = torch.ops.aten.sym_size.int(arg14_1, 1); arg14_1 = None
sub: "Sym(s31 - s53 + s70)" = add_2 - sym_size_int_3; add_2 = None
gt: "Sym(s31 - s53 + s70 > 0)" = sub > 0; sub = gt = None
gt_1: "Sym(s53 > s31 + s70)" = sym_size_int_3 > add_1; sym_size_int_3 = gt_1 = None
arange_1: "i64[s31 + s70]" = torch.ops.aten.arange.default(add_1, device = device(type='cpu'), pin_memory = False); add_1 = None
add_: "i64[s31 + s70]" = torch.ops.aten.add_.Tensor(arange_1, 0)
sym_size_int_4: "Sym(s72)" = torch.ops.aten.sym_size.int(arg13_1, 0); arg13_1 = None
arange_2: "i64[s72]" = torch.ops.aten.arange.default(sym_size_int_4, device = device(type='cpu'), pin_memory = False); sym_size_int_4 = None
arange_3: "i64[1]" = torch.ops.aten.arange.default(1, device = device(type='cpu'), pin_memory = False)
movedim: "i64[s72]" = torch.ops.aten.movedim.int(arange_2, 0, 0); movedim = None
unsqueeze: "i64[1, 1]" = torch.ops.aten.unsqueeze.default(arange_3, 0); arange_3 = None
sym_size_int_5: "Sym(s72)" = torch.ops.aten.sym_size.int(arange_2, 0); arange_2 = None
expand: "i64[s72, 1]" = torch.ops.aten.expand.default(unsqueeze, [sym_size_int_5, 1]); unsqueeze = expand = None
unsqueeze_1: "i64[1, s70]" = torch.ops.aten.unsqueeze.default(arange, 0); arange = None
expand_1: "i64[s72, s70]" = torch.ops.aten.expand.default(unsqueeze_1, [sym_size_int_5, sym_size_int_2]); unsqueeze_1 = sym_size_int_2 = expand_1 = None
unsqueeze_2: "i64[1, s31 + s70]" = torch.ops.aten.unsqueeze.default(add_, 0); add_ = None
sym_size_int_6: "Sym(s31 + s70)" = torch.ops.aten.sym_size.int(arange_1, 0); arange_1 = None
expand_2: "i64[s72, s31 + s70]" = torch.ops.aten.expand.default(unsqueeze_2, [sym_size_int_5, sym_size_int_6]); unsqueeze_2 = sym_size_int_5 = sym_size_int_6 = expand_2 = None
cache-cache_patch:torch-oblivious/inputs_batch1 EXPORT: 80%|███████▉ | 204/256 [00:58<00:22, 2.35it/s]
cache-cache_patch:torch-oblivious-rt/inputs EXPORT: 80%|███████▉ | 204/256 [00:58<00:22, 2.35it/s]
def forward(self, arg0_1: "f32[32000, 192]", arg1_1: "f32[192, 192]", arg2_1: "f32[96, 192]", arg3_1: "f32[96, 192]", arg4_1: "f32[192, 192]", arg5_1: "f32[1024, 192]", arg6_1: "f32[1024, 192]", arg7_1: "f32[192, 1024]", arg8_1: "f32[192]", arg9_1: "f32[192]", arg10_1: "f32[192]", arg11_1: "f32[32000, 192]", arg12_1: "f32[48]", arg13_1: "i64[s72, s70]", arg14_1: "i64[s43, s53]", arg15_1: "i64[s44, s9]", arg16_1: "f32[s23, 1, s31, 96]", arg17_1: "f32[s4, 1, s11, 96]"):
# No stacktrace found for following nodes
_tensor_constant0: "f32[0]" = self._tensor_constant0
lift_fresh_copy: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant0); _tensor_constant0 = None
detach_: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy); lift_fresh_copy = None
_tensor_constant1: "f32[0]" = self._tensor_constant1
lift_fresh_copy_1: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant1); _tensor_constant1 = None
detach__1: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy_1); lift_fresh_copy_1 = None
cat: "f32[s23, 1, s31, 96]" = torch.ops.aten.cat.default([detach_, arg16_1], -2); detach_ = arg16_1 = None
cat_1: "f32[s4, 1, s11, 96]" = torch.ops.aten.cat.default([detach__1, arg17_1], -2); detach__1 = arg17_1 = cat_1 = None
# File: ~/vv/this312/lib/python3.12/site-packages/torch/nn/modules/sparse.py:192 in forward, code: return F.embedding(
embedding: "f32[s72, s70, 192]" = torch.ops.aten.embedding.default(arg0_1, arg13_1); arg0_1 = embedding = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:371 in forward, code: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
sym_numel_default: "Sym(96*s23*s31)" = torch.ops.aten.sym_numel.default(cat)
eq: "Sym(False)" = sym_numel_default == 0; eq = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:373 in forward, code: past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
sym_size_int: "Sym(s31)" = torch.ops.aten.sym_size.int(cat, 2); cat = None
sym_size_int_1: "Sym(s70)" = torch.ops.aten.sym_size.int(arg13_1, 1)
add: "Sym(s31 + s70)" = sym_size_int + sym_size_int_1; sym_size_int_1 = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:372 in forward, code: cache_position: torch.Tensor = torch.arange(
arange: "i64[s70]" = torch.ops.aten.arange.start(sym_size_int, add, device = device(type='cpu'), pin_memory = False); add = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:379 in forward, code: causal_mask = create_causal_mask(
to: "b8[s43, s53]" = torch.ops.aten.to.device(arg14_1, device(type='cpu'), torch.bool); to = None
eq_1: "Sym(False)" = sym_numel_default == 0; sym_numel_default = eq_1 = None
sym_size_int_2: "Sym(s70)" = torch.ops.aten.sym_size.int(arange, 0)
add_1: "Sym(s31 + s70)" = sym_size_int + sym_size_int_2; sym_size_int = None
add_2: "Sym(s31 + s70)" = add_1 + 0
sym_size_int_3: "Sym(s53)" = torch.ops.aten.sym_size.int(arg14_1, 1); arg14_1 = None
sub: "Sym(s31 - s53 + s70)" = add_2 - sym_size_int_3; add_2 = None
gt: "Sym(s31 - s53 + s70 > 0)" = sub > 0; sub = gt = None
gt_1: "Sym(s53 > s31 + s70)" = sym_size_int_3 > add_1; sym_size_int_3 = gt_1 = None
arange_1: "i64[s31 + s70]" = torch.ops.aten.arange.default(add_1, device = device(type='cpu'), pin_memory = False); add_1 = None
add_: "i64[s31 + s70]" = torch.ops.aten.add_.Tensor(arange_1, 0)
sym_size_int_4: "Sym(s72)" = torch.ops.aten.sym_size.int(arg13_1, 0); arg13_1 = None
arange_2: "i64[s72]" = torch.ops.aten.arange.default(sym_size_int_4, device = device(type='cpu'), pin_memory = False); sym_size_int_4 = None
arange_3: "i64[1]" = torch.ops.aten.arange.default(1, device = device(type='cpu'), pin_memory = False)
movedim: "i64[s72]" = torch.ops.aten.movedim.int(arange_2, 0, 0); movedim = None
unsqueeze: "i64[1, 1]" = torch.ops.aten.unsqueeze.default(arange_3, 0); arange_3 = None
sym_size_int_5: "Sym(s72)" = torch.ops.aten.sym_size.int(arange_2, 0); arange_2 = None
expand: "i64[s72, 1]" = torch.ops.aten.expand.default(unsqueeze, [sym_size_int_5, 1]); unsqueeze = expand = None
unsqueeze_1: "i64[1, s70]" = torch.ops.aten.unsqueeze.default(arange, 0); arange = None
expand_1: "i64[s72, s70]" = torch.ops.aten.expand.default(unsqueeze_1, [sym_size_int_5, sym_size_int_2]); unsqueeze_1 = sym_size_int_2 = expand_1 = None
unsqueeze_2: "i64[1, s31 + s70]" = torch.ops.aten.unsqueeze.default(add_, 0); add_ = None
sym_size_int_6: "Sym(s31 + s70)" = torch.ops.aten.sym_size.int(arange_1, 0); arange_1 = None
expand_2: "i64[s72, s31 + s70]" = torch.ops.aten.expand.default(unsqueeze_2, [sym_size_int_5, sym_size_int_6]); unsqueeze_2 = sym_size_int_5 = sym_size_int_6 = expand_2 = None
def forward(self, arg0_1: "f32[32000, 192]", arg1_1: "f32[192, 192]", arg2_1: "f32[96, 192]", arg3_1: "f32[96, 192]", arg4_1: "f32[192, 192]", arg5_1: "f32[1024, 192]", arg6_1: "f32[1024, 192]", arg7_1: "f32[192, 1024]", arg8_1: "f32[192]", arg9_1: "f32[192]", arg10_1: "f32[192]", arg11_1: "f32[32000, 192]", arg12_1: "f32[48]", arg13_1: "i64[s72, s70]", arg14_1: "i64[s43, s53]", arg15_1: "i64[s44, s9]", arg16_1: "f32[s23, 1, s31, 96]", arg17_1: "f32[s4, 1, s11, 96]"):
# No stacktrace found for following nodes
_tensor_constant0: "f32[0]" = self._tensor_constant0
lift_fresh_copy: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant0); _tensor_constant0 = None
detach_: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy); lift_fresh_copy = None
_tensor_constant1: "f32[0]" = self._tensor_constant1
lift_fresh_copy_1: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant1); _tensor_constant1 = None
detach__1: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy_1); lift_fresh_copy_1 = None
cat: "f32[s23, 1, s31, 96]" = torch.ops.aten.cat.default([detach_, arg16_1], -2); detach_ = arg16_1 = None
cat_1: "f32[s4, 1, s11, 96]" = torch.ops.aten.cat.default([detach__1, arg17_1], -2); detach__1 = arg17_1 = cat_1 = None
# File: ~/vv/this312/lib/python3.12/site-packages/torch/nn/modules/sparse.py:192 in forward, code: return F.embedding(
embedding: "f32[s72, s70, 192]" = torch.ops.aten.embedding.default(arg0_1, arg13_1); arg0_1 = embedding = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:371 in forward, code: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
sym_numel_default: "Sym(96*s23*s31)" = torch.ops.aten.sym_numel.default(cat)
eq: "Sym(False)" = sym_numel_default == 0; eq = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:373 in forward, code: past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
sym_size_int: "Sym(s31)" = torch.ops.aten.sym_size.int(cat, 2); cat = None
sym_size_int_1: "Sym(s70)" = torch.ops.aten.sym_size.int(arg13_1, 1)
add: "Sym(s31 + s70)" = sym_size_int + sym_size_int_1; sym_size_int_1 = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:372 in forward, code: cache_position: torch.Tensor = torch.arange(
arange: "i64[s70]" = torch.ops.aten.arange.start(sym_size_int, add, device = device(type='cpu'), pin_memory = False); add = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:379 in forward, code: causal_mask = create_causal_mask(
to: "b8[s43, s53]" = torch.ops.aten.to.device(arg14_1, device(type='cpu'), torch.bool); to = None
eq_1: "Sym(False)" = sym_numel_default == 0; sym_numel_default = eq_1 = None
sym_size_int_2: "Sym(s70)" = torch.ops.aten.sym_size.int(arange, 0)
add_1: "Sym(s31 + s70)" = sym_size_int + sym_size_int_2; sym_size_int = None
add_2: "Sym(s31 + s70)" = add_1 + 0
sym_size_int_3: "Sym(s53)" = torch.ops.aten.sym_size.int(arg14_1, 1); arg14_1 = None
sub: "Sym(s31 - s53 + s70)" = add_2 - sym_size_int_3; add_2 = None
gt: "Sym(s31 - s53 + s70 > 0)" = sub > 0; sub = gt = None
gt_1: "Sym(s53 > s31 + s70)" = sym_size_int_3 > add_1; sym_size_int_3 = gt_1 = None
arange_1: "i64[s31 + s70]" = torch.ops.aten.arange.default(add_1, device = device(type='cpu'), pin_memory = False); add_1 = None
add_: "i64[s31 + s70]" = torch.ops.aten.add_.Tensor(arange_1, 0)
sym_size_int_4: "Sym(s72)" = torch.ops.aten.sym_size.int(arg13_1, 0); arg13_1 = None
arange_2: "i64[s72]" = torch.ops.aten.arange.default(sym_size_int_4, device = device(type='cpu'), pin_memory = False); sym_size_int_4 = None
arange_3: "i64[1]" = torch.ops.aten.arange.default(1, device = device(type='cpu'), pin_memory = False)
movedim: "i64[s72]" = torch.ops.aten.movedim.int(arange_2, 0, 0); movedim = None
unsqueeze: "i64[1, 1]" = torch.ops.aten.unsqueeze.default(arange_3, 0); arange_3 = None
sym_size_int_5: "Sym(s72)" = torch.ops.aten.sym_size.int(arange_2, 0); arange_2 = None
expand: "i64[s72, 1]" = torch.ops.aten.expand.default(unsqueeze, [sym_size_int_5, 1]); unsqueeze = expand = None
unsqueeze_1: "i64[1, s70]" = torch.ops.aten.unsqueeze.default(arange, 0); arange = None
expand_1: "i64[s72, s70]" = torch.ops.aten.expand.default(unsqueeze_1, [sym_size_int_5, sym_size_int_2]); unsqueeze_1 = sym_size_int_2 = expand_1 = None
unsqueeze_2: "i64[1, s31 + s70]" = torch.ops.aten.unsqueeze.default(add_, 0); add_ = None
sym_size_int_6: "Sym(s31 + s70)" = torch.ops.aten.sym_size.int(arange_1, 0); arange_1 = None
expand_2: "i64[s72, s31 + s70]" = torch.ops.aten.expand.default(unsqueeze_2, [sym_size_int_5, sym_size_int_6]); unsqueeze_2 = sym_size_int_5 = sym_size_int_6 = expand_2 = None
cache-cache_patch:torch-oblivious-rt/inputs EXPORT: 80%|████████ | 205/256 [00:58<00:21, 2.40it/s]
cache-cache_patch:torch-oblivious-rt/inputs2 EXPORT: 80%|████████ | 205/256 [00:58<00:21, 2.40it/s]
def forward(self, arg0_1: "f32[32000, 192]", arg1_1: "f32[192, 192]", arg2_1: "f32[96, 192]", arg3_1: "f32[96, 192]", arg4_1: "f32[192, 192]", arg5_1: "f32[1024, 192]", arg6_1: "f32[1024, 192]", arg7_1: "f32[192, 1024]", arg8_1: "f32[192]", arg9_1: "f32[192]", arg10_1: "f32[192]", arg11_1: "f32[32000, 192]", arg12_1: "f32[48]", arg13_1: "i64[s72, s70]", arg14_1: "i64[s43, s53]", arg15_1: "i64[s44, s9]", arg16_1: "f32[s23, 1, s31, 96]", arg17_1: "f32[s4, 1, s11, 96]"):
# No stacktrace found for following nodes
_tensor_constant0: "f32[0]" = self._tensor_constant0
lift_fresh_copy: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant0); _tensor_constant0 = None
detach_: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy); lift_fresh_copy = None
_tensor_constant1: "f32[0]" = self._tensor_constant1
lift_fresh_copy_1: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant1); _tensor_constant1 = None
detach__1: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy_1); lift_fresh_copy_1 = None
cat: "f32[s23, 1, s31, 96]" = torch.ops.aten.cat.default([detach_, arg16_1], -2); detach_ = arg16_1 = None
cat_1: "f32[s4, 1, s11, 96]" = torch.ops.aten.cat.default([detach__1, arg17_1], -2); detach__1 = arg17_1 = cat_1 = None
# File: ~/vv/this312/lib/python3.12/site-packages/torch/nn/modules/sparse.py:192 in forward, code: return F.embedding(
embedding: "f32[s72, s70, 192]" = torch.ops.aten.embedding.default(arg0_1, arg13_1); arg0_1 = embedding = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:371 in forward, code: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
sym_numel_default: "Sym(96*s23*s31)" = torch.ops.aten.sym_numel.default(cat)
eq: "Sym(False)" = sym_numel_default == 0; eq = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:373 in forward, code: past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
sym_size_int: "Sym(s31)" = torch.ops.aten.sym_size.int(cat, 2); cat = None
sym_size_int_1: "Sym(s70)" = torch.ops.aten.sym_size.int(arg13_1, 1)
add: "Sym(s31 + s70)" = sym_size_int + sym_size_int_1; sym_size_int_1 = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:372 in forward, code: cache_position: torch.Tensor = torch.arange(
arange: "i64[s70]" = torch.ops.aten.arange.start(sym_size_int, add, device = device(type='cpu'), pin_memory = False); add = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:379 in forward, code: causal_mask = create_causal_mask(
to: "b8[s43, s53]" = torch.ops.aten.to.device(arg14_1, device(type='cpu'), torch.bool); to = None
eq_1: "Sym(False)" = sym_numel_default == 0; sym_numel_default = eq_1 = None
sym_size_int_2: "Sym(s70)" = torch.ops.aten.sym_size.int(arange, 0)
add_1: "Sym(s31 + s70)" = sym_size_int + sym_size_int_2; sym_size_int = None
add_2: "Sym(s31 + s70)" = add_1 + 0
sym_size_int_3: "Sym(s53)" = torch.ops.aten.sym_size.int(arg14_1, 1); arg14_1 = None
sub: "Sym(s31 - s53 + s70)" = add_2 - sym_size_int_3; add_2 = None
gt: "Sym(s31 - s53 + s70 > 0)" = sub > 0; sub = gt = None
gt_1: "Sym(s53 > s31 + s70)" = sym_size_int_3 > add_1; sym_size_int_3 = gt_1 = None
arange_1: "i64[s31 + s70]" = torch.ops.aten.arange.default(add_1, device = device(type='cpu'), pin_memory = False); add_1 = None
add_: "i64[s31 + s70]" = torch.ops.aten.add_.Tensor(arange_1, 0)
sym_size_int_4: "Sym(s72)" = torch.ops.aten.sym_size.int(arg13_1, 0); arg13_1 = None
arange_2: "i64[s72]" = torch.ops.aten.arange.default(sym_size_int_4, device = device(type='cpu'), pin_memory = False); sym_size_int_4 = None
arange_3: "i64[1]" = torch.ops.aten.arange.default(1, device = device(type='cpu'), pin_memory = False)
movedim: "i64[s72]" = torch.ops.aten.movedim.int(arange_2, 0, 0); movedim = None
unsqueeze: "i64[1, 1]" = torch.ops.aten.unsqueeze.default(arange_3, 0); arange_3 = None
sym_size_int_5: "Sym(s72)" = torch.ops.aten.sym_size.int(arange_2, 0); arange_2 = None
expand: "i64[s72, 1]" = torch.ops.aten.expand.default(unsqueeze, [sym_size_int_5, 1]); unsqueeze = expand = None
unsqueeze_1: "i64[1, s70]" = torch.ops.aten.unsqueeze.default(arange, 0); arange = None
expand_1: "i64[s72, s70]" = torch.ops.aten.expand.default(unsqueeze_1, [sym_size_int_5, sym_size_int_2]); unsqueeze_1 = sym_size_int_2 = expand_1 = None
unsqueeze_2: "i64[1, s31 + s70]" = torch.ops.aten.unsqueeze.default(add_, 0); add_ = None
sym_size_int_6: "Sym(s31 + s70)" = torch.ops.aten.sym_size.int(arange_1, 0); arange_1 = None
expand_2: "i64[s72, s31 + s70]" = torch.ops.aten.expand.default(unsqueeze_2, [sym_size_int_5, sym_size_int_6]); unsqueeze_2 = sym_size_int_5 = sym_size_int_6 = expand_2 = None
def forward(self, arg0_1: "f32[32000, 192]", arg1_1: "f32[192, 192]", arg2_1: "f32[96, 192]", arg3_1: "f32[96, 192]", arg4_1: "f32[192, 192]", arg5_1: "f32[1024, 192]", arg6_1: "f32[1024, 192]", arg7_1: "f32[192, 1024]", arg8_1: "f32[192]", arg9_1: "f32[192]", arg10_1: "f32[192]", arg11_1: "f32[32000, 192]", arg12_1: "f32[48]", arg13_1: "i64[s72, s70]", arg14_1: "i64[s43, s53]", arg15_1: "i64[s44, s9]", arg16_1: "f32[s23, 1, s31, 96]", arg17_1: "f32[s4, 1, s11, 96]"):
# No stacktrace found for following nodes
_tensor_constant0: "f32[0]" = self._tensor_constant0
lift_fresh_copy: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant0); _tensor_constant0 = None
detach_: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy); lift_fresh_copy = None
_tensor_constant1: "f32[0]" = self._tensor_constant1
lift_fresh_copy_1: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant1); _tensor_constant1 = None
detach__1: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy_1); lift_fresh_copy_1 = None
cat: "f32[s23, 1, s31, 96]" = torch.ops.aten.cat.default([detach_, arg16_1], -2); detach_ = arg16_1 = None
cat_1: "f32[s4, 1, s11, 96]" = torch.ops.aten.cat.default([detach__1, arg17_1], -2); detach__1 = arg17_1 = cat_1 = None
# File: ~/vv/this312/lib/python3.12/site-packages/torch/nn/modules/sparse.py:192 in forward, code: return F.embedding(
embedding: "f32[s72, s70, 192]" = torch.ops.aten.embedding.default(arg0_1, arg13_1); arg0_1 = embedding = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:371 in forward, code: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
sym_numel_default: "Sym(96*s23*s31)" = torch.ops.aten.sym_numel.default(cat)
eq: "Sym(False)" = sym_numel_default == 0; eq = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:373 in forward, code: past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
sym_size_int: "Sym(s31)" = torch.ops.aten.sym_size.int(cat, 2); cat = None
sym_size_int_1: "Sym(s70)" = torch.ops.aten.sym_size.int(arg13_1, 1)
add: "Sym(s31 + s70)" = sym_size_int + sym_size_int_1; sym_size_int_1 = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:372 in forward, code: cache_position: torch.Tensor = torch.arange(
arange: "i64[s70]" = torch.ops.aten.arange.start(sym_size_int, add, device = device(type='cpu'), pin_memory = False); add = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:379 in forward, code: causal_mask = create_causal_mask(
to: "b8[s43, s53]" = torch.ops.aten.to.device(arg14_1, device(type='cpu'), torch.bool); to = None
eq_1: "Sym(False)" = sym_numel_default == 0; sym_numel_default = eq_1 = None
sym_size_int_2: "Sym(s70)" = torch.ops.aten.sym_size.int(arange, 0)
add_1: "Sym(s31 + s70)" = sym_size_int + sym_size_int_2; sym_size_int = None
add_2: "Sym(s31 + s70)" = add_1 + 0
sym_size_int_3: "Sym(s53)" = torch.ops.aten.sym_size.int(arg14_1, 1); arg14_1 = None
sub: "Sym(s31 - s53 + s70)" = add_2 - sym_size_int_3; add_2 = None
gt: "Sym(s31 - s53 + s70 > 0)" = sub > 0; sub = gt = None
gt_1: "Sym(s53 > s31 + s70)" = sym_size_int_3 > add_1; sym_size_int_3 = gt_1 = None
arange_1: "i64[s31 + s70]" = torch.ops.aten.arange.default(add_1, device = device(type='cpu'), pin_memory = False); add_1 = None
add_: "i64[s31 + s70]" = torch.ops.aten.add_.Tensor(arange_1, 0)
sym_size_int_4: "Sym(s72)" = torch.ops.aten.sym_size.int(arg13_1, 0); arg13_1 = None
arange_2: "i64[s72]" = torch.ops.aten.arange.default(sym_size_int_4, device = device(type='cpu'), pin_memory = False); sym_size_int_4 = None
arange_3: "i64[1]" = torch.ops.aten.arange.default(1, device = device(type='cpu'), pin_memory = False)
movedim: "i64[s72]" = torch.ops.aten.movedim.int(arange_2, 0, 0); movedim = None
unsqueeze: "i64[1, 1]" = torch.ops.aten.unsqueeze.default(arange_3, 0); arange_3 = None
sym_size_int_5: "Sym(s72)" = torch.ops.aten.sym_size.int(arange_2, 0); arange_2 = None
expand: "i64[s72, 1]" = torch.ops.aten.expand.default(unsqueeze, [sym_size_int_5, 1]); unsqueeze = expand = None
unsqueeze_1: "i64[1, s70]" = torch.ops.aten.unsqueeze.default(arange, 0); arange = None
expand_1: "i64[s72, s70]" = torch.ops.aten.expand.default(unsqueeze_1, [sym_size_int_5, sym_size_int_2]); unsqueeze_1 = sym_size_int_2 = expand_1 = None
unsqueeze_2: "i64[1, s31 + s70]" = torch.ops.aten.unsqueeze.default(add_, 0); add_ = None
sym_size_int_6: "Sym(s31 + s70)" = torch.ops.aten.sym_size.int(arange_1, 0); arange_1 = None
expand_2: "i64[s72, s31 + s70]" = torch.ops.aten.expand.default(unsqueeze_2, [sym_size_int_5, sym_size_int_6]); unsqueeze_2 = sym_size_int_5 = sym_size_int_6 = expand_2 = None
cache-cache_patch:torch-oblivious-rt/inputs2 EXPORT: 80%|████████ | 206/256 [00:59<00:19, 2.55it/s]
cache-cache_patch:torch-oblivious-rt/inputs_empty_cache EXPORT: 80%|████████ | 206/256 [00:59<00:19, 2.55it/s]
def forward(self, arg0_1: "f32[32000, 192]", arg1_1: "f32[192, 192]", arg2_1: "f32[96, 192]", arg3_1: "f32[96, 192]", arg4_1: "f32[192, 192]", arg5_1: "f32[1024, 192]", arg6_1: "f32[1024, 192]", arg7_1: "f32[192, 1024]", arg8_1: "f32[192]", arg9_1: "f32[192]", arg10_1: "f32[192]", arg11_1: "f32[32000, 192]", arg12_1: "f32[48]", arg13_1: "i64[s72, s70]", arg14_1: "i64[s43, s53]", arg15_1: "i64[s44, s9]", arg16_1: "f32[s23, 1, s31, 96]", arg17_1: "f32[s4, 1, s11, 96]"):
# No stacktrace found for following nodes
_tensor_constant0: "f32[0]" = self._tensor_constant0
lift_fresh_copy: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant0); _tensor_constant0 = None
detach_: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy); lift_fresh_copy = None
_tensor_constant1: "f32[0]" = self._tensor_constant1
lift_fresh_copy_1: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant1); _tensor_constant1 = None
detach__1: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy_1); lift_fresh_copy_1 = None
cat: "f32[s23, 1, s31, 96]" = torch.ops.aten.cat.default([detach_, arg16_1], -2); detach_ = arg16_1 = None
cat_1: "f32[s4, 1, s11, 96]" = torch.ops.aten.cat.default([detach__1, arg17_1], -2); detach__1 = arg17_1 = cat_1 = None
# File: ~/vv/this312/lib/python3.12/site-packages/torch/nn/modules/sparse.py:192 in forward, code: return F.embedding(
embedding: "f32[s72, s70, 192]" = torch.ops.aten.embedding.default(arg0_1, arg13_1); arg0_1 = embedding = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:371 in forward, code: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
sym_numel_default: "Sym(96*s23*s31)" = torch.ops.aten.sym_numel.default(cat)
eq: "Sym(False)" = sym_numel_default == 0; eq = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:373 in forward, code: past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
sym_size_int: "Sym(s31)" = torch.ops.aten.sym_size.int(cat, 2); cat = None
sym_size_int_1: "Sym(s70)" = torch.ops.aten.sym_size.int(arg13_1, 1)
add: "Sym(s31 + s70)" = sym_size_int + sym_size_int_1; sym_size_int_1 = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:372 in forward, code: cache_position: torch.Tensor = torch.arange(
arange: "i64[s70]" = torch.ops.aten.arange.start(sym_size_int, add, device = device(type='cpu'), pin_memory = False); add = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:379 in forward, code: causal_mask = create_causal_mask(
to: "b8[s43, s53]" = torch.ops.aten.to.device(arg14_1, device(type='cpu'), torch.bool); to = None
eq_1: "Sym(False)" = sym_numel_default == 0; sym_numel_default = eq_1 = None
sym_size_int_2: "Sym(s70)" = torch.ops.aten.sym_size.int(arange, 0)
add_1: "Sym(s31 + s70)" = sym_size_int + sym_size_int_2; sym_size_int = None
add_2: "Sym(s31 + s70)" = add_1 + 0
sym_size_int_3: "Sym(s53)" = torch.ops.aten.sym_size.int(arg14_1, 1); arg14_1 = None
sub: "Sym(s31 - s53 + s70)" = add_2 - sym_size_int_3; add_2 = None
gt: "Sym(s31 - s53 + s70 > 0)" = sub > 0; sub = gt = None
gt_1: "Sym(s53 > s31 + s70)" = sym_size_int_3 > add_1; sym_size_int_3 = gt_1 = None
arange_1: "i64[s31 + s70]" = torch.ops.aten.arange.default(add_1, device = device(type='cpu'), pin_memory = False); add_1 = None
add_: "i64[s31 + s70]" = torch.ops.aten.add_.Tensor(arange_1, 0)
sym_size_int_4: "Sym(s72)" = torch.ops.aten.sym_size.int(arg13_1, 0); arg13_1 = None
arange_2: "i64[s72]" = torch.ops.aten.arange.default(sym_size_int_4, device = device(type='cpu'), pin_memory = False); sym_size_int_4 = None
arange_3: "i64[1]" = torch.ops.aten.arange.default(1, device = device(type='cpu'), pin_memory = False)
movedim: "i64[s72]" = torch.ops.aten.movedim.int(arange_2, 0, 0); movedim = None
unsqueeze: "i64[1, 1]" = torch.ops.aten.unsqueeze.default(arange_3, 0); arange_3 = None
sym_size_int_5: "Sym(s72)" = torch.ops.aten.sym_size.int(arange_2, 0); arange_2 = None
expand: "i64[s72, 1]" = torch.ops.aten.expand.default(unsqueeze, [sym_size_int_5, 1]); unsqueeze = expand = None
unsqueeze_1: "i64[1, s70]" = torch.ops.aten.unsqueeze.default(arange, 0); arange = None
expand_1: "i64[s72, s70]" = torch.ops.aten.expand.default(unsqueeze_1, [sym_size_int_5, sym_size_int_2]); unsqueeze_1 = sym_size_int_2 = expand_1 = None
unsqueeze_2: "i64[1, s31 + s70]" = torch.ops.aten.unsqueeze.default(add_, 0); add_ = None
sym_size_int_6: "Sym(s31 + s70)" = torch.ops.aten.sym_size.int(arange_1, 0); arange_1 = None
expand_2: "i64[s72, s31 + s70]" = torch.ops.aten.expand.default(unsqueeze_2, [sym_size_int_5, sym_size_int_6]); unsqueeze_2 = sym_size_int_5 = sym_size_int_6 = expand_2 = None
def forward(self, arg0_1: "f32[32000, 192]", arg1_1: "f32[192, 192]", arg2_1: "f32[96, 192]", arg3_1: "f32[96, 192]", arg4_1: "f32[192, 192]", arg5_1: "f32[1024, 192]", arg6_1: "f32[1024, 192]", arg7_1: "f32[192, 1024]", arg8_1: "f32[192]", arg9_1: "f32[192]", arg10_1: "f32[192]", arg11_1: "f32[32000, 192]", arg12_1: "f32[48]", arg13_1: "i64[s72, s70]", arg14_1: "i64[s43, s53]", arg15_1: "i64[s44, s9]", arg16_1: "f32[s23, 1, s31, 96]", arg17_1: "f32[s4, 1, s11, 96]"):
# No stacktrace found for following nodes
_tensor_constant0: "f32[0]" = self._tensor_constant0
lift_fresh_copy: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant0); _tensor_constant0 = None
detach_: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy); lift_fresh_copy = None
_tensor_constant1: "f32[0]" = self._tensor_constant1
lift_fresh_copy_1: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant1); _tensor_constant1 = None
detach__1: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy_1); lift_fresh_copy_1 = None
cat: "f32[s23, 1, s31, 96]" = torch.ops.aten.cat.default([detach_, arg16_1], -2); detach_ = arg16_1 = None
cat_1: "f32[s4, 1, s11, 96]" = torch.ops.aten.cat.default([detach__1, arg17_1], -2); detach__1 = arg17_1 = cat_1 = None
# File: ~/vv/this312/lib/python3.12/site-packages/torch/nn/modules/sparse.py:192 in forward, code: return F.embedding(
embedding: "f32[s72, s70, 192]" = torch.ops.aten.embedding.default(arg0_1, arg13_1); arg0_1 = embedding = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:371 in forward, code: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
sym_numel_default: "Sym(96*s23*s31)" = torch.ops.aten.sym_numel.default(cat)
eq: "Sym(False)" = sym_numel_default == 0; eq = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:373 in forward, code: past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
sym_size_int: "Sym(s31)" = torch.ops.aten.sym_size.int(cat, 2); cat = None
sym_size_int_1: "Sym(s70)" = torch.ops.aten.sym_size.int(arg13_1, 1)
add: "Sym(s31 + s70)" = sym_size_int + sym_size_int_1; sym_size_int_1 = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:372 in forward, code: cache_position: torch.Tensor = torch.arange(
arange: "i64[s70]" = torch.ops.aten.arange.start(sym_size_int, add, device = device(type='cpu'), pin_memory = False); add = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:379 in forward, code: causal_mask = create_causal_mask(
to: "b8[s43, s53]" = torch.ops.aten.to.device(arg14_1, device(type='cpu'), torch.bool); to = None
eq_1: "Sym(False)" = sym_numel_default == 0; sym_numel_default = eq_1 = None
sym_size_int_2: "Sym(s70)" = torch.ops.aten.sym_size.int(arange, 0)
add_1: "Sym(s31 + s70)" = sym_size_int + sym_size_int_2; sym_size_int = None
add_2: "Sym(s31 + s70)" = add_1 + 0
sym_size_int_3: "Sym(s53)" = torch.ops.aten.sym_size.int(arg14_1, 1); arg14_1 = None
sub: "Sym(s31 - s53 + s70)" = add_2 - sym_size_int_3; add_2 = None
gt: "Sym(s31 - s53 + s70 > 0)" = sub > 0; sub = gt = None
gt_1: "Sym(s53 > s31 + s70)" = sym_size_int_3 > add_1; sym_size_int_3 = gt_1 = None
arange_1: "i64[s31 + s70]" = torch.ops.aten.arange.default(add_1, device = device(type='cpu'), pin_memory = False); add_1 = None
add_: "i64[s31 + s70]" = torch.ops.aten.add_.Tensor(arange_1, 0)
sym_size_int_4: "Sym(s72)" = torch.ops.aten.sym_size.int(arg13_1, 0); arg13_1 = None
arange_2: "i64[s72]" = torch.ops.aten.arange.default(sym_size_int_4, device = device(type='cpu'), pin_memory = False); sym_size_int_4 = None
arange_3: "i64[1]" = torch.ops.aten.arange.default(1, device = device(type='cpu'), pin_memory = False)
movedim: "i64[s72]" = torch.ops.aten.movedim.int(arange_2, 0, 0); movedim = None
unsqueeze: "i64[1, 1]" = torch.ops.aten.unsqueeze.default(arange_3, 0); arange_3 = None
sym_size_int_5: "Sym(s72)" = torch.ops.aten.sym_size.int(arange_2, 0); arange_2 = None
expand: "i64[s72, 1]" = torch.ops.aten.expand.default(unsqueeze, [sym_size_int_5, 1]); unsqueeze = expand = None
unsqueeze_1: "i64[1, s70]" = torch.ops.aten.unsqueeze.default(arange, 0); arange = None
expand_1: "i64[s72, s70]" = torch.ops.aten.expand.default(unsqueeze_1, [sym_size_int_5, sym_size_int_2]); unsqueeze_1 = sym_size_int_2 = expand_1 = None
unsqueeze_2: "i64[1, s31 + s70]" = torch.ops.aten.unsqueeze.default(add_, 0); add_ = None
sym_size_int_6: "Sym(s31 + s70)" = torch.ops.aten.sym_size.int(arange_1, 0); arange_1 = None
expand_2: "i64[s72, s31 + s70]" = torch.ops.aten.expand.default(unsqueeze_2, [sym_size_int_5, sym_size_int_6]); unsqueeze_2 = sym_size_int_5 = sym_size_int_6 = expand_2 = None
cache-cache_patch:torch-oblivious-rt/inputs_empty_cache EXPORT: 81%|████████ | 207/256 [00:59<00:17, 2.79it/s]
cache-cache_patch:torch-oblivious-rt/inputs_batch1 EXPORT: 81%|████████ | 207/256 [00:59<00:17, 2.79it/s]
def forward(self, arg0_1: "f32[32000, 192]", arg1_1: "f32[192, 192]", arg2_1: "f32[96, 192]", arg3_1: "f32[96, 192]", arg4_1: "f32[192, 192]", arg5_1: "f32[1024, 192]", arg6_1: "f32[1024, 192]", arg7_1: "f32[192, 1024]", arg8_1: "f32[192]", arg9_1: "f32[192]", arg10_1: "f32[192]", arg11_1: "f32[32000, 192]", arg12_1: "f32[48]", arg13_1: "i64[s72, s70]", arg14_1: "i64[s43, s53]", arg15_1: "i64[s44, s9]", arg16_1: "f32[s23, 1, s31, 96]", arg17_1: "f32[s4, 1, s11, 96]"):
# No stacktrace found for following nodes
_tensor_constant0: "f32[0]" = self._tensor_constant0
lift_fresh_copy: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant0); _tensor_constant0 = None
detach_: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy); lift_fresh_copy = None
_tensor_constant1: "f32[0]" = self._tensor_constant1
lift_fresh_copy_1: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant1); _tensor_constant1 = None
detach__1: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy_1); lift_fresh_copy_1 = None
cat: "f32[s23, 1, s31, 96]" = torch.ops.aten.cat.default([detach_, arg16_1], -2); detach_ = arg16_1 = None
cat_1: "f32[s4, 1, s11, 96]" = torch.ops.aten.cat.default([detach__1, arg17_1], -2); detach__1 = arg17_1 = cat_1 = None
# File: ~/vv/this312/lib/python3.12/site-packages/torch/nn/modules/sparse.py:192 in forward, code: return F.embedding(
embedding: "f32[s72, s70, 192]" = torch.ops.aten.embedding.default(arg0_1, arg13_1); arg0_1 = embedding = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:371 in forward, code: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
sym_numel_default: "Sym(96*s23*s31)" = torch.ops.aten.sym_numel.default(cat)
eq: "Sym(False)" = sym_numel_default == 0; eq = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:373 in forward, code: past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
sym_size_int: "Sym(s31)" = torch.ops.aten.sym_size.int(cat, 2); cat = None
sym_size_int_1: "Sym(s70)" = torch.ops.aten.sym_size.int(arg13_1, 1)
add: "Sym(s31 + s70)" = sym_size_int + sym_size_int_1; sym_size_int_1 = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:372 in forward, code: cache_position: torch.Tensor = torch.arange(
arange: "i64[s70]" = torch.ops.aten.arange.start(sym_size_int, add, device = device(type='cpu'), pin_memory = False); add = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:379 in forward, code: causal_mask = create_causal_mask(
to: "b8[s43, s53]" = torch.ops.aten.to.device(arg14_1, device(type='cpu'), torch.bool); to = None
eq_1: "Sym(False)" = sym_numel_default == 0; sym_numel_default = eq_1 = None
sym_size_int_2: "Sym(s70)" = torch.ops.aten.sym_size.int(arange, 0)
add_1: "Sym(s31 + s70)" = sym_size_int + sym_size_int_2; sym_size_int = None
add_2: "Sym(s31 + s70)" = add_1 + 0
sym_size_int_3: "Sym(s53)" = torch.ops.aten.sym_size.int(arg14_1, 1); arg14_1 = None
sub: "Sym(s31 - s53 + s70)" = add_2 - sym_size_int_3; add_2 = None
gt: "Sym(s31 - s53 + s70 > 0)" = sub > 0; sub = gt = None
gt_1: "Sym(s53 > s31 + s70)" = sym_size_int_3 > add_1; sym_size_int_3 = gt_1 = None
arange_1: "i64[s31 + s70]" = torch.ops.aten.arange.default(add_1, device = device(type='cpu'), pin_memory = False); add_1 = None
add_: "i64[s31 + s70]" = torch.ops.aten.add_.Tensor(arange_1, 0)
sym_size_int_4: "Sym(s72)" = torch.ops.aten.sym_size.int(arg13_1, 0); arg13_1 = None
arange_2: "i64[s72]" = torch.ops.aten.arange.default(sym_size_int_4, device = device(type='cpu'), pin_memory = False); sym_size_int_4 = None
arange_3: "i64[1]" = torch.ops.aten.arange.default(1, device = device(type='cpu'), pin_memory = False)
movedim: "i64[s72]" = torch.ops.aten.movedim.int(arange_2, 0, 0); movedim = None
unsqueeze: "i64[1, 1]" = torch.ops.aten.unsqueeze.default(arange_3, 0); arange_3 = None
sym_size_int_5: "Sym(s72)" = torch.ops.aten.sym_size.int(arange_2, 0); arange_2 = None
expand: "i64[s72, 1]" = torch.ops.aten.expand.default(unsqueeze, [sym_size_int_5, 1]); unsqueeze = expand = None
unsqueeze_1: "i64[1, s70]" = torch.ops.aten.unsqueeze.default(arange, 0); arange = None
expand_1: "i64[s72, s70]" = torch.ops.aten.expand.default(unsqueeze_1, [sym_size_int_5, sym_size_int_2]); unsqueeze_1 = sym_size_int_2 = expand_1 = None
unsqueeze_2: "i64[1, s31 + s70]" = torch.ops.aten.unsqueeze.default(add_, 0); add_ = None
sym_size_int_6: "Sym(s31 + s70)" = torch.ops.aten.sym_size.int(arange_1, 0); arange_1 = None
expand_2: "i64[s72, s31 + s70]" = torch.ops.aten.expand.default(unsqueeze_2, [sym_size_int_5, sym_size_int_6]); unsqueeze_2 = sym_size_int_5 = sym_size_int_6 = expand_2 = None
def forward(self, arg0_1: "f32[32000, 192]", arg1_1: "f32[192, 192]", arg2_1: "f32[96, 192]", arg3_1: "f32[96, 192]", arg4_1: "f32[192, 192]", arg5_1: "f32[1024, 192]", arg6_1: "f32[1024, 192]", arg7_1: "f32[192, 1024]", arg8_1: "f32[192]", arg9_1: "f32[192]", arg10_1: "f32[192]", arg11_1: "f32[32000, 192]", arg12_1: "f32[48]", arg13_1: "i64[s72, s70]", arg14_1: "i64[s43, s53]", arg15_1: "i64[s44, s9]", arg16_1: "f32[s23, 1, s31, 96]", arg17_1: "f32[s4, 1, s11, 96]"):
# No stacktrace found for following nodes
_tensor_constant0: "f32[0]" = self._tensor_constant0
lift_fresh_copy: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant0); _tensor_constant0 = None
detach_: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy); lift_fresh_copy = None
_tensor_constant1: "f32[0]" = self._tensor_constant1
lift_fresh_copy_1: "f32[0]" = torch.ops.aten.lift_fresh_copy.default(_tensor_constant1); _tensor_constant1 = None
detach__1: "f32[0]" = torch.ops.aten.detach_.default(lift_fresh_copy_1); lift_fresh_copy_1 = None
cat: "f32[s23, 1, s31, 96]" = torch.ops.aten.cat.default([detach_, arg16_1], -2); detach_ = arg16_1 = None
cat_1: "f32[s4, 1, s11, 96]" = torch.ops.aten.cat.default([detach__1, arg17_1], -2); detach__1 = arg17_1 = cat_1 = None
# File: ~/vv/this312/lib/python3.12/site-packages/torch/nn/modules/sparse.py:192 in forward, code: return F.embedding(
embedding: "f32[s72, s70, 192]" = torch.ops.aten.embedding.default(arg0_1, arg13_1); arg0_1 = embedding = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:371 in forward, code: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
sym_numel_default: "Sym(96*s23*s31)" = torch.ops.aten.sym_numel.default(cat)
eq: "Sym(False)" = sym_numel_default == 0; eq = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:373 in forward, code: past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
sym_size_int: "Sym(s31)" = torch.ops.aten.sym_size.int(cat, 2); cat = None
sym_size_int_1: "Sym(s70)" = torch.ops.aten.sym_size.int(arg13_1, 1)
add: "Sym(s31 + s70)" = sym_size_int + sym_size_int_1; sym_size_int_1 = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:372 in forward, code: cache_position: torch.Tensor = torch.arange(
arange: "i64[s70]" = torch.ops.aten.arange.start(sym_size_int, add, device = device(type='cpu'), pin_memory = False); add = None
# File: ~/github/transformers/src/transformers/models/llama/modeling_llama.py:379 in forward, code: causal_mask = create_causal_mask(
to: "b8[s43, s53]" = torch.ops.aten.to.device(arg14_1, device(type='cpu'), torch.bool); to = None
eq_1: "Sym(False)" = sym_numel_default == 0; sym_numel_default = eq_1 = None
sym_size_int_2: "Sym(s70)" = torch.ops.aten.sym_size.int(arange, 0)
add_1: "Sym(s31 + s70)" = sym_size_int + sym_size_int_2; sym_size_int = None
add_2: "Sym(s31 + s70)" = add_1 + 0
sym_size_int_3: "Sym(s53)" = torch.ops.aten.sym_size.int(arg14_1, 1); arg14_1 = None
sub: "Sym(s31 - s53 + s70)" = add_2 - sym_size_int_3; add_2 = None
gt: "Sym(s31 - s53 + s70 > 0)" = sub > 0; sub = gt = None
gt_1: "Sym(s53 > s31 + s70)" = sym_size_int_3 > add_1; sym_size_int_3 = gt_1 = None
arange_1: "i64[s31 + s70]" = torch.ops.aten.arange.default(add_1, device = device(type='cpu'), pin_memory = False); add_1 = None
add_: "i64[s31 + s70]" = torch.ops.aten.add_.Tensor(arange_1, 0)
sym_size_int_4: "Sym(s72)" = torch.ops.aten.sym_size.int(arg13_1, 0); arg13_1 = None
arange_2: "i64[s72]" = torch.ops.aten.arange.default(sym_size_int_4, device = device(type='cpu'), pin_memory = False); sym_size_int_4 = None
arange_3: "i64[1]" = torch.ops.aten.arange.default(1, device = device(type='cpu'), pin_memory = False)
movedim: "i64[s72]" = torch.ops.aten.movedim.int(arange_2, 0, 0); movedim = None
unsqueeze: "i64[1, 1]" = torch.ops.aten.unsqueeze.default(arange_3, 0); arange_3 = None
sym_size_int_5: "Sym(s72)" = torch.ops.aten.sym_size.int(arange_2, 0); arange_2 = None
expand: "i64[s72, 1]" = torch.ops.aten.expand.default(unsqueeze, [sym_size_int_5, 1]); unsqueeze = expand = None
unsqueeze_1: "i64[1, s70]" = torch.ops.aten.unsqueeze.default(arange, 0); arange = None
expand_1: "i64[s72, s70]" = torch.ops.aten.expand.default(unsqueeze_1, [sym_size_int_5, sym_size_int_2]); unsqueeze_1 = sym_size_int_2 = expand_1 = None
unsqueeze_2: "i64[1, s31 + s70]" = torch.ops.aten.unsqueeze.default(add_, 0); add_ = None
sym_size_int_6: "Sym(s31 + s70)" = torch.ops.aten.sym_size.int(arange_1, 0); arange_1 = None
expand_2: "i64[s72, s31 + s70]" = torch.ops.aten.expand.default(unsqueeze_2, [sym_size_int_5, sym_size_int_6]); unsqueeze_2 = sym_size_int_5 = sym_size_int_6 = expand_2 = None
cache-cache_patch:torch-oblivious-rt/inputs_batch1 EXPORT: 81%|████████▏ | 208/256 [00:59<00:16, 2.95it/s]
cache-cache_patch:torch-strict/inputs EXPORT: 81%|████████▏ | 208/256 [00:59<00:16, 2.95it/s]
cache-cache_patch:torch-strict/inputs EXPORT: 82%|████████▏ | 209/256 [00:59<00:14, 3.29it/s]
cache-cache_patch:torch-strict/inputs2 EXPORT: 82%|████████▏ | 209/256 [00:59<00:14, 3.29it/s]
cache-cache_patch:torch-strict/inputs2 EXPORT: 82%|████████▏ | 210/256 [01:00<00:13, 3.49it/s]
cache-cache_patch:torch-strict/inputs_empty_cache EXPORT: 82%|████████▏ | 210/256 [01:00<00:13, 3.49it/s]
cache-cache_patch:torch-strict/inputs_empty_cache EXPORT: 82%|████████▏ | 211/256 [01:00<00:11, 4.08it/s]
cache-cache_patch:torch-strict/inputs_batch1 EXPORT: 82%|████████▏ | 211/256 [01:00<00:11, 4.08it/s]
cache-cache_patch:torch-strict/inputs_batch1 EXPORT: 83%|████████▎ | 212/256 [01:00<00:09, 4.50it/s]
cache-cache_patch:torch-strict-rt/inputs EXPORT: 83%|████████▎ | 212/256 [01:00<00:09, 4.50it/s]
cache-cache_patch:torch-strict-rt/inputs EXPORT: 83%|████████▎ | 213/256 [01:00<00:09, 4.44it/s]
cache-cache_patch:torch-strict-rt/inputs2 EXPORT: 83%|████████▎ | 213/256 [01:00<00:09, 4.44it/s]
cache-cache_patch:torch-strict-rt/inputs2 EXPORT: 84%|████████▎ | 214/256 [01:00<00:09, 4.26it/s]
cache-cache_patch:torch-strict-rt/inputs_empty_cache EXPORT: 84%|████████▎ | 214/256 [01:00<00:09, 4.26it/s]
cache-cache_patch:torch-strict-rt/inputs_empty_cache EXPORT: 84%|████████▍ | 215/256 [01:01<00:08, 4.83it/s]
cache-cache_patch:torch-strict-rt/inputs_batch1 EXPORT: 84%|████████▍ | 215/256 [01:01<00:08, 4.83it/s]
cache-cache_patch:torch-strict-rt/inputs_batch1 EXPORT: 84%|████████▍ | 216/256 [01:01<00:07, 5.42it/s]
cache-cache_patch:torch-strict-oblivious/inputs EXPORT: 84%|████████▍ | 216/256 [01:01<00:07, 5.42it/s]
cache-cache_patch:torch-strict-oblivious/inputs EXPORT: 85%|████████▍ | 217/256 [01:01<00:06, 5.85it/s]
cache-cache_patch:torch-strict-oblivious/inputs2 EXPORT: 85%|████████▍ | 217/256 [01:01<00:06, 5.85it/s]
cache-cache_patch:torch-strict-oblivious/inputs2 EXPORT: 85%|████████▌ | 218/256 [01:01<00:06, 6.25it/s]
cache-cache_patch:torch-strict-oblivious/inputs_empty_cache EXPORT: 85%|████████▌ | 218/256 [01:01<00:06, 6.25it/s]
cache-cache_patch:torch-strict-oblivious/inputs_empty_cache EXPORT: 86%|████████▌ | 219/256 [01:01<00:05, 6.53it/s]
cache-cache_patch:torch-strict-oblivious/inputs_batch1 EXPORT: 86%|████████▌ | 219/256 [01:01<00:05, 6.53it/s]
cache-cache_patch:torch-strict-oblivious/inputs_batch1 EXPORT: 86%|████████▌ | 220/256 [01:01<00:05, 6.65it/s]
cache-cache_patch:torch-strict-oblivious-rt/inputs EXPORT: 86%|████████▌ | 220/256 [01:01<00:05, 6.65it/s]
cache-cache_patch:torch-strict-oblivious-rt/inputs EXPORT: 86%|████████▋ | 221/256 [01:01<00:05, 6.86it/s]
cache-cache_patch:torch-strict-oblivious-rt/inputs2 EXPORT: 86%|████████▋ | 221/256 [01:01<00:05, 6.86it/s]
cache-cache_patch:torch-strict-oblivious-rt/inputs2 EXPORT: 87%|████████▋ | 222/256 [01:02<00:04, 6.97it/s]
cache-cache_patch:torch-strict-oblivious-rt/inputs_empty_cache EXPORT: 87%|████████▋ | 222/256 [01:02<00:04, 6.97it/s]
cache-cache_patch:torch-strict-oblivious-rt/inputs_empty_cache EXPORT: 87%|████████▋ | 223/256 [01:02<00:04, 7.01it/s]
cache-cache_patch:torch-strict-oblivious-rt/inputs_batch1 EXPORT: 87%|████████▋ | 223/256 [01:02<00:04, 7.01it/s]
cache-cache_patch:torch-strict-oblivious-rt/inputs_batch1 EXPORT: 88%|████████▊ | 224/256 [01:02<00:04, 7.08it/s]
cache-cache_patch:transformers/inputs EXPORT: 88%|████████▊ | 224/256 [01:02<00:04, 7.08it/s]
cache-cache_patch:transformers/inputs VALIDATE: 88%|████████▊ | 224/256 [01:03<00:04, 7.08it/s]
cache-cache_patch:transformers/inputs VALIDATE: 88%|████████▊ | 225/256 [01:03<00:12, 2.45it/s]
cache-cache_patch:transformers/inputs2 EXPORT: 88%|████████▊ | 225/256 [01:03<00:12, 2.45it/s]
cache-cache_patch:transformers/inputs2 VALIDATE: 88%|████████▊ | 225/256 [01:04<00:12, 2.45it/s]
cache-cache_patch:transformers/inputs2 VALIDATE: 88%|████████▊ | 226/256 [01:04<00:18, 1.59it/s]
cache-cache_patch:transformers/inputs_empty_cache EXPORT: 88%|████████▊ | 226/256 [01:04<00:18, 1.59it/s]
cache-cache_patch:transformers/inputs_empty_cache EXPORT: 89%|████████▊ | 227/256 [01:06<00:28, 1.00it/s]
cache-cache_patch:transformers/inputs_batch1 EXPORT: 89%|████████▊ | 227/256 [01:06<00:28, 1.00it/s]
cache-cache_patch:transformers/inputs_batch1 EXPORT: 89%|████████▉ | 228/256 [01:07<00:26, 1.04it/s]
cache-cache_patch:transformers-rt/inputs EXPORT: 89%|████████▉ | 228/256 [01:07<00:26, 1.04it/s]
cache-cache_patch:transformers-rt/inputs VALIDATE: 89%|████████▉ | 228/256 [01:08<00:26, 1.04it/s]
cache-cache_patch:transformers-rt/inputs VALIDATE: 89%|████████▉ | 229/256 [01:08<00:26, 1.00it/s]
cache-cache_patch:transformers-rt/inputs2 EXPORT: 89%|████████▉ | 229/256 [01:08<00:26, 1.00it/s]
cache-cache_patch:transformers-rt/inputs2 VALIDATE: 89%|████████▉ | 229/256 [01:09<00:26, 1.00it/s]
cache-cache_patch:transformers-rt/inputs2 VALIDATE: 90%|████████▉ | 230/256 [01:09<00:26, 1.01s/it]
cache-cache_patch:transformers-rt/inputs_empty_cache EXPORT: 90%|████████▉ | 230/256 [01:09<00:26, 1.01s/it]
cache-cache_patch:transformers-rt/inputs_empty_cache EXPORT: 90%|█████████ | 231/256 [01:10<00:24, 1.01it/s]
cache-cache_patch:transformers-rt/inputs_batch1 EXPORT: 90%|█████████ | 231/256 [01:10<00:24, 1.01it/s]
cache-cache_patch:transformers-rt/inputs_batch1 EXPORT: 91%|█████████ | 232/256 [01:11<00:22, 1.09it/s]
cache-cache_patch:transformers-oblivious/inputs EXPORT: 91%|█████████ | 232/256 [01:11<00:22, 1.09it/s]
cache-cache_patch:transformers-oblivious/inputs VALIDATE: 91%|█████████ | 232/256 [01:10<00:22, 1.09it/s]
cache-cache_patch:transformers-oblivious/inputs2 EXPORT: 91%|█████████ | 232/256 [01:10<00:22, 1.09it/s]
cache-cache_patch:transformers-oblivious/inputs2 VALIDATE: 91%|█████████ | 232/256 [01:11<00:22, 1.09it/s]
cache-cache_patch:transformers-oblivious/inputs2 VALIDATE: 91%|█████████▏| 234/256 [01:11<00:13, 1.59it/s]
cache-cache_patch:transformers-oblivious/inputs_empty_cache EXPORT: 91%|█████████▏| 234/256 [01:11<00:13, 1.59it/s]
cache-cache_patch:transformers-oblivious/inputs_empty_cache VALIDATE: 91%|█████████▏| 234/256 [01:12<00:13, 1.59it/s]
cache-cache_patch:transformers-oblivious/inputs_empty_cache VALIDATE: 92%|█████████▏| 235/256 [01:12<00:14, 1.41it/s]
cache-cache_patch:transformers-oblivious/inputs_batch1 EXPORT: 92%|█████████▏| 235/256 [01:12<00:14, 1.41it/s]
cache-cache_patch:transformers-oblivious/inputs_batch1 VALIDATE: 92%|█████████▏| 235/256 [01:13<00:14, 1.41it/s]
cache-cache_patch:transformers-oblivious/inputs_batch1 VALIDATE: 92%|█████████▏| 236/256 [01:13<00:15, 1.31it/s]
cache-cache_patch:transformers-oblivious-rt/inputs EXPORT: 92%|█████████▏| 236/256 [01:13<00:15, 1.31it/s]
cache-cache_patch:transformers-oblivious-rt/inputs VALIDATE: 92%|█████████▏| 236/256 [01:14<00:15, 1.31it/s]
cache-cache_patch:transformers-oblivious-rt/inputs VALIDATE: 93%|█████████▎| 237/256 [01:14<00:16, 1.16it/s]
cache-cache_patch:transformers-oblivious-rt/inputs2 EXPORT: 93%|█████████▎| 237/256 [01:14<00:16, 1.16it/s]
cache-cache_patch:transformers-oblivious-rt/inputs2 VALIDATE: 93%|█████████▎| 237/256 [01:15<00:16, 1.16it/s]
cache-cache_patch:transformers-oblivious-rt/inputs2 VALIDATE: 93%|█████████▎| 238/256 [01:15<00:16, 1.11it/s]
cache-cache_patch:transformers-oblivious-rt/inputs_empty_cache EXPORT: 93%|█████████▎| 238/256 [01:15<00:16, 1.11it/s]
cache-cache_patch:transformers-oblivious-rt/inputs_empty_cache VALIDATE: 93%|█████████▎| 238/256 [01:16<00:16, 1.11it/s]
cache-cache_patch:transformers-oblivious-rt/inputs_empty_cache VALIDATE: 93%|█████████▎| 239/256 [01:16<00:15, 1.08it/s]
cache-cache_patch:transformers-oblivious-rt/inputs_batch1 EXPORT: 93%|█████████▎| 239/256 [01:16<00:15, 1.08it/s]
cache-cache_patch:transformers-oblivious-rt/inputs_batch1 VALIDATE: 93%|█████████▎| 239/256 [01:17<00:15, 1.08it/s]
cache-cache_patch:transformers-oblivious-rt/inputs_batch1 VALIDATE: 94%|█████████▍| 240/256 [01:17<00:14, 1.09it/s]
cache-cache_patch:transformers-strict/inputs EXPORT: 94%|█████████▍| 240/256 [01:17<00:14, 1.09it/s] ~/vv/this312/lib/python3.12/site-packages/torch/_dynamo/output_graph.py:1824: UserWarning: While exporting, we found certain side effects happened in the model.forward. Here are the list of potential sources you can double check: ["L['kwargs']['past_key_values'].layers[0]"]
warnings.warn(
cache-cache_patch:transformers-strict/inputs EXPORT: 94%|█████████▍| 241/256 [01:18<00:14, 1.06it/s]
cache-cache_patch:transformers-strict/inputs2 EXPORT: 94%|█████████▍| 241/256 [01:18<00:14, 1.06it/s]
cache-cache_patch:transformers-strict/inputs2 EXPORT: 95%|█████████▍| 242/256 [01:20<00:17, 1.27s/it]
cache-cache_patch:transformers-strict/inputs_empty_cache EXPORT: 95%|█████████▍| 242/256 [01:20<00:17, 1.27s/it]
cache-cache_patch:transformers-strict/inputs_empty_cache EXPORT: 95%|█████████▍| 243/256 [01:21<00:15, 1.20s/it]
cache-cache_patch:transformers-strict/inputs_batch1 EXPORT: 95%|█████████▍| 243/256 [01:21<00:15, 1.20s/it]
cache-cache_patch:transformers-strict/inputs_batch1 EXPORT: 95%|█████████▌| 244/256 [01:22<00:14, 1.23s/it]
cache-cache_patch:transformers-strict-rt/inputs EXPORT: 95%|█████████▌| 244/256 [01:22<00:14, 1.23s/it] ~/vv/this312/lib/python3.12/site-packages/torch/_dynamo/output_graph.py:1824: UserWarning: While exporting, we found certain side effects happened in the model.forward. Here are the list of potential sources you can double check: ["L['kwargs']['past_key_values'].layers[0]"]
warnings.warn(
cache-cache_patch:transformers-strict-rt/inputs EXPORT: 96%|█████████▌| 245/256 [01:24<00:15, 1.43s/it]
cache-cache_patch:transformers-strict-rt/inputs2 EXPORT: 96%|█████████▌| 245/256 [01:24<00:15, 1.43s/it]~/vv/this312/lib/python3.12/site-packages/torch/_dynamo/output_graph.py:1824: UserWarning: While exporting, we found certain side effects happened in the model.forward. Here are the list of potential sources you can double check: ["L['kwargs']['past_key_values'].layers[0]"]
warnings.warn(
cache-cache_patch:transformers-strict-rt/inputs2 EXPORT: 96%|█████████▌| 246/256 [01:26<00:15, 1.55s/it]
cache-cache_patch:transformers-strict-rt/inputs_empty_cache EXPORT: 96%|█████████▌| 246/256 [01:26<00:15, 1.55s/it]~/vv/this312/lib/python3.12/site-packages/torch/_dynamo/output_graph.py:1824: UserWarning: While exporting, we found certain side effects happened in the model.forward. Here are the list of potential sources you can double check: ["L['kwargs']['past_key_values'].layers[0]"]
warnings.warn(
cache-cache_patch:transformers-strict-rt/inputs_empty_cache EXPORT: 96%|█████████▋| 247/256 [01:28<00:15, 1.70s/it]
cache-cache_patch:transformers-strict-rt/inputs_batch1 EXPORT: 96%|█████████▋| 247/256 [01:28<00:15, 1.70s/it] ~/vv/this312/lib/python3.12/site-packages/torch/_dynamo/output_graph.py:1824: UserWarning: While exporting, we found certain side effects happened in the model.forward. Here are the list of potential sources you can double check: ["L['kwargs']['past_key_values'].layers[0]"]
warnings.warn(
cache-cache_patch:transformers-strict-rt/inputs_batch1 EXPORT: 97%|█████████▋| 248/256 [01:30<00:12, 1.61s/it]
cache-cache_patch:transformers-strict-oblivious/inputs EXPORT: 97%|█████████▋| 248/256 [01:30<00:12, 1.61s/it]~/vv/this312/lib/python3.12/site-packages/torch/_dynamo/output_graph.py:1824: UserWarning: While exporting, we found certain side effects happened in the model.forward. Here are the list of potential sources you can double check: ["L['kwargs']['past_key_values'].layers[0]"]
warnings.warn(
cache-cache_patch:transformers-strict-oblivious/inputs EXPORT: 97%|█████████▋| 249/256 [01:31<00:09, 1.42s/it]
cache-cache_patch:transformers-strict-oblivious/inputs2 EXPORT: 97%|█████████▋| 249/256 [01:31<00:09, 1.42s/it]
cache-cache_patch:transformers-strict-oblivious/inputs2 EXPORT: 98%|█████████▊| 250/256 [01:31<00:07, 1.26s/it]
cache-cache_patch:transformers-strict-oblivious/inputs_empty_cache EXPORT: 98%|█████████▊| 250/256 [01:31<00:07, 1.26s/it]
cache-cache_patch:transformers-strict-oblivious/inputs_empty_cache EXPORT: 98%|█████████▊| 251/256 [01:32<00:05, 1.14s/it]
cache-cache_patch:transformers-strict-oblivious/inputs_batch1 EXPORT: 98%|█████████▊| 251/256 [01:32<00:05, 1.14s/it]
cache-cache_patch:transformers-strict-oblivious/inputs_batch1 EXPORT: 98%|█████████▊| 252/256 [01:35<00:06, 1.58s/it]
cache-cache_patch:transformers-strict-oblivious-rt/inputs EXPORT: 98%|█████████▊| 252/256 [01:35<00:06, 1.58s/it] ~/vv/this312/lib/python3.12/site-packages/torch/_dynamo/output_graph.py:1824: UserWarning: While exporting, we found certain side effects happened in the model.forward. Here are the list of potential sources you can double check: ["L['kwargs']['past_key_values'].layers[0]"]
warnings.warn(
cache-cache_patch:transformers-strict-oblivious-rt/inputs EXPORT: 99%|█████████▉| 253/256 [01:37<00:04, 1.64s/it]
cache-cache_patch:transformers-strict-oblivious-rt/inputs2 EXPORT: 99%|█████████▉| 253/256 [01:37<00:04, 1.64s/it]~/vv/this312/lib/python3.12/site-packages/torch/_dynamo/output_graph.py:1824: UserWarning: While exporting, we found certain side effects happened in the model.forward. Here are the list of potential sources you can double check: ["L['kwargs']['past_key_values'].layers[0]"]
warnings.warn(
cache-cache_patch:transformers-strict-oblivious-rt/inputs2 EXPORT: 99%|█████████▉| 254/256 [01:39<00:03, 1.70s/it]
cache-cache_patch:transformers-strict-oblivious-rt/inputs_empty_cache EXPORT: 99%|█████████▉| 254/256 [01:39<00:03, 1.70s/it]~/vv/this312/lib/python3.12/site-packages/torch/_dynamo/output_graph.py:1824: UserWarning: While exporting, we found certain side effects happened in the model.forward. Here are the list of potential sources you can double check: ["L['kwargs']['past_key_values'].layers[0]"]
warnings.warn(
cache-cache_patch:transformers-strict-oblivious-rt/inputs_empty_cache EXPORT: 100%|█████████▉| 255/256 [01:40<00:01, 1.76s/it]
cache-cache_patch:transformers-strict-oblivious-rt/inputs_batch1 EXPORT: 100%|█████████▉| 255/256 [01:40<00:01, 1.76s/it] ~/vv/this312/lib/python3.12/site-packages/torch/_dynamo/output_graph.py:1824: UserWarning: While exporting, we found certain side effects happened in the model.forward. Here are the list of potential sources you can double check: ["L['kwargs']['past_key_values'].layers[0]"]
warnings.warn(
cache-cache_patch:transformers-strict-oblivious-rt/inputs_batch1 EXPORT: 100%|██████████| 256/256 [01:40<00:00, 2.54it/s]
Let’s save the results.
df = pandas.DataFrame(results)
df.to_excel("plot_export_tiny_llm_dim01.xlsx")
df
no_export = df[df.EXPORT == 0]
no_export.to_excel("plot_export_tiny_llm_dim01.no_export.xlsx")
no_export
The validation failures.
If you have any error, then look at example Export Tiny-LLM with patches.
doc.plot_legend("Tiny-LLM\nexport with\ndimension in {0,1}", "torch.export.export", "tomato")

Total running time of the script: (1 minutes 47.054 seconds)
Related examples

Export with dynamic dimensions in {0,1} into ONNX (custom)